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1 Introduction
Tutorials and worked examples for simulation,
g*‘\' VS curve fitting, statistical analysis, and plotting.
N

https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

The SiMF]T manual contains a description of all the procedures available to users including the necessary
background theory together with worked examples. However, the manual was constructed for users with
competence in mathematics and statistical understanding, so the worked examples were presented in a very
succinct form which sometimes proves difficult to understand for users without these skills.

This set of tutorials and worked examples has been written to keep the mathematics and statistics to aminimum,
and to present the worked examples in a simpler and more user-friendly form with more description and fewer
equations. It is important that the the document tutorials.pdf must be consulted before attempting to
follow instructions in the tutorials. However, it should be realized that the SIMF]T reference can always be
consulted for more details, and it must be pointed out that the tutorials are written with the understanding
that users have installed the package and are aware of the following documents that are distributed with the
package and are available from the SIMF[T website.

- tutorials.pdf

Must be read and understood before attempting to follow instructions in the tutorials

- w_examples.pdf

The collected tutorials

- W_manual.pdf
The comprehensive SIMF[T manual with hyperlinks

- mono_manual.pdf
The comprehensive SIMF[T manual in monochrome PDF

- install.pdf

Installation details

- configure.pdf

Configuration details

- speedup.pdf
Try these techniques when you are familiar with SIMF[T and want to speed up execution by suppressing
advisory messages

- simfit_summary.pdf
Summary of the SIMF[T package

- source.pdf
Details of how to compile the simfit package from source code downloaded from the SIMF[T website

- pscodes.pdf

Tips for IATEX and/or PostScript users who want to employ several advanced plotting procedures

- ms_office.pdf
Description of how to interface SIMF[T with suites such as MS Office, LibreOffice, and OpenOffice
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2 Data preparation

curve fitting, statistical analysis, and plotting.

https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

"\ Tutorials and worked examples for simulation,
Y ~

\

S

2.1 Introduction to data preparation

The format required to input data into SIMF[T is extremely simple: all that is required is to read in a rectangular
table of numbers with no missing values, either as a file or from the clipboard.

Data tables

However there are four alternative ways to indicate separation of data values into columns that will be accepted
by SIMFT as now discussed.

1. Space separated variables

Here the columns are separated by spaces as in this example.

11 12 13
21 22 23
31 32 33
41 42 43

This is how results files are formatted by SiMF[T, but this is not acceptable for table format using some
word processors which generally require columns to be separated by tabs.

2. Tab separated variables

Here the columns are separated by tabs (indicated by —>) as in this example.

11->12->13
21->22->23
31->32->33
41->42->43

This is acceptable for tables using word processors and SIMF[T results tables can easily be transformed
into this format, e.g. reading into Excel as a text file then exporting as a table for use by Word.

3. Comma separated variables

Here the columns are separated by commas as in this example.

11, 12, 13
21, 22, 23
31, 32, 33
41, 42, 43

This is the most common format used for data archiving, for instance *.csv files exported by Excel,
and such tables can easily be transformed into tab format, e.g. reading into Excel as a *.csv file then
exporting as a table for use by Word.
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4. Semicolon separated variables

This is when the continental practise of using commas for decimal points is used so that *.csv files are
then exported from Excel in the following format

Input and output formats

SiMF[T does not distinguish between integers and floating point numbers in data sets supplied for analysis,
but does distinguish three data types of numbers in the files that are automatically created to archive results
from analysis.

1. Integers such as 1, 1000, 1000000
2. Probability estimates such as 0.0004, 0.000039

3. Floating point numbers such as 1.2345 or, in exponential format, 1.2345E+00.

Of course all numbers used by SIMF[T are represented internally either as integers to full significance or
floating point numbers in 64-bit precision, but there are reasons for the way that SIMF[T outputs floating point
numbers.

Probabilities calculated for significance tests are at best only approximations and, as the numbers must lie
between 0 and 1, four or sometimes six figures are output after the decimal point. More than this are for the
blind leading the blind.

Calculations done with 64-bit precision have up to fifteen significant figures and it could be argued that results
should be output with a similar number of significant figures. However experimental data rarely have more
than four or five significant figures, and most calculations involve iterative procedures or approximations in
any case so probably up to six significant figures should be sufficient.

Scientific notation

From version 8 users can configure SIMF]T to use a selected number of significant figures in standard format
or to use exponential notation with exactly six significant figures as follows.

Exponential Standard
.23456E+00 1.23456
.23456E-01 0.123456
.23456E-02 0.0123456
.23456E-03 0.00123456
.23456E-04 0.000123456
.23456E+01 12.3456
.23456E+02 123.456
.23456E+03 1234.56
.23456E+04 12345.6

RRRPRRRRRR
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However, to avoid monstrosities like 0.0000000012345 in output tables, SIMF]T always outputs very small or
very large numbers in exponential notation The advantage of exponential notation is that all output tables will
be neatly formatted irrespective of the size of the numbers, and orders of magnitude can be seen at a glance.
The disadvantage is that users not conversant with exponential notation may find confusing a notation that
even programs like Excel have to resort to for very large or very small numbers. Actually it is very easy to
replace exponential format by floating point format by importing a table formatted by SiMF[T into Excel as a
text file and then changing inside Excel from [scientific] format to [number] format using the [cells format]
option. Such tables can then be imported into Word.

Row and Column labels

It has been explained that any rectangular data table with the same number of columns (i.e. variables) for each
row (i.e. cases) can be imported into SIMF[T by clipboard or file. However sometimes, by design in the case
of multivariate data, or by accident otherwise, a full data matrix including row and column labels is submitted
to SIMF[T for analysis.

There are two ways when this is acceptable.

1. All labels consist of a single word

In this example the interword spaces have been replaced by minus signs but any non-blank character
such as an underscore can be used. Note the use of * to indicate that this is neither a row or a column
label and so will be ignored.

* column-1 column-2 column-3
row-1 11 12 13
row-2 21 22 23
row-3 31 32 33
row-4 41 42 43

2. All labels are included within double quotes

This is done in the next example.

M "column 1" "column 2" "column 3"
"row 1" 11 12 13
"row 2" 21 22 23
"row 3" 31 32 33

"row 4" 41 42 43
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Conclusion

Any matrix withn > 1 rows and m > 1 columns can be submitted to SIMF[T for analysis from file or clipboard
as long as two criteria are satisfied

1. All n rows have precisely m columns and there are no non-numerical or missing values.

2. If it is intended to use a data matrix with non-numerical data for row and column labels these must be
as single words or be quoted.

The columns can be space, tab, comma, or semicolon separated and labels are not limited to one or two words as
long as they are filled out with non-blank characters as in Time_of_Day, or surrounded by double quotes as in
"Score on ascale of 1 to 10". For Excel users the macro simfit6.x1sinthe C:\Program Files\Simfit\doc
folder can be used to transform arbitrary matrices into SIMF]T format.

2.2 Simfit data files

It has been explained that all SIMFT requires to perform analysis is a rectangular table of numbers, with
or without row and column labels. So why is there a need for data files formatted according to the SIMF|T
convention? There are two answers to this question.

1. Itis very easy to create data files according to the SIMF[T convention using any text editor, the programs
supplied by SIMF[T, or the Excel macro simfit6.xls. Such files facilitate archiving and repeated analysis.

2. Many procedures used by SIMF[T require additional information such as starting values and ranges of
parameter values for curve fitting, initial conditions from which to advance the solution of differential
equations, flags to indicate which variables are to be included in multivariate analysis, etc.

Example 1

Consider a very simple example, namely the SIMF]T default ANOVA test file anoval.tfl shown below.
1-way ANOVA data from Zar: Biostatistics 3rd. edn. p-213

6 5
28.2 39.6 46.3 41.0 56.3
33.2 40.8 421 441 54.1
36.4 37.9 43.5 46.4 59.4
34.6 37.1 48.8 40.2 62.7
29.1 43.6 43.7 38.6 60.0
31.0 42.4 40.1 36.3 57.3

5

line 1: title for this data set

line 2: number of rows then number of columns

line 3: first row of data values

line 8: last row of data values

line 9: number of additional comment lines in the file

This data file has three sections as follows.

1. The Header

The first line is the title and this is very useful as many SIMF[T procedures output results tables with
the titles to identify the data set. It is also very convenient to scan the first line of a data file to quickly
remind you about the contents. The second line is the size in the form of the number of rows (6 in this
case) and the number of columns (5 in this case). There are some SiMF[T functions that must have
these two dimensions in order to make decisions about the type of data. For instance, some graphics
and curve fitting procedures.

Note that, although a header section is not always required, it is very useful to supply one.
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2. The Data
This is just the rectangular table of data values with no missing values.

3. The Trailer
In this example the first line of the trailer has the number of extra lines appended to the data. This value
is not always necessary but is useful for some SIMF[T programs that edit data files. Also note that, in
this case, the only material contained in the trailer section is advisory information. However this is not
always the case. Although a trailer section is never vital and can always be omitted, nevertheless there
are many circumstances when extremely important information required by SIMF[T can be conveniently
added to the trailer which greatly simplifies analysis. This will be clear after analyzing another test file.

Example 2

Now consider another typical SIMF]T data file, namely kmeans.tf1, the default file to illustrate K-means
clustering. Note that line numbers have been included in the first column of the following table for reference
only and are not part of the actual data file.

Line 1 Data for 5 variables on 20 soils ...

Line 2 20 5

Line 3 77.3 13.0 9.7 1.5 6.4
Line 4 82.5 10.0 7.5 1.5 6.5
Line 5 66.9 20.6 12.5 2.3 7.0
Line 6 47.2 33.8 19.0 2.8 5.8
Line 7 65.3 20.5 14.2 1.9 6.9
Line 8 83.3 10.0 6.7 2.2 7.0
Line 9 81.6 12.7 5.7 2.9 6.7
Line 10 47.8 36.5 15.7 2.3 7.2
Line 11 48.6 37.1 14.3 2.1 7.2
Line 12 61.6 255 12.9 1.9 7.3
Line 13 58.6 26.5 14.9 2.4 6.7
Line 14 69.3 22.3 8.4 4.0 7.0
Line 15 61.8 30.8 7.4 2.7 6.4
Line 16 67.7 25.3 7.0 4.8 7.3
Line 17 57.2 31.2 11.6 2.4 6.5
Line 18 67.2 22.7 10.1 3.3 6.2
Line 19 59.2 31.2 9.6 2.4 6.0
Line 20 80.2 138.2 6.6 2.0 5.8
Line 21 82.2 11.1 6.7 2.2 7.2
Line 22 69.7 20.7 9.6 3.1 5.9

Lines numbered 1 to 2 are the optional header while lines 3 to 22 contain the data table as follows.

Line 1 This is the title of the data set

Line 2 This contains the size, i.e. the number of rows and columns

Line 3 to Line 22 contain the 20 by 5 data table
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Line 23
Line 24
Line 25
Line 26
Line 27
Line 28
Line 29
Line 30
Line 31
Line 32
Line 33

44 (i.e., Number of extra lines)

Usage:

Select statistics, then run program simstat, choose
multivariate statistics, then go to K-means clustering

The next line defines the starting clusters fork = 3
begin{values} <— token to flag start of appended values

82.5 10.0 7.5 1.5
47.8 36.5 15.7 2.3
67.2 22.7 10.1 3.3

end{values}

6.5
7.2
6.2

Lines 23 to 28 are simply advisory but lines 29 to 33 illustrates the technique to set default starting estimates
for the K-means clusters centroids. Note here how StMF[T data files and user-supplied model files define
various environments (in this case the environment is values) using flags as in

begin{values} ... end{values}

The final part of the trailer section contains lines 34 to 67 as follows.

Line 34
Line 35
Line 36
Line 37
Line 38
Line 39
Line 40
Line 41
Line 42
line 43
Line 44
Line 45
Line 46
Line 47
Line 48
Line 49
Line 50
Line 51
Line 52
Line 53
Line 54
Line 55
Line 56
Line 57
Line 58
Line 59
Line 60
Line 61
Line 62
Line 63
Line 64
Line 65
Line 66
Line 67

The next line defines the variables as 1=include, O=suppress
begin{indicators} <— token to flag start of indicators

1 1 1 1 1
end{indicators}

The next line defines the row labels for plotting
begin{labels} <— token to flag start of row and column labels

AN IO UVOZEErXNcec_ITOTMMOO ®mW>

<< < <
FEoN =

V5
end{labels}
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Here we see that two further environments are defined.

1. indicators
Lines 36 to 38 define the indicators, i.e. which variables are to be included in the analysis using the
scheme that a 1 indicates a variable to be included while a 0 indicates a variable to be suppressed. So
here the default position is to include all variables.

2. labels
Lines 41 to 67 define the labels. First the row labels in lines 42 to 61 then the column labels in lines
62 to 66. These labels can then be used to identify rows and/or columns when graphs are plotted. It is
recommended to use very short labels, as done here, to avoid confusion resulting from long labels.

Note that environments defining parameters such as values, indicators, and labels as illustrated in this test
file can be placed anywhere in the trailer section. SIMF[T simply scans the trailer section of data files for
appropriate environments and, if none are found, it uses default settings which can be edited retrospectively as
required. However it should be pointed out that with many advanced SIMF]T techniques, such as constrained
nonlinear regression or simulating and fitting differential equations, supplying starting estimates or initial
conditions is very much easier if these are appended to the individual data sets.

2.3 Creating and editing Simfit data files

It has been explained that data for analysis by SIMF[T must be supplied in the form of a rectangular table of
numbers with no missing values. Further, row and column labels can be present as long as they either have
no spaces as in Time_of_Day or are double quoted as in "Time of Day".

So, for many purposes, it is adequate merely to copy the table to the clipboard from a spreadsheet program
such as Excel or Calc, and then use the [Paste] button on the SIMF[T file opening control, which simply
makes a temporary file in SIMF[T format from the clipboard data. There is nothing wrong with this way of
proceeding but two things must then be realized.

1. Archiving

Doing it this way using copy and paste means it has to be done every time you want to repeat the process,
for instance, to fit several models to the same data. Saving well-named data files with short meaningful
titles makes retrospective use so much easier. In addition, it permits the gathering of files together to fit
several data sets simultaneously, or plot multiple sets of coordinates, say using SIMF[T library files.

2. Environments

Many analytical procedures require more than just the data table. For instance.

(a) Setting parameter starting estimates and limits for nonlinear model fitting.

(b) Providing initial conditions and range for numerical solution of differential equations, as well as
the limits and number of points for plotting trajectories.

(c) Defining starting clusters for K-means clustering.
(d) Indicating variables to include or suppress in multivariate analysis.
(e) Assigning variables to groups as in canonical correlation.
(f) Adding row and column labels to data files to use in multivariate analysis plots.
Evidently it would be extremely tedious to have to do this every time analysis is carried out using

the clipboard to copy and paste spreadsheet data data into SIMFT for analysis, as these additional
parameters would then have to be edited interactively each time for use by the calling program.
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Before proceeding any further an important point must be made about such data files.

SMFT data files are simple ASCII text files which means that, given such a file, it is easy to edit it
retrospectively in any text editor, such as notepad, in order to add, remove, or edit any of the information in it.

However, if rows of numbers are added to the data table or removed from it, then the first integer on
the second line of the file which indicates the number of rows must be corrected.

There is also another matter which may cause concern if it is not understood.

Numbers in data files prepared by SiMF[T are usually represented in scientific notation with a fixed number
of significant figures. So if you input 1, 2, 3 from the clipboard it will be written to file as 1.0000000E+00,
2.0000000E+00, 3.0000000E+00 or similar. Of course calculations by SiMF[T are carried out to 64-bit
precision, so in the unlikely event that you do want to input data with more significant figures, just input in
CSV format.

These are the ways to create data files in the SIMFT format.
1. Paste in from the clipboard but then save the temporary file created with a new name.
2. Use a macro with your spreadsheet program. For instance simfit6.x1s with Excel.
3. Read a spreadsheet export file into program maksim or paste a table in from the clipboard.
4. Create a data file using a text editor such as notepad, or better notepad++.

5. Create a data file using one of the SIMF[T programs such as makfil for curve fitting files, or makmat
for arbitrary data tables.

Having created a data file then any environments that need to be added can be pasted in anywhere at the end
of the data table using a text editor.

For small data sets it may be convenient to create data files using the SIMF[T file creating programs makmat
and makfil which guarantees correctly formatted data files. Then, for simple editing to correct, add, or deleet
a few values it is probably easiest to use a text editor like notepad. However, when it comes to serious editing
of data files the SIMF[T data file editing programs editmt and editfl provide many procedures that are very
difficult if not impossible to perform using a text editor or spreadsheet program. So the following features of
the SIMF[T data preparation and editing programs should be realized before the functionalities are discussed.

The SiMF[T data preparation programs may only be useful when creating a file from relatively small data
sets, but do have some advantages that will be outlined. The SiMF|T file editing programs read in a source
file and output a target file, but the source file will never be altered.

Standard data files

SMF{T program makmat

With this program you can simply type in numbers into an empty grid in the usual way. However, in order to
facilitate the creation of special data sets, matrices can be zeroed with selected numbers, which can be very
useful where diagonals have special significance. After filling in all the cells the matrix can be edited before
exit. If the file creation process is closed before all the cells are filled in then uncompleted cells are set to a
fixed number (1 or 1000000) which can only be changed by further editing.

SMFIT program editmt

Some of the functionality is summarized.
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Patches of the matrix can be written to file and new patches can be added from files. This is a very
useful way to fuse multiple data sets that all have the same number of rows, or alternatively the same
number of columns.

Individual rows or columns can be deleted or restored which is a convenient way to swap rows or
columns

Individual rows or columns can be transformed by algebraic, probability, or trigonometric functions.
Individual rows or columns can be set to fixed values.

The total matrix can be edited to change selected values or for such processes as centering, scaling, or
centering and scaling rows or columns. Such editing can be aborted at any stage without overwriting
the current default matrix.

On exit the title and trailer section of the data set can be edited.

Of course users must be aware of the need to proceed in an orderly and methodical fashion if these procedures
are to applied sensibly with the desired mathematical results.

Curve fitting Files

There are also several special considerations with curve fitting files that must be considered briefly here,
noting that there is much more detail on this subject in the SIMF[T reference manual.

These have either two columns x and y, or three columns x, y, and s which have the following meanings.

X in column 1

The independent variable known with great accuracy, e.g. time, weight, concentration.

Usually x values are increasing order because of four reasons.

1. The first x;, y; pairs are used to obtain starting estimates for model parameters that have influence
at low x.

2. The last x;, y; pairs are used to obtain starting estimates for model parameters that have influence
at high x.

3. Numerical estimation of differential equations is best done sequentially onwards from the initial
conditions to avoid unnecessary re-calculations.

4. SiMFT parses the data first time and assigns logical variables to identify groups of replicates so
that the model error is only calculated for the first member of each group of replicates to avoid
unnecessary re-calculations.

Y in column 2

The measured response assumed to result from random experimental error added to a deterministic
effect.

Sincolumn3

The weights for fitting are calculated using w; = 1/ s?.

There are five possibilities, all of them being controversial.
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1. All 5; = 1. Constant variance is assumed.
This is also the case when only two columns x the y are supplied. In other words, there is no such
thing as unweighted regression.

2. The s; are investigated independently and are know accurately.
This is unquestionably the best method but is seldom used.

3. The s; are estimated using the sample standard deviations based on replicates.
This is only acceptable if the sample sizes are sufficiently large, definitely > 5.

4. The s; are assumed to be functions of the data i.e., y;.
This means that replicates will be weighted differently.

5. The s; are assumed to be functions of the best-fit model.
Whatever functional dependence is assumed the weights will be different for each iteration and
only make sense if the fitted model is actually the correct one, the assumed functional dependence
is correct, and in addition the weights only become asymptotically reliable as the regression
converges to the solution point.

StMFIT program makfil

The user can choose to make a x,y or a x, y, s file and can choose whether to input x in increasing order or,
for special use where this is not necessary, in arbitrary order. Note that x can also be input for data such as
those from doubling dilution experiments as described in the information available when the program is run,
but this option is only to be used when it is properly understood. If the option to make a x, y file is chosen,
the output file will have a third column with s; = 1.

As this program is designed to prepare data files for curve fitting you will be forced to only input x in increasing
order unless this option has been suppressed, and if you choose to make a x, y, s file, you will be forced to
input meaningful s; values with s; > 0.

Note that you can plot the x, y values when the data input phase has been completed, and this is a very valuable
way to check that sensible data have been input. So, if outliers are seen suggesting a typing error, this editing

can be done before exit.

SMFIT program editfl

Just as with editmt you specify a source file and a target file in case an undo functionality is required, and
you can fuse multiple curve fittng data files together. A valuable feature is to rearrange data so that x is in
nondecreasing order, and a check is provided to make sure that s;, y; pairs suggesting a sensible signal to noise
ration have been input. If replicates have been provided these can be used to calculate weights and error bars,
although some SIMFT programs can do this at run-time.

Before final exit the ability to edit the title and trailer section is provided in case environments such as

begin{limits} ... end{limits}

need to be added or updated.
The great advantage of using programs makfil and editfl is that the extensive checks for consistency, x order,
sensible signal to noise ratios for y;, s; pairs, and visual checking for accidental outliers during the data input

phase, greatly decreases the chance of a spurious result from trying to fit badly formatted data.

Missing values
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Data tables used by StiMF[T must have no missing values. So, if you are in the unfortunate situation of requiring
such dishonesty for the greater good, then you will have to use the Excel macro called simfit6.x1s, or some
other program dedicated to cheating in (one hopes) the least objectional way.

However there are sometimes cases where analysis of a matrix with unequal length columns can proceed
and where missing values do not need to be replaced by estimates. For instance, 1-way ANOVA, analysis of
multiple samples for equality of variance, creating box and whisker plots, etc. Such situations can be handled
using individual column vectors, specifying data samples using a library file, or choosing individual samples
from your project archive. Note that now these procedures can also use incomplete matrix files which will be
described separately.

2.4 Incomplete matrices with missing values

Many procedures require sets of data with possibly unequal sample sizes, and the standard ways to deal with
such situations in SIMF[T has been to use one of the following three techniques.

1. Opening a library file to reference sample files, e.g., anoval.tfl.
2. Opening individual files like columnl.tfl, columnl.tf2 such as are specified in anoval. tfl.

3. Opening collections of files like columnl. tf1, columnl. tf2 from your vector project archive.

There is now also the possibility of using an incomplete matrix file with missing values where the columns
are padded out with non-numeric character strings like blanks, X, NA, etc. However, note that this technique
is not intended for situations where a value is missing because an observation was not recorded, or because
an outlier is suspected, and an estimate is to be used in order to allow statistical analysis to proceed. For this
the Excel macro simfit6.x1s can be used. Rather it is simply designed so that a single matrix can be used
for convenience whenever the numbers of numeric data are not the same in every column of a matrix.

The format for incomplete matrix files

Here are the rules.

* Inorder for such data to be interpreted correctly the matrix columns must be separated in an unambiguous
way, for example, using commas, semicolons, or tabs.

* The separators used cannot occur elsewhere in the file except as column separators.

e Down any given column the missing values can occur at the level of any row.

* Unambiguous non-numeric character strings must be used to pad out the cells with missing values.
» Headers and trailers can be added as long as they do not contain the column separators.

* If labels are required for plotting they cannot be added to the trailer but must be added from the
configuration files, or interactively, e.g. from a separate labels file.

Example 1: comma separated variables

The SIMFTT test file incomplete.tfl uses commas as separators as follows.

23, 29, 38, 30, 31
27, 25, 31, 27, 33
26, 33, 28, 28, 31
19, 36, 35, 22, 28
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30, 32, 33, 33, 30
, 28, 36, 34, 24
) 30, , 34, 29
, 31, , 32, 30

Such a file is just a normal comma separated file such as a . csv file exported from any spread sheet program.
Of course this format cannot be used if continental notation is used for non-integer values, such as using 1,234
for 1.234. Cells can use scientific notation for 1.234 such as 1.234E+00 or 0.1234E+01, 1.234¢0, etc.

Example 2: semicolon separated variables

The SIMFT test file incomplete.tf2 uses semicolons as separators as follows.

23; 29; 38; 30; 31
27; 25; 31; 27; 33
26; 33; 28; 28; 31
19; 36; 35; 22; 28
30; 32; 33; 33; 30
; 28; 36; 34; 24
; 30; ; 34; 29
; 31; ; 32; 30

Such a file would be output as a =.csv file from a spreadsheet program set up to use commas instead of the
decimal points used in standard scientific documents.

Example 3: tab separated variables

This how test file incomplete.tf3 will look in Notepad

23 29 38 30 31
27 25 31 27 33
26 33 28 28 31
19 36 35 22 28
30 32 33 33 30
28 36 34 24
30 34 29
31 32 30

while here is how it would look in Notepad++ if the option to display tabs is switched on.

23->29->38->30->31
27->25->31->27->33
26->33->28->28->31
19->36->35->22->28
30->32->33->33->30
->28->36->34->24
->30-> ->34->29
->31-> ->32->30
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This is usually the default format to copy to the clipboard or export to files with many spreadsheet programs,
as it allows either continental or scientific notation to be used for non-integer values. However, considerable
care must be taken when editing such files in a simple editor like Notepad which does not display tabs, and
the more advanced editior Notepad++ must be used to prevent accidental deletion of tabs, when it would no
longer be recognized by SIMF]T as an incomplete matrix file. Here are some of the graph plotting styles that
can be used with both incomplete and complete StmFTdata files.
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Plot 1: Means as symbols with error bars calculated from individual samples

Error Bars for Data in the file incomplete.tfl1
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Plot 2: A bar chart plot with added error bars calculated as for Plot 1
Bar Chart with Error Bars for Data in the file incomplete.tfl
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Plot 4: Showing all the sample values as clusters
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Plot 5: A box and whisker plot with added data

Values

40.0 ~

35.0 A

30.0 A

25.0 A

20.0 A

15.0 -

Box and Whisker Plot with Scattered Data

ae
[ ]
[ ]
——
[ J [ ]
[ ] [
[ ] [ J
T [ ] [ ]
i .
[\ Q@ [{y [\ [\
® ® ® ® )
© @ e s

Samples



Creating and editing Simfit data files

27

Plot 6: Connecting the percentiles by straight line segments
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3 Results files
N Tutorials and worked examples for simulation,
N o W curve fitting, statistical analysis, and plotting.
N https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

3.1 Options for the number of significant digits in tables

Floating—point numbers (i.e., numbers with a decimal point) are stored by computers in binary form but data
files for input into SIMF]T and tables output with results are in text format. Given a number x, the range of
values allowed by SIMF]T for the absolute value of x to 3 significant digits (i.e., 3 digits not counting the
decimal point) is

2.25x1073% < |x] < 1.79 x 10°%

and the maximum number of significant digits allowed in this range is approximately 15.

SMFT will accept data within such limits and performs calculations to double precision but, because all
calculations are subject to rounding and truncation errors, only a lower number of significant digits, say 12, is
required especially given that most calculations SIMF[T performs involve iterative procedures like nonlinear
optimisation. Further, scientific instruments are seldom accurate at this level of accuracy and in many cases
it is not reasonable to accept results with more significant digits than used to represent the data. Because of
the difficulty of reading and writing extremely large numbers there is a format called scientific notation to be
explained next.

All floating—point numbers can be written concisely using powers of ten as multiplication factors as follows

1000000.0 = 1.0 x 10°
0.0000001 = 1.0 x 107°

where the value and convenience of using powers of ten will be clear at a glance. To avoid superscripts and
also to limit the number of characters required to represent numbers, scientific notation simply uses the idea
of one digit in front of the decimal point and a fixed number of digits after the decimal point with the code
E+ab for x10%? and E-ab for x107¢?. Here for example is the number —1.23456 that unquestionably has
6 significant digits but multiplied by powers of ten as they would be displayed by SiIMF[T using Option 6
(scientific notation) and Option 7 (standard notation).

Option 6 Option 7
-1.23456E+09 -1.23456E+09
-1.23456E+08 -1.23456E+08
-1.23456E+07 -12345600.0
-1.23456E+06 -1234560.0
-1.23456E+05 -123456.0
-1.23456E+04 -12345.6
-1.23456E+03 -1234.56
-1.23456E+02 -123.456
-1.23456E+01 -12.3456
-1.23456E+00 -1.23456
-1.23456E-01 -0.123456
-1.23456E-02 -0.0123456
-1.23456E-03 -0.00123456

-1.23456E-04 -0.000123456
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-1.23456E-05 -0.0000123456
-1.23456E-06 -1.23456E-06
-1.23456E-07 -1.23456E-07

It will be clear that the scientific format has a fixed width with the numbers aligned at the decimal point
whereas the numbers in standard notation are of variable width and, when the numbers become rather large
or very small, SIMF[T Option 7 resorts to scientific notation.

The options for results

SiMF[T releases up to version 7 always displayed numbers in scientific notation with a field width and
significant digits appropriate for the analysis being employed. To many analysts this is by far the most
valuable way to display numbers as the field width is fixed, all numbers are aligned at the decimal points and
orders of magnitude can be seen at a glance, but some SIMF[T users find this difficult to understand so from
version 8 SIMF[T provides an interface that users can employ to change number format interactively. This is
done using the following sequence of steps starting from the [Configure] option from the SIMF[T main page

[Configure] --> [Advanced] --> [Change number of significant digits in results tables]

which takes immediate effect after choosing the format required without requiring the [Apply] button to be
pressed.

The ten options are

Option 1: Up to 12 significant digits

Option 2: Up to 11 significant digits

Option 3: Up to 10 significant digits

Option 4: Up to 9 significant digits

Option 5: Exactly 7 significant digits

Option 6: Exactly 6 significant digits (scientific notation)

Option 7: Exactly 6 significant digits (standard notation: recommended)
Option 8: Exactly 5 significant digits

Option 9: Exactly 4 significant digits

Option 10: Exactly 3 significant digits

which all use a field width of 13 characters. For this reason the number of significant digits in options 1 to 4
cannot be exact but are upper limits.

To illustrate the difference between Scientific notation and standard notation consider the results created by
SMFT after fitting one then two exponentials using SIMF]T program exfit to analyse the test file exfit.tf4
(which has six significant digits) in order to decide if fitting two exponentials after one exponential justifies
the higher order model with extra parameters.

Option 6: Scientific notation

For best-fit 1-exponential function

Parameter Value Std.Error Lower95%cl  Upper95%cl p
A(1)  1.69443E+00 2.67006E-02 1.63974E+00 1.74912E+00 0.0000
k(1) 1.46094E+00 5.77654E-02 1.34261E+00 1.57926E+00 0.0000
AUC 1.15982E+00 3.78135E-02 1.08237E+00 1.23728E+00 0.0000

AUC is the area under the curve from t = 0 to t = infinity

Initial time point (A) = 3.59830E-02
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Final time point

Area over

Average over range (A,B)

For best-fit 2-exponential

Parameter
A(D
A(2)
k(1)
k(2)
AUC

range (A,B)

Value
8.52553E-01
1.17644E+00
6.79334E+00
1.11206E+00
1.18339E+00

(B)

functio

Std.Error
6.77105E-02
7.47538E-02
8.54540E-01
5.10959E-02
1.47096E-02

n

1.61100E+00
9.90210E-01
6.28698E-01

Lower95%cl
7.13372E-01
1.02278E+00
5.03681E+00
1.00703E+00
1.15316E+00

Upper95%cl
9.91734E-01
1.33010E+00
8.54987E+00
1.21709E+00
1.21363E+00

AUC is the area under the curve from t = 0 to t = infinity

Initial time point (A)
Final time point

Area over

Average over range (A,B)

range (A,B)

F test results

WSSQ-previous (WSSQ1l)
WSSQ-current (WSSQ2)

Number of parameters-previous (M1)
Number of parameters-current (M2)

Number of data points (NPTS)

Akaike AIC-
Akaike AIC-

previous
current

Evidence ratio (ER)

Schwarz SC-
Schwarz SC-

Mallows Cp

previous
current

Mallows ratio (Cp/M1)
Numerator degrees of freedom

Denominator degrees of freedom
F test statistic (ES)

p = P(F >=

ES)

1 -p=P(F =< ES)
5% upper tail point
1% upper tail point

(B)

Conclusion based on F test
Reject previous model at 1% significance level
There is strong support for the extra parameters
Tentatively accept the current best fit model

3.59830E-02
1.61100E+00
9.38322E-01
5.95754E-01

2.24923E+02
2.43970E+01

2

4

30
.44368E+01
.79794E+00
.99818E+13
.72392E+01
.40273E+00
.13701E+02
.06851E+02

2

26
.06851E+02
.0000
.0000
.36902E+00
. 52633E+00

P NN WRE O

(S B N e R

0.0000
0.0000
0.0000
0.0000
0.0000

You will observe that all floating point numbers in these results tables have exactly six significant digits and

all the numbers are lined up at the decimal point but use exponential notation for powers of ten.

Option7: Standard notation

Now performing the same analysis after selecting the default Option number 7 leads to the following analysis
in which all the floating point numbers are still displaying six significant digits but now in standard format.
Note however that, even in standard format, it is necessary to swap to scientific notation when the absolute
value of the numbers become very large (> 107) or very small (< 107%). This is necessary to maintain a
maximum width of 13 characters per number in multi—column tables.
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For best-fit 1-exponential function

Parameter Value Std.Error Lower95%cl Upper95%cl p
A(1) 1.69445 0.0267064 1.63974 1.74915 0.0000
k(1) 1.46101 0.0578035 1.3426 1.57941 0.0000
AUC 1.15978 0.0378344 1.08228 1.23728 0.0000

AUC is the area under the curve from t = 0 to t = infinity

Initial time point (A) = 0.035983
Final time point (B) = 1.611

Area over range (A,B) = 0.990184
Average over range (A,B) = 0.628681

For best-fit 2-exponential function

Parameter Value Std.Error Lower95%cl Upper95%cl p
A(1) 0.852548 0.0677272 0.713332 0.991763 0.0000
A(2) 1.17645 0.0747742 1.02275 1.33015 0.0000
k(1) 6.79344 0.854289 5.03743 8.54946 0.0000
k(2) 1.11206 0.0511103 1.007 1.21712 0.0000
AUC 1.18339 0.0147092 1.15316 1.21363 0.0000

AUC is the area under the curve from t = 0 to t = infinity

Initial time point (A) = 0.035983

Final time point (B) =1.611

Area over range (A,B) = 0.938323

Average over range (A,B) = 0.595754

F test results

WSSQ-previous (WSSQ1l) = 224.923
WSSQ-current (WSSQ2) = 24.397
Number of parameters-previous (M1) = 2
Number of parameters-current (M2) = 4
Number of data points (NPTS) = 30
Akaike AIC-previous = 64.4368
Akaike AIC-current = 1.79794
Evidence ratio (ER) = 3.99818E+13
Schwarz SC-previous = 67.2392
Schwarz SC-current = 7.40273
Mallows Cp = 213.701
Mallows ratio (Cp/M1) = 106.851
Numerator degrees of freedom =2
Denominator degrees of freedom = 26

F test statistic (FS) = 106.851
p = P(F >= FS) = 0.0000
1-p = P(F =< FS) = 1.0000
5% upper tail point = 3.36902
1% upper tail point = 5.52633

Conclusion based on F test

Reject previous model at 1% significance level
There is strong support for the extra parameters
Tentatively accept the current best fit model
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3.2 Introduction to results file

Each time a procedure outputs a table of results to the display, a copy is written to a results file for archive
purposes. So there is no need to copy the results at run-time, but it is important to appreciate the steps needed
to retrieve this information for retrospective use. The way this SIMF[T scheme works will now be explained,
noting that the files are saved in the folder C:\...ProgramData\user name\Simfit\res.

1. File names of the results files

The 101 results files are named in sequence as follows.

f$result.txt
f$result.001
f$result.002

f$result.100

2. Action taken each time a program starts

The last file £$result.100 is deleted and the list of saved files is renamed so that £§result.099
becomes f$result.100 all the way down to f$result.txt which becomes f$result.001, then a
new file f§result.txt is opened ready to receive the anticipated results.

3. The format of results files

The results files are standard ASCII text files which, using a monospaced font like Courier, will be lined
up as rectangular tables with associated header and trailer sections. They can be edited and printed
using any text editor, such as program notepad.

4. Notation used for numbers in the results files

These may be in scientific notation using decimal points as follows

5.4321E-03  0.0054321
5.4321E+00 5.4321
5.4321E+03 5432.1

where the number of significant digits is determined by the analytical technique being used. However,
from SIMF[T Version 8 users can choose to output results in standard notation with a chosen number
of significant digits. Of course all numbers are stored in the computer to full 64-bit precision, but the
number output to tables is designed to reflect the number that would be meaningful. So, for instance,
parameter estimates from curve fitting are usually only meaningful up to about six significant digits,
while four decimal places is probably sufficient for probability estimates and significance tests.

5. Extracting tables

The results files are available for viewing, printing, saving with new names, and for extracting tables as
tabbed-text, html, xml, or IXEX from the [Results] button on the main SiMF|T menu.

Advice

Finally, it should be obvious that any results that may be useful retrospectively must be saved before the file
is rolled off the end of the list. Another issue is that when SIMF]T starts it checks that all results file that are
effectively empty are deleted with subsequent rolling and renaming, which can sometimes cause a delay when
SiMFT starts. Such empty files are created when a program is started but not then used to create results.
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Each time a data set is analyzed the results are written to a file called f$result.txt, and the current files
are renamed so that the existing f$result.txt becomes f$result.001 while f$result.001 becomes
f$result.002 and so on. These can be viewed using the [Results] option from the main SiMF[T menu.

These SIMF]T results files are formatted so that the numbers displayed only contain the number of significant
digits that are meaningful in context. For instance, probabilities will usually only have four digits after the
decimal point, which indicates that it does not make any sense to consider any subsequent digits for purpose
of statistical testing, and in any case probability estimates will not be accurate for more than about four digits.
Furthermore, as experimental data are rarely more accurate than about three or four significant digits anyway,
it may be wishful thinking to ever consider more than say six. In addition, the tables are formatted using a
fixed font with scientific notation to line up column entities irrespective of absolute size, and many users do
not want this in a thesis or published document. Naturally, these arguments do not apply to integers.

As an example consider the following case with the title Table 1.

Table 1
1-Way Analysis of Variance: 1 (Grand Mean 43.16)

Transformation:- x (untransformed data)

Source SSQ NDOF MSQ F p
Between Groups 2193.0 4 548.4 56.15 0.0000
Residual 244.1 25 9.765

Total 2438.0 29

Actually, most users would want to import such a table formatted as tabbed-text, html, xml, or I&IEX into
documents such as a report, thesis, or publication looking something like Table 2.

Table 2
1-Way Analysis of Variance: 1 (Grand Mean 43.16)
Transformation:- x (untransformed data)

Source SSQ NDOF MSQ F p
Between Groups 2193.0 4 548.4 56.15 0.0000
Residual 24410 25 9.765

Total 2438.0 29

Or even, for those with artistic leanings, possibly something like Table 3.

Table 3
1-Way Analysis of Variance: Grand Mean 43.16
Transformation: x (untransformed data)

Source SSQ NDOF | MSQ F p
Between Groups | 2193.0 4 | 548.4 | 56.15 | 0.0000
Residual 24410 25 | 9.765

Total 2438.0 29
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This article explains the procedures required to export tables from from StMF[T results files into forms suitable
for inclusion into word processors, spreadsheet programs, website scripts, or even professional document
preparation systems such as IATgX. Also, decimal points can be replaced by commas as in continental notation
if required.

The procedure

It is important to realize that the [Results] option from the StMF[T main menu gives access to all the currently
saved results files.

* Choosing a results file.

Early versions of SIMF]T allowed users to name results files individually to avoid anything being lost.
However, now that up to 100 results files are saved and users have the option [Results] from the main
SiMF[T menus from which to view, print, save, edit, or make tables, this is no longer usually necessary.
Clearly, if results are always required for retrospective use, regular back-up or saving will be necessary.

» Extracting a table.

From the [Make tables] option view the file to make sure it is the one required then copy to the clipboard
only the table required along with any associated header and trailer sections ... but nothing else.

* Preliminary editing.

Sometimes editing of the file is required to make sure that every row of the table has exactly the same
number of columns. So note that, for extracting a table there can be no empty cells, and each cell
must contain precisely one word. Any column titles must be edited so that they consist of one word,
for instance changing Time of Day to Time_of_Day for instance, or filling empty cells by three dots.
Added underscores and sets of three contiguous dots can be removed when the final table is written to
file. A pre-processing option is provided for editing before attempting to create a table.

Note that often tables have cells with added comments relating to goodness of fit or results of statistical
testing, and these no not need to be underscored. There are also special tables with only two columns
containing several words in some cells, and Example 1 later will make this clear.

* Viewing the hashtag table.

The algorithm attempts to identify cells in a table by inserting a hashtag between every column. If the
algorithm succeeds there would be no need to view this hashtag table. However this option should be
switched on until the process of the algorithm is understood, or if it fails and you need to see why.

The hashtag table is clarified in Example 1.

¢ Headers and trailers.

Frequently tables have header and trailer sections that are descriptive and not part of the table itself. As
these can have strings of word and numbers that would confuse the algorithm checking that every row
must have the same number of columns, they must be identified. This is done by using buttons on a
window that allows the header and trailer lines to be highlighted. If this is not done the table creating
algorithm will fail.

Selecting headers and trailers is clarified in Example 2.

* Saving the table.

For programs that produce Windows quality hardcopy the table should be saved as html or xml as these
will import directly into word processors or spreadsheets. Tabbed-text is also available but is much less
versatile than html or xml, and IXTEX is available for those up to it.

* Fine tuning.

Inevitably there will often be the need for dealing with details. For instance, users will sometimes want
to replace alpha by @ or Chisd by y? and this can be done for html, xml, and LaTeX output but not for
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tabbed-text. On the other hand html, xml, and I&TEX have reserved letters and these must be dealt with
retrospectively.

For instance, consider the transformation of the following expressions which can be done in html, xml,
and IZTEX but not in tabbed text.

Original Transformed

>= >

=< <

alpha a

beta B

P(Chisqd >= TS) = 0.2037 | P(x? > TS) = 0.2037
p_0+p_1x+p_2x2 Po+ pix + pax?

In cases where ambiguity could arise in IZTEX using underscores or similar special characters they will
be replaced by question marks. So IZTEX users should search for ? characters that will need replacing
in the final table.

Padding with zeros.

As the [Make tables] option will never remove significant digits a problem arises if users wish to replace
numbers in scientific notation by floating point representation. In order to extend the range over which
this can be done, padding zeros can be introduced as illustrated in this next table.

Scientific notation | Padding | Floating point representation
1.234E-01 0 1234
1.234E+00 0 1.234
1.234E+01 0 12.34
1.234E+02 0 123.4
1.234E-02 2 0.01234
1.234E-01 2 0.12340
1.234E+00 2 1.23400
1.234E+01 2 12.3400
1.234E+02 2 123.400
1.234E+03 2 1234.00
1.234E+04 2 12340.0
1.234E-04 4 0.0001234
1.234E+06 4 1234000.0

Evidently increasing the number of padding zeros increases the range over which transformation from
scientific to floating point representation can be achieved, and the default is two which allows a wide
range, but four ensures that a mixture of transformed and untransformed numbers will occupy the same
width in the columns of a table.

However, there is here a problem because adding padding zeros could suggest all trailing zeros are
meaningful. For instance, the number 1.2341213179 stored in the computer could be written as
1.234E+00 in StMFT output because the analysis in question only justifies accuracy or meaning for up
to four significant digits. However, 1.23400 could be mistaken for indicating the internal representation
with six significant digits. So users may wish to suppress trailing zeros in such cases, noting that this
could result in numbers with different widths in a column. In any case, setting the number of padding
zeros to -1 switches off the transformation from scientific notation to floating point.

Sometimes, for instance with numerical analysis where more significant digits are justified than with
data analysis, eight significant digits are output, and some procedures can optionally allow more. In
addition special DLLs dedicated for particular routines can be supplied for this purpose.
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Example 1

This example shows the transformation of a special type of SIMF]T table containing just two columns separated
by equals signs (i.e., = ) and containing cells with multiple words. As long as the equals signs are perfectly
lined up and there is no header or trailer section, this type of table can always be transformed. Here is the
table with no header or trailer sections as extracted using the [Results] then [Make tables] options from the
main SIMF]T menu using the results file f$result. txt following the exhaustive analysis of a vector process
used to analyze data contained in the default test file normal.tf1.

Sample size = 50

Minimum value = -2.20820E+00
Maximum value = 1.61750E+00
Coefficient of skew = -1.66905E-02
Coefficient of kurtosis = -7.68395E-01

Lower Hinge (25th percentile) = -8.55015E-01
Median value (50th percentile) = -9.73615E-02
Upper Hinge (75th percentile) = 7.85965E-01

Sample mean = -2.57897E-02
Sample standard deviation = 1.00553E+00
Coefficient of variation (CV%) = > 100%
Standard error of the mean = 1.42203E-01
Upper 2.5% t-value = 2.00958E+00
Lower 95% con lim for mean = -3.11558E-01
Upper 95% con lim for mean = 2.59978E-01
Sample variance = 1.01109E+00
Lower 95% con lim for variance = 7.05519E-01
Upper 95% con lim for variance = 1.57006E+00
Shapiro-Wilks W statistic = 9.62693E-01
Significance level for W = 0.1153
Conclusion = Tentatively accept normality

This is the corresponding intermediate hashtag table.

50

-2.20820E+00
1.61750E+00
-1.66905E-02
-7.68395E-01
-8.55015E-01
-9.73615E-02
7.85965E-01
-2.57897E-02

Sample size

Minimum value

Maximum value

Coefficient of skew
Coefficient of kurtosis

Lower Hinge (25th percentile)
Median value (50th percentile)
Upper Hinge (75th percentile)
Sample mean

Sample standard deviation 1.00553E+00
Coefficient of variation (CV%) 100%

Standard error of the mean 1.42203E-01
Upper 2.5% t-value 2.00958E+00
Lower 95% con lim for mean -3.11558E-01
Upper 95% con lim for mean 2.59978E-01
Sample variance 1.01109E+00
Lower 95% con lim for variance 7.05519E-01
Upper 95% con lim for variance 1.57006E+00
Shapiro-Wilks W statistic 9.62693E-01
Significance level for W 0.1153

FHOFH OH K K OH OH W OH OH OH W FHHHEHHHHH R
\4

Conclusion Tentatively accept normality
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The hashtag table is very useful for detecting the source of errors. The table making algorithm attempts
to locate the position separating columns and writes a hashtag there. If every row has the same number of
columns then every row will have the same number of hashtags and the algorithm has succeeded. Observing
this hashtag table when the algorithm has failed will allow you identify then correct the error.

Here is the selected table as it would be written to the output file.

Sample size 50

Minimum value -2.2082000
Maximum value 1.6175000
Coefficient of skew -0.0166905
Coefficient of kurtosis -0.7683950

Lower Hinge (25th percentile) -0.8550150
Median value (50th percentile)  -0.0973615
Upper Hinge (75th percentile) 0.7859650

Sample mean -0.0257897
Sample standard deviation 1.0055300
Coefficient of variation (CV%) > 100%

Standard error of the mean 0.1422030
Upper 2.5% t-value 2.0095800
Lower 95% con lim for mean -0.3115580
Upper 95% con lim for mean 0.2599780
Sample variance 1.0110900

Lower 95% con lim for variance  0.7055190
Upper 95% con lim for variance  1.5700600

Shapiro-Wilks W statistic 0.9626930
Significance level for W 0.1153
Conclusion Tentatively accept normality

Here it is with a few minor cosmetic changes.

Exhaustive analysis of a vector

Sample size 50
Minimum value -2.2082000
Maximum value 1.6175000
Coefficient of skew -0.0166905
Coefficient of kurtosis -0.7683950
Lower Hinge (25th percentile) -0.8550150
Median value (50th percentile) -0.0973615
Upper Hinge (75th percentile) 0.7859650
Sample mean -0.0257897
Sample standard deviation 1.0055300
Coefficient of variation (CV%) > 100%
Standard error of the mean 0.1422030
Upper 2.5% t-value 2.0095800
Lower 95% confidence limit for mean -0.3115580
Upper 95% confidence limit for mean 0.2599780
Sample variance 1.0110900
Lower 95% confidence limit for variance | 0.7055190
Upper 95% confidence limit for variance | 1.5700600
Shapiro-Wilks W statistic 0.9626930
Significance level for W 0.1153
Conclusion: Tentatively accept normality
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Example 2

From fitting a two-exponential model to data in the test file exfit.tf4 using program exfit with scientific

notation the following results can be extracted from the results file.

For best-fit 2-exponential function

Parameter Value Std.Error Lower95%cl Upper95%cl p
A(D) 8.5255E-01 6.7731E-02 7.1332E-01 9.9177E-01 0.0000
A(2) 1.1765E+00 7.4779E-02 1.0227E+00 1.3302E+00 0.0000
k(1) 6.7935E+00 8.5386E-01 5.0383E+00 8.5486E+00 0.0000
k(2) 1.1121E+00 5.1128E-02 1.0070E+00 1.2172E+00 0.0000
AUC 1.1834E+00 1.4714E-02 1.1531E+00 1.2136E+00 0.0000

AUC is the area under the curve from t = 0 to t = infinity

Initial time point (A) = 3.5983E-02

Final time point (B) = 1.6110E+00

Area from t = A to t = B = 9.3832E-01

Average over range (A,B) = 5.9575E-01

Now the file has an additional head and trailer section so, if the full table is selected, it will have to be
highlighted as follows in the header and trailer selection control as shown next, where the header is colored

magenta and the trailer colored cyan.

Parameter
A(D)
A(2)
k(1)
k(2)

AUC

Value
8.5255E-01
1.1765E+00
6.7935E+00
1.1121E+00
1.1834E+00

Std.Error
6.7731E-02
7.4779E-02
8.5386E-01
5.1128E-02
1.4714E-02

Lower95%cl
7.1332E-01
1.0227E+00
5.0383E+00
1.0070E+00
1.1531E+00

Upper95%cl
9.9177E-01
1.3302E+00
8.5486E+00
1.2172E+00
1.2136E+00

Using two padding zeros this leads to the following table.

For best-fit 2-exponential function

Parameter Value Std.Error Lower95%cl
A(1) 0.852550 0.067731 0.713320
A(2) 1.176500 0.074779 1.022700
k(1) 6.793500 0.853860 5.038300
k(2) 1.112100 0.051128 1.007000
AUC 1.183400 0.014714 1.153100

AUC is the area under the curve from t = 0 to t = infinity
Initial time point (A) = 3.5983E-02

Final time point (B) = 1.6110E+00
Areafromt=Atot=B =9.3832E-01

Average over range (A,B) = 5.9575E-01

Upper95%:cl
0.991770
1.330200
8.548600
1.217200
1.213600

0.0000
0.0000
0.0000
0.0000
0.0000
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However, note that, with this example, three points emerge.
1. Numbers outside the main table may not be transformed into floating point numbers.
2. Equals signs lined up the trailer may not lead directly to secondary tabulation.

3. Some special words, like infinity, may not be recognized.

So, because a certain amount of fine tuning will be required, the possibilities for handcrafting are endless.
Here, for example, the header is enlarged by adding a formula, while the trailer is added in the form of a
footnote to the main table.

For the best-fit 2-exponential function

f(t) = Ayexp(=kit) + Ay exp(—kat)

Parameter Value Std.Error | Lower95%cl | Upper95%cl p
Aj 0.852550 | 0.067731 0.713320 0.991770 0.0000
As 1.176500 | 0.074779 1.022700 1.330200 0.0000
ki 6.793500 | 0.853860 5.038300 8.548600 0.0000
ko 1.112100 | 0.051128 1.007000 1.217200 0.0000

AUC 1.183400 | 0.014714 1.153100 1.213600 0.0000

Area under the curve AUC = / f(2) dt
0

Initial time point (A) = 3.05983

Final time point (B) = 1.61100
Areafromt=Atot=B =0.93832
Average over range (A,B) = 0.59575

Example 3

A special situation exists with symmetric matrices where just a lower or upper triangle is displayed, and also
some other related situations. For instance, following on from the previous example we have the parameter
correlation matrix expressed in the following form.

Parameter correlation matrix
1.0000

-0.8758 1.0000

-0.5964 0.8996 1.0000
-0.8480 0.9485 0.8200 1.0000

Clearly, the algorithm to count the number of columns per row in order to insert hashtags will fail because all
the rows have different numbers of columns, unless editing is performed like this.

Parameter correlation matrix
1.0000 ...

-0.8758 1.0000

-0.5964 0.8996 1.0000
-0.8480 0.9485 0.8200 1.0000
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Now transformation would be possible leading to a table such as the following.

Parameter correlation matrix

1

-0.8758
-0.5964
-0.8480

1
0.8996 | 1
0.9485 | 0.8200

1

Another example to consider is from correlation analysis which leads to r values in the strict upper triangle
and significance levels in the strict lower triangle as shown next followed by the extracted table.

O RO OO OoOOo
wui
S
wn
%

.3418

0.5295

0.3424

Determinant
Test statistic (TS) =
Degrees of freedom =
P(chi-sq >= TS)

0.2874

1.0000

-0.
-0.

0
1.
1
1.

Test for absence of any significant correlations
HO: correlation matrix is the identity matrix

Pearson correlation results
Upper triangle = r, Lower
0.

= corresponding
0662 0.1941 0.
0219 0.7930 O.
2833 0.2165 O.
.... 0.2787 0.

0000 0.5035 O.

2.476E-03
4.501E+01

28

two-tail p values

6255
5338
0264
2837

.2029

6735

-0.5876
-0.4230

0.2314
-0.5238
-0.1949
-0.4532

0.0220 Reject HO at 5% sig.level

0.3010
0.3006
-0.0304
-0.1166
0.2144
0.1360
-0.1696

Pearson correlation results

Upper triangle = r, Lower = corresponding two-tail p values

Here the five dots (.....

0.5295

1.0000
0.3424

0.2874
0.3285

0.0662 0.1941 0.6255
-0.0219 0.7930 0.5338
-0.2833 0.2165 0.0264
0.2787 -0.2837
0.3804 ... 0.2029
1.0000 0.5271 ...
1.0000 1.0000 1.0000
1.0000 0.5035 0.6735

Determinant = 0.002476
Test statistic(7'S) = 45.01
Degrees of freedom = 28

P()(2 > TS) = 0.0220 Reject H at 5% significance level

-0.5876
-0.4230
0.2314

-0.5238
-0.1949
-0.4532

1.0000

: correlation matrix is the identity matrix

: for absence of any significant correlations

) denote that the diagonal elements have no meaning and this is just a convenient way

to conserve space by having one matrix instead of two. Note that the option to blank out three dots (...) used
as temporary column separators does not blank out groups with less three or more than three contiguous dots.

A summary of the options available and procedure to be used comes next.
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Summary

» Up to Version 8 the default notation for numbers in results files was scientific notation, but from Version
8 users can decide whether to use standard notation or scientific notation and can also select the number
of significant digits required. The default is six digits in standard notation.

* The first step is to select just one table from the results file.

* This can be followed by an optional pre-processing step to edit the table so that every row has exactly
the same number of columns.

* Empty cells must be denoted by three dots (...) and cells containing words must have them joined by
underscores or similar.

* There is an option to remove all three dot symbols from the output file.

* The input table can have optional header and trailer sections if required, but these must be highlighted
by the control to select headers and trailers.

* There is an option to transform scientific numbers into floating point format by specifying the number
of padding zeros required. Setting this parameter to -1 switches off this transformation.

e Numbers in the header and trailer may not be transformed in this way.
o Ifit is required, decimal points in floating point numbers can be replaced by commas.

o If transformation fails then the option for pre-processing should be switched on, and also the hashtag
table should be requested. By viewing the hashtag table most errors can easily be diagnosed, then
rectified by a re-run using pre-process editing.

o [If tabbed-text output is selected the resulting file will have to be input into a spreadsheet program for
formatting before importing into a word processing program.

* Both html and xml output can allow a certain number of further changes, like changing alpha into «, or
adding cell borders.

* IATEX output will have question marks (?) inserted to replace forbidden character such as underscores
which must be edited retrospectively depending the intention, e.g., linking words, or denoting subscripts.

Three further things should be emphasized.

1. Some tables have specialized features such as lined up equals signs that allow multiple words in a
column and, as long as every row in the table has an equals sign in exactly the same position, this feature
will be recognized.

2. Some StMFT results files output tables to the display without three dot separators (...) to create a more
pleasing effect, but add them to the results files to assist the processing described in this document.

3. There are several widely used tables that can have empty cells and multi-word titles that the parsing
routine will recognize and format automatically.

Finally, should you require further worked examples, you can browse the SIMFT tutorials, or the document
w_examples.pdf, where a large number of alternative display styles are demonstrated.
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3.3 Extracting tables to include in documents

Each time a data set is analyzed the results are written to a file called f$result.txt, and the current files
are renamed so that the existing f$result.txt becomes f$result.001 while f$result.001 becomes
f$result.002 and so on. These can be viewed using the [Results] option from the main SiMF[T menu.

These SIMF]T results files are formatted so that the numbers displayed only contain the number of significant
digits that are meaningful in context. For instance, probabilities will usually only have four digits after the
decimal point, which indicates that it does not make any sense to consider any subsequent digits for purpose
of statistical testing, and in any case probability estimates will not be accurate for more than about four digits.
Furthermore, as experimental data are rarely more accurate than about three or four significant digits anyway,
it may be wishful thinking to ever consider more than say six. In addition, the tables are formatted using a
fixed font with scientific notation to line up column entities irrespective of absolute size, and many users do
not want this in a thesis or published document. Naturally, these arguments do not apply to integers.

As an example consider the following case with the title Table 1.

Table 1
1-Way Analysis of Variance: 1 (Grand Mean 4.316E+01)

Transformation:- x (untransformed data)

Source SSQ NDOF MSQ F p
Between Groups 2.19344E+03 4 5.48316E+02 5.61546E+01 0.0000
Residual 2.44130E+02 25 9.76520E+00

Total 2.43757E+03 29

Actually, most users would want to import such a table formatted as tabbed-text, html, xml, or IXIEX into
documents such as a report, thesis, or publication looking something like Table 2.

Table 2
1-Way Analysis of Variance: 1 (Grand Mean 43.16)
Transformation:- x (untransformed data)

Source SSQ NDOF MSQ F p
Between Groups 2193.44 4 548.316  56.1546  0.0000
Residual 244130 25 9.76520

Total 2437.57 29

Or even, for those with artistic leanings, possibly something like Table 3.

Table 3
1-Way Analysis of Variance: Grand Mean 43.16
Transformation: x (untransformed data)

Source SSQ NDOF | MSQ F p
Between Groups | 2193.44 4 | 548.316 | 56.1546 | 0.0000
Residual 244130 25 | 9.76520

Total 2437.57 29
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This article explains the procedures required to export tables from from StMF[T results files into forms suitable
for inclusion into word processors, spreadsheet programs, website scripts, or even professional document
preparation systems such as IATgX. Also, decimal points can be replaced by commas as in continental notation
if required.

The procedure

It is important to realize that the [Results] option from the SIMFT main menu gives access to all the currently
saved results files.

Choosing a results file.

Early versions of SIMFJT allowed users to name results files individually to avoid anything being lost.
However, now that up to 100 results files are saved and users have the option [Results] from the main
StMFT menus from which to view, print, save, edit, or export tables, this is no longer usually necessary.
Clearly, if results are always required for retrospective use, regular back-up or saving will be necessary.

Extracting a table.

From the [Extract tables] option view the file to make sure it is the one required then copy to the
clipboard only the table required along with any associated header and trailer sections ... but nothing
else.

Preliminary editing.

Sometimes editing of the file is required to make sure that every row of the table has exactly the same
number of columns. So note that, for extracting a table there can be no empty cells, and each cell
must contain precisely one word. Any column titles must be edited so that they consist of one word,
for instance changing Time of Day to Time_of_Day, or filling empty cells by three dots. Added
underscores and sets of three contiguous dots can be removed when the final table is written to file. A
pre-processing option is provided for editing before attempting to create a table.

Note that often tables have cells with added comments relating to goodness of fit or results of statistical
testing, and these no not need to be underscored. There are also special tables with only two columns
containing several words in some cells, and Example 1 later will make this clear.

Viewing the hashtag table.

The algorithm attempts to identify cells in a table by inserting a hashtag between every column. If the
algorithm succeeds there would be no need to view this hashtag table. However this option should be
switched on until the process of the algorithm is understood, or if it fails and you need to see why.

The hashtag table is clarified in Example 1.

Headers and trailers.

Frequently tables have header and trailer sections that are descriptive and not part of the table itself. As
these can have strings of word and numbers that would confuse the algorithm checking that every row
must have the same number of columns, they must be identified. This is done by using buttons on a
window that allows the header and trailer lines to be highlighted. If this is not done the table creating
algorithm will fail.

Selecting headers and trailers is clarified in Example 2.

Saving the table.

For programs that produce Windows quality hardcopy the table should be saved as html or xml as these
will import directly into word processors or spreadsheets. Tabbed-text is also available but is much less
versatile than html or xml, and ITEX is available for those up to it.

Fine tuning.

Inevitably there will often be the need for dealing with details. For instance, users will sometimes want
to replace alpha by @ or chi-sqd by y? and this can be done for html, xml, and LaTeX output but not
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for tabbed-text. On the other hand html, xml, and IZTEX have reserved letters and these must be dealt
with retrospectively.

For instance, consider the transformation of the following expressions which can be done in html, xml,
and IZTEX but not in tabbed text.

Original Transformed

>= >

=< <

alpha a

beta B

delta 0

gamma Yy

lambda 4

infinity 00

P(chi-sqd >= TS) = 0.2037 | P(y* > TS) = 0.2037

Where ambiguity could arise in IXIEX using underscores or similar special characters they will be
replaced by question marks. So I&TEX users should search for ? characters to replace for the final table.

Padding with zeros.

As the [Extract tables] option will never remove significant digits a problem arises if users wish to
replace numbers in scientific notation by floating point representation. In order to extend the range over
which this can be done, padding zeros can be introduced as illustrated in this next table.

Scientific notation | Padding | Floating point representation
1.234E-01 0 1234
1.234E+00 0 1.234
1.234E+01 0 12.34
1.234E+02 0 123.4
1.234E-02 2 0.01234
1.234E-01 2 0.12340
1.234E+00 2 1.23400
1.234E+01 2 12.3400
1.234E+02 2 123.400
1.234E+03 2 1234.00
1.234E+04 2 12340.0
1.234E-04 4 0.0001234
1.234E+06 4 1234000.0

Evidently increasing the number of padding zeros increases the range over which transformation from
scientific to floating point representation can be achieved, and the default is two which allows a wide
range, but four ensures that a mixture of transformed and untransformed numbers will occupy the same
width in the columns of a table.

However, there is here a problem because adding padding zeros could suggest all trailing zeros are
meaningful. For instance, the number 1.2341213179 stored in the computer could be written as
1.234E+00 in StMF[T output because the analysis in question only justifies accuracy or meaning for up
to four significant digits. However, 1.23400 could be mistaken for indicating the internal representation
with six significant digits. So users may wish to suppress trailing zeros in such cases, noting that
this could result in numbers with different widths in a column. In any case, the transformation from
scientific notation to floating point can be switched off.

Sometimes, for instance with numerical analysis where more significant digits are justified than with
data analysis, eight significant digits are output, and some procedures can optionally allow more. In
addition special DLLs dedicated for particular routines can be supplied for this purpose.
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Example 1

This example shows the transformation of a special type of SIMF]T table containing just two columns separated
by equals signs (i.e., = ) and containing cells with multiple words. As long as the equals signs are perfectly
lined up and there is no header or trailer section, this type of table can always be transformed. Here is the
table with no header or trailer sections as extracted using the [Results] then [Extract tables] options from the
main SIMF]T menu using the results file f$result. txt following the exhaustive analysis of a vector process
used to analyze data contained in the default test file normal. tf1.

Sample size = 50

Minimum value = -2.20820E+00
Maximum value = 1.61750E+00
Coefficient of skew = -1.66905E-02
Coefficient of kurtosis = -7.68395E-01

Lower Hinge (25th percentile) = -8.55015E-01
Median value (50th percentile) = -9.73615E-02
Upper Hinge (75th percentile) = 7.85965E-01

Sample mean = -2.57897E-02
Sample standard deviation = 1.00553E+00
Coefficient of variation (CV%) = > 100%
Standard error of the mean = 1.42203E-01
Upper 2.5% t-value = 2.00958E+00
Lower 95% con lim for mean = -3.11558E-01
Upper 95% con lim for mean = 2.59978E-01
Sample variance = 1.01109E+00
Lower 95% con lim for variance = 7.05519E-01
Upper 95% con lim for variance = 1.57006E+00
Shapiro-Wilks W statistic = 9.62693E-01
Significance level for W = 0.1153
Conclusion = Tentatively accept normality

This is the corresponding intermediate hashtag table.

50

-2.20820E+00
1.61750E+00
-1.66905E-02
-7.68395E-01
-8.55015E-01
-9.73615E-02
7.85965E-01
-2.57897E-02

Sample size

Minimum value

Maximum value

Coefficient of skew
Coefficient of kurtosis

Lower Hinge (25th percentile)
Median value (50th percentile)
Upper Hinge (75th percentile)
Sample mean

Sample standard deviation 1.00553E+00
Coefficient of variation (CV%) 100%

Standard error of the mean 1.42203E-01
Upper 2.5% t-value 2.00958E+00
Lower 95% con lim for mean -3.11558E-01
Upper 95% con lim for mean 2.59978E-01
Sample variance 1.01109E+00
Lower 95% con lim for variance 7.05519E-01
Upper 95% con lim for variance 1.57006E+00
Shapiro-Wilks W statistic 9.62693E-01
Significance level for W 0.1153

FHOFH OH K K OH OH W OH OH OH W FHHHEHHHHH R
\4

Conclusion Tentatively accept normality
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The hashtag table is very useful for detecting the source of errors. The table making algorithm attempts
to locate the position separating columns and writes a hashtag there. If every row has the same number of
columns then every row will have the same number of hashtags and the algorithm has succeeded. Observing
this hashtag table when the algorithm has failed will allow you identify then correct the error.

Here is the selected table as it would be written to the output file.

Sample size 50

Minimum value -2.2082000
Maximum value 1.6175000
Coefficient of skew -0.0166905
Coefficient of kurtosis -0.7683950

Lower Hinge (25th percentile) -0.8550150
Median value (50th percentile)  -0.0973615
Upper Hinge (75th percentile) 0.7859650

Sample mean -0.0257897
Sample standard deviation 1.0055300
Coefficient of variation (CV%) > 100%

Standard error of the mean 0.1422030
Upper 2.5% t-value 2.0095800
Lower 95% con lim for mean -0.3115580
Upper 95% con lim for mean 0.2599780
Sample variance 1.0110900

Lower 95% con lim for variance  0.7055190
Upper 95% con lim for variance  1.5700600

Shapiro-Wilks W statistic 0.9626930
Significance level for W 0.1153
Conclusion Tentatively accept normality

Here it is with a few minor cosmetic changes.

Exhaustive analysis of a vector

Sample size 50
Minimum value -2.2082000
Maximum value 1.6175000
Coefficient of skew -0.0166905
Coefficient of kurtosis -0.7683950
Lower Hinge (25th percentile) -0.8550150
Median value (50th percentile) -0.0973615
Upper Hinge (75th percentile) 0.7859650
Sample mean -0.0257897
Sample standard deviation 1.0055300
Coefficient of variation (CV%) > 100%
Standard error of the mean 0.1422030
Upper 2.5% t-value 2.0095800
Lower 95% confidence limit for mean -0.3115580
Upper 95% confidence limit for mean 0.2599780
Sample variance 1.0110900
Lower 95% confidence limit for variance | 0.7055190
Upper 95% confidence limit for variance | 1.5700600
Shapiro-Wilks W statistic 0.9626930
Significance level for W 0.1153
Conclusion: Tentatively accept normality
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Example 2

From fitting a two-exponential model to data in the test file exfit.tf4 using program exfit the following
results can be extracted from the results file.

For best-fit 2-exponential function

Parameter Value Std.Error Lower95%cl Upper95%cl p
A(1) 8.5255E-01 6.7731E-02 7.1332E-01 9.9177E-01 0.0000
A(2) 1.1765E+00 7.4779E-02 1.0227E+00 1.3302E+00 0.0000
k(1) 6.7935E+00 8.5386E-01 5.0383E+00 8.5486E+00 0.0000
k(2) 1.1121E+00 5.1128E-02 1.0070E+00 1.2172E+00 0.0000
AUC 1.1834E+00 1.4714E-02 1.1531E+00 1.2136E+00 0.0000

AUC is the area under the curve from t = 0 to t = infinity

Initial time point (A) = 3.5983E-02

Final time point (B) = 1.6110E+00

Area over range (A,B) = 9.3832E-01

Average over range (A,B) = 5.9575E-01

Now the file has an additional head and trailer section so, if the full table is selected, it will have to be
highlighted as follows in the header and trailer selection control as shown next, where the header is colored
magenta and the trailer colored cyan.

Parameter
A(D)
A(2)
k(1)
k(2)

AUC

Value
8.5255E-01
1.1765E+00
6.7935E+00
1.1121E+00
1.1834E+00

Std.Error
6.7731E-02
7.4779E-02
8.5386E-01
5.1128E-02
1.4714E-02

Lower95%cl
7.1332E-01
1.0227E+00
5.0383E+00
1.0070E+00
1.1531E+00

Upper95%cl
9.9177E-01
1.3302E+00
8.5486E+00
1.2172E+00
1.2136E+00

Using two padding zeros this leads to the following table.

For best-fit 2-exponential function

Parameter Value  Std.Error Lower95%cl Upper95%cl p

A1) 0.852550 0.067731 0.713320 0.991770 0.0000
A(2) 1.176500 0.074779 1.022700 1.330200 0.0000
k(1) 6.793500 0.853860 5.038300 8.548600 0.0000
k(2) 1.112100 0.051128 1.007000 1.217200 0.0000
AUC 1.183400 0.014714 1.153100 1.213600 0.0000

AUC is the area under the curve from¢ =0to 7 = o
Initial time point (A) = 0.035983

Final time point (B) = 1.611

Area over range (A,B) = 0.93832

Average over range (A,B) = 0.59575
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However, note that, with this example, three points emerge.
1. Numbers outside the main table will also be transformed into floating point numbers.
2. Equals signs lined up the trailer will not lead directly to secondary tabulation.

3. Some special words, like infinity, will be recognized.

So, because a certain amount of fine tuning will be required, the possibilities for handcrafting are endless.
Here, for example, the header is enlarged by adding a formula, while the trailer is added in the form of a
footnote to the main table.

For the best-fit 2-exponential function

f(t) = Ayexp(=kit) + Ay exp(—kat)

Parameter Value Std.Error | Lower95%cl | Upper95%cl p
Aj 0.852550 | 0.067731 0.713320 0.991770 0.0000
As 1.176500 | 0.074779 1.022700 1.330200 0.0000
ki 6.793500 | 0.853860 5.038300 8.548600 0.0000
ko 1.112100 | 0.051128 1.007000 1.217200 0.0000

AUC 1.183400 | 0.014714 1.153100 1.213600 0.0000

Area under the curve AUC = / f(2) dt
0

Initial time point (A) = 0.035983
Final time point (B) = 1.611
Area over range ( =0.93832
=0.59575

o @

A! )
Average over range (A,B)

Example 3
A special situation exists with symmetric matrices where just a lower or upper triangle is displayed, and also

some other related situations. For instance, following on from the previous example we have the parameter
correlation matrix expressed in the following form.

Parameter correlation matrix
1.0000

-0.8758 1.0000

-0.5964 0.8996 1.0000
-0.8480 0.9485 0.8200 1.0000

Clearly, the algorithm to count the number of columns per row in order to insert hashtags will fail because all
the rows have different numbers of columns, unless editing is performed like this.

Parameter correlation matrix
1.0000 ...

-0.8758 1.0000

-0.5964 0.8996 1.0000
-0.8480 0.9485 0.8200 1.0000
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Now transformation would be possible leading to a table such as the following.

Parameter correlation matrix

1

-0.8758
-0.5964
-0.8480

1
0.8996 | 1
0.9485 | 0.8200

1

Another example to consider is from correlation analysis which leads to r values in the strict upper triangle
and significance levels in the strict lower triangle as shown next followed by the extracted table.

O RO OO OoOOo
wui
S
wn
%

.3418

0.5295

0.3424

Determinant
Test statistic (TS) =
Degrees of freedom =
P(chi-sq >= TS)

0.2874

1.0000

-0.
-0.

0
1.
1
1.

Test for absence of any significant correlations
HO: correlation matrix is the identity matrix

Pearson correlation results
Upper triangle = r, Lower
0.

= corresponding
0662 0.1941 0.
0219 0.7930 O.
2833 0.2165 O.
.... 0.2787 0.

0000 0.5035 O.

2.476E-03
4.501E+01

28

two-tail p values

6255
5338
0264
2837

.2029

6735

-0.5876
-0.4230

0.2314
-0.5238
-0.1949
-0.4532

0.0220 Reject HO at 5% sig.level

0.3010
0.3006
-0.0304
-0.1166
0.2144
0.1360
-0.1696

Pearson correlation results

Upper triangle = r, Lower = corresponding two-tail p values

Here the five dots (.....

0.5295

1.0000
0.3424

0.2874
0.3285

0.0662 0.1941 0.6255
-0.0219 0.7930 0.5338
-0.2833 0.2165 0.0264
0.2787 -0.2837
0.3804 ... 0.2029
1.0000 0.5271 ...
1.0000 1.0000 1.0000
1.0000 0.5035 0.6735

Determinant = 0.002476
Test statistic(7'S) = 45.01
Degrees of freedom = 28

P()(2 > TS) = 0.0220 Reject H at 5% significance level

-0.5876
-0.4230
0.2314

-0.5238
-0.1949
-0.4532

1.0000

: correlation matrix is the identity matrix

: for absence of any significant correlations

) denote that the diagonal elements have no meaning and this is just a convenient way

to conserve space by having one matrix instead of two. Note that the option to blank out three dots (...) used
as temporary column separators does not blank out groups with less three or more than three contiguous dots.

A summary of the options available and procedure to be used comes next.
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Summary

» Upto Version 8 the default notation for numbers in results files was scientific notation, but from Version
8 users can decide whether to use standard notation or scientific notation and can also select the number
of significant digits required. The default is six digits in standard notation.

* The first step is to select just one table from the results file.

* This can be followed by an optional pre-processing step to edit the table so that every row has exactly
the same number of columns.

* Empty cells must be denoted by a three dot ellipsis (...) and cells containing multiple words must have
them joined by underscores or similar.

* Three dot symbols to denote empty cells are deleted from the output file.

* The input table can have optional header and trailer sections if required, but these must be highlighted
by the control to select headers and trailers.

* There is an option to transform scientific numbers into floating point format by specifying the number
of padding zeros required. This option can be switched off.

e Numbers in the header and trailer will also be transformed in this way.
* If it is required, decimal points in floating point numbers can be replaced by commas.

e If transformation fails then the option for pre-processing should be switched on, and also the hashtag
table should be requested. By viewing the hashtag table most errors can easily be diagnosed, then
rectified by a re-run using pre-process editing.

o If tabbed-text output is selected the resulting file will have to be input into a spreadsheet program for
formatting before importing into a word processing program.

* Both html and xml output can allow a certain number of further changes, like changing alpha into «, or
adding cell borders.

e I&TEX output will have question marks (?) inserted to replace forbidden character such as underscores
which must be edited retrospectively depending the intention, e.g., linking words, or denoting subscripts.

Three further things should be emphasized.

1. Some tables have specialized features such as lined up equals signs that allow multiple words in a
column and, as long as every row in the table has an equals sign in exactly the same position, this feature
will be recognized.

2. Some SiMF]T results files output tables to the display without three dot separators (...) to create a more
pleasing effect, but add them to the results files to assist the processing described in this document.

3. There are several widely used tables that can have empty cells and multi-word titles that the parsing
routine will recognize and format automatically.

Finally, should you require further worked examples, you can browse the SIMFT tutorials, or the document
w_examples.pdf, where a large number of alternative display styles are demonstrated.
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4 Statistical analysis

4.1 Statistical distributions
N Tutorials and worked examples for simulation,
@~ curve fitting, statistical analysis, and plotting.
N https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

4.1.1 Introduction

Data analysis will usually consist of assuming a statistical distribution and comparing a sample, or a test
statistic derived from it, to possible values from the assumed distribution. If the test statistic proves to have a
rather extreme value when referred to the assumed distribution it may be taken to suggest that the assumed
distribution may not be correct. So statistical testing will often consist of a null hypothesis, denoted as Hy,
and there may be an alternative hypothesis or several alternative hypotheses, say H 4.

The situation can be summarized by the following sequence.

1. Collect data.
An example could be a sample of sizes, times, weights, distances, etc.

2. Calculate a test statistic.
An example could be calculating the sample mean or standard distribution.

3. Assume a theoretical null distribution, denoted by Hy.
An example Hj could be assuming a normal distribution with mean of 6 and standard deviation of 4.

4. Assume a possible alternative distribution, denoted by H 4.
For instance H 4 might be a normal distribution with a mean of 7 and a standard deviation of 4.

5. Check if the test statistics would be extreme if coming from the assumed distribution.
For instance, to do this we could see if the sample estimates for mean and standard deviation are more
consistent with Hy rather than H4. This would lead to one of two possible courses of action.

» Consider the possibility that Hy is likely to be correct.

e If no satisfactory conclusion can be reached then accumulate more data or assume a new distribu-
tion, or the same distribution with different parameters.

Obviously, if the assumed distribution is incorrect, any conclusions drawn from this procedure will be of
questionable value. Now almost no scientific experiment ever leads to data that follows a known distribution
exactly, so what happens in practice is that a number of standard distributions are chosen in the hope that one
of these will be sufficiently close to the distribution of the test statistic, or that the data can be transformed
into an alternative form that is closer to an assumed distribution.

Actuality, only a limited number of distributions, such as the following, are encountered in data analysis.
a) Normal

b) t

¢) chi-square

d) F

e) Binomial
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f) Poisson
g) Uniform

Even so-called nonparametric tests often finish up by relying on some standard distribution, and frequent use
is made in statistical theory of the Gauss central limit theorem. This shows that sums of suitably normalized
values will tend, in the limit of large sample size n, to a normal distribution. However n may often be very
large before such convergence is achieved. Because of all this uncertainty it is often stated that statistical
analysis can prove nothing, or alternatively anything. Nevertheless this is all we have so it is useful to sum up
some unifying concepts that will be assumed in subsequent SIMF]T tutorials.

Continuous variables

A continuous random variable X is a number that can take all values in arange, say —co < X < oo butis subject
to certain constraints. Typical continuous variables would be time, size, blood pressure, etc., which like so
many measured variables happen to be necessarily non-negative. In particular, there will be a non-negative
probability distribution function f(x) > 0 and a cumulative distribution function F(x) such that that the
probability that X has a particular value x in the range A < X < B will be

P(A<X<B) =/Bf(t)dt
A
= F(B) - F(A).

Here, for example are f(x) and F(x) for a normal distribution with mean zero and variance one.

Normal distribution: p =0 and 0%=1

1.0 . . . ——— 0.40
— <
KoY 0.30 =
LL c
c S
=) i3]
+ c
>
2 =
= =
2 0.20 %
() ©
= g
© =
> o]
S 3
S 0.10 o
O a

0.00

Evidently values of X less than -3 or greater than 3 would be very unlikely for this distribution and could
indicate a mean differing from zero and/or a variance differing from 1. A statistical test using the sample
mean and sample variance could be constructed by such reasoning.
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Note also that, because the variable is continuous, it makes no sense to assign a probability of the random
variable having a definite value, but only the probability of it taking a value in an interval A < X < B.
However, the integration of f(x) over the possible range, say —co < X < co would be one, i.e.

/_: f(H)de = 1.

Discrete variables

A discrete random variable X is an integer that can only take a limited number of values. Examples would be
the number of heads resulting from a fixed number of coin tossings, or the number of eggs hatching as males
from a clutch of eggs.

In particular, there will be a non-negative probability mass function p(x) > 0 which would describe the

probability of X having a particular integer value, that is P(X = k) = p(k). Obviously, if there are n possible
values that X can have, say k1, k2, . .. k,, then

anp(k[) = 1.
im1

Here, for example is the plot of probabilities for a binomial distribution with N = 10 and p = 0.5 such as
would result, for instance, by adding up the number of times a head would occur in ten throws of a coin.

Binomial Probabilities: N =10, p =0.5

025 T T T T T T T T
0.20 .
015 ]
~
<
N
o)
o
| -
S
0.10 .
0.05 .
0.00 | |
0 1 2 3 4 6 7 8 9 10
X

Evidently numbers of heads of 0, 1, 9, or 10 would be very unlikely for this distribution and could be taken to
indicate a biased coin. A statistical test using the sample mean and sample variance could be constructed by
such reasoning.
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4.1.2 Uniform distribution

Given two numbers A and B with B > A, then arandom variable that can take all values in the interval between
A and B with equal probability is referred to as having a uniform distribution, U(A, B), or alternatively a
rectangular distribution. This distribution is of immense value in simulation studies as will be explained
subsequently. Two frequently encountered special cases are when only integer values are allowed, and also
when A=0and B=1.

Definitions

A random variable Y distributed as U (A, B) has probability density function g(y), cumulative distribution
function G (y), expectation E(Y) and variance V(Y) given by

80) = o
Gl =24
E(Y) = A ;—B
V(Y):M%zB)Z.

It is interesting to note two important facts used by SIMF[T concerning any arbitrary continuous random
variable X with distribution function F(x), and a random variable ¥ which follows a continuous uniform
distribution on (0,1), say with distribution G(y), i.e. with A =0and B = 1, so that G(y) = y.

1. If U(0,1) random numbers yi, y;,..., Yy, are available, then random numbers x|, x2,..., X, with
distribution function F(x) can be generated from them using

xi = F ().

This can be appreciated from a graph of the cumulative distribution F(x) as a function of x but taking
as vertical axis Y = F(x) so that

P(X <x)=P(Y < F(x))=G(F(x)) = F(x).

2. Conversely, given random numbers xy, x2, . . . , X, then uniformly distributed random numbers y1, y2, ..., yn
can be generated from them using

vi = F(x;).

This follows since

PY<y)=P(X<F'(y)=F(F'(»)=y=G®).

The Probability Integral transform

Not surprisingly, there are technical details to consider before accepting the previous results, known as the
probability integral transform. However, the following diagram and table illustrating the uniform distribution
on 0,1 with distribution function G(y) and the standard normal distribution with distribution function F(x)
should make it clear.
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The Probability Integral Transform

10 T T T T 1

0.6 4

Y = F(x)

0.4 4

0.2 4

0.0 1 1 1 1 1

y | G(y) x F(x)
02| 02]-08416| 02
04| 04]-02533| 04
08| 08| 08416 | 0.8

The point is that equally spaced divisions on the Y axis correspond to unequal divisions on the X axis, but the
probabilities in the intervals are identical.

In other words, in terms of the inverse standard normal distribution function,
F~1(0.2) = -0.8416

F~1(0.4) = —0.2533
F~1(0.8) = 0.8416,

so that

P(-0.8416 < X < —0.2533) = P(0.2 < Y < 0.4) = 0.2.
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Pseudo random numbers

Computers cannot generate true random numbers, but they can generate extremely long deterministic se-
quences of numbers that do have properties closely similar to random numbers. As all such schemes are
cyclic, the starting point in the sequence can be determined arbitrarily, usually by using the system clock, or
from a fixed starting point using a seed or array of seeds. Generation of such pseudo random numbers begins
by obtaining a sample of n such U(0, 1) numbers that are then transformed into numbers from a selected
distribution. As evaluation of F(.) and F~!(.) for standard distributions requires numerical methods, SIMF|T
does not use the scheme x = F~!(y) outlined in 1. above, as there are more convenient techniques. However
StvMF[T does use the scheme y = F(x) outlined in 2. above to transform numbers into U(0, 1) numbers,
because this is valuable when testing if numbers do arise from an assumed distribution, and it is particularly
useful when visually inspecting values generated in experiments if these can be transformed so as to be
collected into bins with equal probability, as will be illustrated.

Unfortunately, pseudo random numbers do have appreciable autocorrelation and other deficiencies, particularly
if long sequences are required for simulation, and much ingenuity has been expended to surmount such
obstacles. Accordingly, methods to test the performance of particular random number generators have been
developed, and SIMF]T provides the option to test the random number generator provided. This is a Marsaglia-
Zaman type using subtract-with-borrow and has a cycle length of 2137, compared to the value of 2°7 available
with some standard linear congruential generators.

Testing the Simfit U(0,1) generator

Choose [A/Z] from the main SIMF]T menu and open program rannum when the following options will be
available.

Generate sequences of random numbers
Generate and plot random walks
Generate random matrices

Generate random permutations

Test the current U(0,1) generator
Set the seed type

After selecting the option to test the current U(0, 1) generator these further options become available.

Runs up (or down) test
Bar chart plot
Chi-square test
Kolmogorov-Smirnov test

The runs up (or down) test requires a very large sample and tests for significant autocorrelations, the bar
chart plot simply displays a histogram, the chi-square test measures departure of the histogram from a U (0, 1)
distribution, while the Kolmogorov-Smirnov test examines the maximum deviation of the sample cumulative
distribution from the expected straight line.

It is often advised that a minimum sample size of n = 20 is required to test if a sample is consistent with
an assumed distribution and, although statistical tests like the above can be employed, decisions are more
often made by visual inspection of a histogram. Now in the limit of very large samples with many bins
histograms do converge in shape to the population distribution. However the next examples are intended to
demonstrate that, in reality, sample sizes much greater than n = 20 are required to carry conviction. The
U(0, 1) distribution is particularly suited for this purpose as the histogram should have every bin frequency
of approximately the same size, since the probability density function is a horizontal line.

The following histograms display four consecutive simulations using program rannum, and note that the usual
advice is to have an expected value of at least 5, and preferably an observed value of the same order, for each
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bin. Of course, a major failing of analysis based on histograms is that the visual appearance and results from

statistical analysis depend on the number of bins chosen.

Frequencies

Frequencies
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n =20
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Range ( 0.000E+00, 1.000E+00)

n =20
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Frequencies

Frequencies

10 4

n =20
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n =20
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Range ( 0.000E+00, 1.000E+00)

It will be clear from these results that a sample size of n = 20 is insufficient and could easily lead to false
conclusions, as the histogram can suggest almost any shape for the population distribution. Increasing the
sample size to n = 50 can still appear to be rather low as will be clear from the next four successive simulations.
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Frequencies
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Actually numerical results concerning the sample size required can be obtained from the SIMF]T section on
power as a function of sample size. Meanwhile here is the sort of convincing result obtained with large
samples, in the next case n = 10000.
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Normal distribution 59

4.1.3 Normal distribution

The normal distribution has great importance in data analysis because, although experimental measurements
never follow normal distributions exactly, many observations are approximately normally distributed, or
become so after transformations such as replacing observations by the logarithms. For instance experimental
error is often approximately normally distributed

Definitions

A random variable X is said to normally distributed if the probability density function (pdf) f(x) and
cumulative distribution function (cdf) F(x) are

so that the probability of a value occurring in the range A, B with B > A is

P(A < X < B) = F(B) - F(A).

Here y is the mean, the standard deviation is o=, and the variance is o->. Because u can have any value at all
and o can have any positive value it is useful to consider the standardized variable Z defined as

which is normally distributed with mean zero and variance one.
Simfit program normal

In order to understand this distribution by plotting profiles and calculating deviates we shall consider some
of the procedures available using the SIMF[T program normal. To do this, select menu item [A/Z] from the
main StMF]T menu, and open program normal when the following options will be available

Input: mu and sigma

Input: x, calculate pdf(x)
Input: x, calculate cdf(x)
Input: alpha, calculate x

as well as options to test if data are normally distributed, to perform power and sample size calculations, or to
investigate the multivariate normal distribution.

If the default values for ¢ and o~ are accepted then the following plot can be obtained.
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Normal Distribution: g =0, 0’=1
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This illustrates that the normal distribution pdf is a symmetrical bell-shaped curve with tails that rapidly
decrease after some two standard deviations. The cdf on the other hand is a monotonic sigmoidal curve rising
from a minimum value of zero to a maximum value of one. It is in fact the integral of the pdf, that is, the
value of F(x) at the value x is simply the area under the pdf curve from —oo to x.

Particular interest attaches to the area in the lower and upper tails of this distribution. In fact, the tails illustrated
in this figure are the lower and upper 2.5% points. In other words, the probability of a value occurring in the
lower tail is 0.025, the probability of a value occurring in the upper tail is 0.025, so that the probability of
a value occurring in either the lower or upper tail is obviously 0.05. Perhaps the best known 2-tail critical
points are the 68% and 95% ones, i.e.

Plu-oc<X<u+0)=0.68, and P(u—-1960 <X < pu+1.960) =0.95.

Out of interest, it should be pointed out that the tails were shaded in this figure by using the advanced option
to transfer the data into the SIMF[T program simplot followed by assigning the first two lines to be closed
polygons which were then colored grey.

Before the widespread availability of computers, values of such critical points were read off from tables, and
also the inverses were obtained in this way, that is the values of X calculated from specific values of F(x).
We now explain how to do this using SIMF[T program normal

Obtaining critical values
SiMF[T program normal was used to obtain three values of —1, 0, 1 for the pdf, the same three for the cdf, and

three critical values for 2.5%, 5.0% and 50.0% as in this table from the results log file, which was archived by
SiMF[T when program normal was closed.
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pdf values

Current parameters: mu = 0.0E+00, sigma = 1.0E+00, sigmar2 = 1.0E+00
pdf(-1.000E+00) = 2.420E-01

pdf( 0.000E+00) = 3.989E-01

pdf( 1.000E+00) = 2.420E-01

cdf values

Current parameters: mu = 0.0E+00, sigma = 1.0E+00, sigmar2 = 1.0E+00
P(X =< -1.000E+00) = 0.1587 ... P(X >= -1.000E+00) = 0.8413

P(X =< 0.000E+00) = 0.5000 ... P(X >= 0.000E+00) = 0.5000

P(X =< 1.000E+00) = 0.8413 ... P(X >= 1.000E+00) = 0.1587

critical points
Current parameters: mu = 0.0E+00, sigma = 1.0E+00, sigmar2 = 1.0E+00

P(X =< 1.960E+00) = 0.9750 =#x* P(X >= 1.960E+00) = 0.0250
P(X =< 1.645E+00) = 0.9500 P(X >= 1.645E+00) = 0.0500
P(X =< 0.000E+00) = 0.5000 =*=* P(X >= 0.000E+00) = 0.5000

The pdf values illustrate in numbers what is displayed in the graph, that f(—1) = f(1) because of the fact that
values equally spaced below and above the mean give the same pdf values due to the symmetry.

The cdf values also illustrate that the areas in the lower and upper tails at values equally spaced below and
above the means are equal, and clearly the areas below and above the mean are 0.5.

The critical points illustrated show the same symmetry, but it should be emphasized that using lower and
upper critical points for statistical testing would normally require critical points based on the sum of lower
and upper tail probabilities, as in a two-tail test. For instance, if a statistical test is conducted to see if an
observation is consistent with a certain mean, then the two-tail test would allow for the observation being
either extremely low or extremely large. If the analyst was just not prepared to consider such an outcome but
would only countenance the possibility of an observation being too large for the null hypothesis, or too small
as the case may be, would a one-tail test based on only one of the tails be used.

A trick often resorted to when submitting grant proposals is to do power and sample size calculations
using one-tail tests when two-tailed would be more honest. Like claiming a lower variance than is justified
experimentally to reduce the sample size required, statistics is always open to such abuse.
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4.1.4 tdistribution

The great importance of the 7 distribution in data analysis lies in the existence of numerous tests based upon
it, such as the 1-sample ¢, unpaired ¢, and paired ¢, as well as the use in calculating confidence intervals.

Definitions

Consider two independent random variables, Z which has a normal distribution with u = 0, o?=1,and C
which has a chi-square distribution with k degrees of freedom. Then the ratio

VA
te = ——

\C/k

is described as a t variable with k degrees of freedom. It should be noted incidentally that ti is distributed as
F(1,k).

A special case arises when analyzing a sample of size n from a normal distribution with population mean u
and population variance o2, because the sample mean

.l n
X = —Zx[
n
i=1

is normally distributed with mean u and variance o~ /n, while nS?/o? using

1< _
§% = p Z(xi -5
i=1

has a y? distribution with n — 1 degrees of freedom. Hence the statistic
X-—pu
S/Vn -1

has a ¢ distribution with n — 1 degrees of freedom. Note that this ¢ variable only has one unknown parameter,
the population mean .

In-1 =

Simfit program ttest

Choose [A/Z] from the main SIMF[T menu and open program ttest when the following options will be
available.

Input: N, number of degrees of freedom
Input: t, calculate pdf(t)

Input: t, calculate cdf(t)

Input: alpha, calculate t inverse

Input: data, l-sample t test

Input: data, 2-sample unpaired t test
Input: data, 2-sample paired t test
Input: matrix, groups across rows t test
Power and sample size

Non-central t distribution.

Degrees of freedom

An important use of the ¢ distribution is when calculating confidence limits, for instance with a sample mean,
or parameter estimate. The main thing to realize in such circumstances is that, although the mean value for #,,
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is zero irrespective of n, the variance is heavily dependent on n. This is why the confidence limits shrink as
the sample size increases. Actually the 7,, distribution is asymptotic to a standardized normal distribution as
n increases, as shown by the next graph created from ttest.

t distribution
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Note how the area under the tails decreases rapidly as n increases from 2 to 6 but less slowly thereafter. A
more detailed inspection of this will be clear from this table copied from the ttest results log file for a 95%
confidence interval.

P(t =< 4.303E+00) = 0.975 %% P(t >= 4.303E+00) = 0.025, N = 2
P(t =< 2.776E+00) = 0.975 =*=x P(t >= 2.776E+00) = 0.025, N = 4
P(t =< 2.447E+00) = 0.975 »=x P(t >= 2.447E+00) = 0.025, N =6
P(t =< 2.306E+00) = 0.975 =% P(t >= 2.306E+00) = 0.025, N = 8
P(t =< 2.228E+00) = 0.975 =#x P(t >= 2.228E+00) = 0.025, N = 10

Confidence range for the sample mean

Given X and S? from a sample of size 1, then a symmetrical 100(1 — &) % confidence range for the population
mean u can be constructed using the upper tail critical value 74/ ,—1. We have that

X—H
Pl———=2>1, 2,n—l) = a'/2
(S/‘Vn—l /
and B
X—H
Pl———< —lqo 2,n—l) = 0/2,
(S/Vn—l /
so that

P()?—l‘a/z’n_IS/Vn —l<pu<i+tynn-18/Vn— 1) =1-a.
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Alternatively, note that it often causes confusion because an unbiased estimate of the population variance is
not S? but the sample variance
.l n
s = Z(xi -x )%
n—1 P

so that an equivalent expression for #,,_; would then be

tat = K
n—-1 — s/—\/ﬁ,
whereupon
P ()E - t(t/2,n—ls/\/ﬁ Spu<i+ t(t/2,n—ls/\/z) =1-a.

using s? instead of S

We see from the above table that the multipliers of the sample standard error required for a 95% confidence
interval with sample sizes of n = 3,5, 7,9, and 11 would be 4.303, 2.776, 2.447, 2.306, and 2.228. Clearly,
using the sample mean plus or minus twice the standard error as an approximate 95% confidence range will
always underestimate the actual 95% confidence range unless the sample size exceeds 10, say.
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4.1.5 chi-square distribution

There is an ever present need in data analysis to estimate goodness of fit. That is, an experimentalist makes n
observations
01,0,...,0,

and wishes to test how well a theory that predicts expected values

E\,Ey, ..., E,
fits the data. This leads naturally to the chi-square variable and chi-square tests.
Definitions

Given a normally distributed random variable x; with mean y and variance o2 it is possible to derive from it
a standard normal variable z; using

which is normally distributed with mean 0 and variance 1. A sum of squares of n such independent variables
defines a chi-square variable with n degrees of freedom. That is,

X2=z%+z§+...+zi
is chi-square distributed with n degrees of freedom, and has expectation n and variance 2n. For n = 1 the
density is infinite at y* = 0, for n = 2 it is that of the exponential distribution, while the distribution becomes
asymptotically normal for large n.

In applications the actual distribution and its parameters are unknown and must be estimated, say from the
sample. Tests based on chi-square usually require the estimation of £ > O such parameters in order to asses
the size of test statistics like C? defined by

_ (01 _El)2 + (02_E2)2+“'+ (On_En)2

E} E? E;}

C2

which becomes asymptotically y? distributed with n — 1 — k degrees of freedom as n — oo. Instead of
frequencies, the objective function from weighted nonlinear regression, namely

n AN 2
WSSO = Z {yi - f{xiﬁ);
=

Si

where parameters @ have been estimated, converges to a y? distribution as long as the model is correct and
not over-determined, and the weights s; are accurate.

Using the chi-square distribution

Choose [A/Z] from the main SIMF[T menu and open program chisqd when the following options will be
available.

Input: number of degrees of freedom

Input: x-values then output pdf(x)

Input: x-values then output cdf(x)

Input: alpha then output x-critical

Input: sample then test for chi-square distribution
Input: O and E values for a chi-square test

Input: contingency table for chi-square test

Input: parameters for non-central chi-square distribution
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After input of the number of degrees of freedom a graph like the following can be viewed.

)(2: Degrees of Freedom =10

0.10 -
0.08

0.06

pdf

004 7 Area = 0.05

0.02

0.00

The essence of chi-square testing is to see if test statistics such as C> or WSSQ fall in the upper tail of the
appropriate y? distribution. For instance, in the above graph, the shaded region contains 5% of the probability,
and a test statistic falling in this region would be considered as sufficiently extreme to support rejecting a null
hypothesis, such as consistency of the data with the assumed model, at the 5% significance level. Of course it
is always assumed that the sample size is sufficiently large to justify treating the test statistic as a y> variable
instead of an approximate y? variable.
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4.1.6 F distribution

It is frequently necessary to compare sample variances for equality, and there are also numerous other
applications for examining variance estimates, such as analysis of variance or excess variance, where a test
statistic is required. The F distribution arises naturally in such contexts.

Definitions

If there are two independent random chi-square variables: U with m degrees of freedom, and V with n degrees
of freedom, then the ratio of these divided by their respective degrees of freedom as in

_Um
F_V/n

defines the F distribution with m and n degrees of freedom. The expectation is given by

E(F) =

n—2

when n > 2 and, rather than performing upper, lower, or two tail tests, the ratio is often inverted in some
applications so that the numerator is always greater than the denominator, resulting in values of test statistics
F>1.

There is a good reason for this. Because of a special property of this distribution, lower tail percentiles are
readily available from upper tail percentiles and vice versa. To see this, note that

P(F < Fp5) =0.05
=1-P(F > Fos)

1 1
=1-P[—<—
F  Fos

where F s is the 5% critical point for the distribution of F, so that 1/F s is the 95% critical point for the
distribution of 1/F. Obviously, as F is distributed with m and n degrees of freedom, then 1/F is F distributed
with n and m degrees of freedom.

Using the F distribution

Choose [A/Z] from the main StMF[T menu and open program ftest when the following options will be
available.

Input: current parameters m and n

Input: x-value then output pdf(x)

Input: x-value then output cdf(x)

Input: alpha then calculate x-critical
Input: sample then test distributed F(m,n)
Input: sums of squares then perform F test
Do 1,2,3-way Analysis of Variance

Calculate non-central F distribution values

Selecting the first option and choosing m = 10 and n = 12 displays the following plot.
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F distribution: m =10, n =12
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When using the F distribution, SIMFT will usually return the probability of a test statistic, say 7'S, being
acceptable or not in the following way
P(TS > F) =0.6742

or similar. If 7'S is sufficiently large to fall in the upper tail for the corresponding F distribution, such as in the
region shaded in the above figure, there would then be a further message indicating the possibility for rejecting
the null hypothesis at the 5% significance level, i.e. p < 0.05 or, in even more extreme cases, p < 0.01 In
other words, P(T'S > F) is simply the area in the upper tail beyond the test statistic 7'S, i.e. the significance
level for rejection of the null hypothesis.
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4.1.7 Binomial distribution

Just as the normal distribution plays an important part in the analysis of measurements, the multinomial
distribution is central to the analysis of counts, e.g. frequencies, contingency tables,etc. For instance, suppose

an experiment leads to just one of m possible and exclusive events Ey, E3, . . ., E;,;, each with fixed probability
pi > 0, then the probability that in n successive experiments there will be x; events E;, fori = 1,2,...,m is
n' X1 X2 Xm
f(x],xz,...,xm) = mp] pZ pk
where

pr+p2+--+pr=1

Definitions

A special case is the binomial distribution where each experiment has only one of two possible outcomes,
e.g. heads or tails, success or failure, positive or negative, black or white, improvement or deterioration, and
where each experiment is independent of all previous experiments. A succession of N such Bernoulli trials
where the probability of success is p, so that the possibility of failure is 1 — p, can be described by a random
variable X, which is just the number of successes in the N trials. Then the probability of k successes being
recorded P(X = k) is

70 = ()=

where the binomial coefficient, i.e. the number of ways of selecting k items from N, is

NY NI
(k) kNN -K)

and the expected value and variance of such a binomial variable are

E(X)=Np
V(X)=Np(l-p).

Simfit program binomial

Choose [A/Z] from the main SIMF[T menu and open program binomial when the following options will be
available.

Input: b(N,p), and P(lambda) parameters

Input: binomial x ... calculate pmf(x)
Input: binomial x ... calculate cdf(x)
Input: binomial % ... calculate x-critical

Input: binomial N,x, calculate NCX(x)

Input: binomial N,x, estimate p, con. lim.
Input: a sample, test if distributed b(N,p)
Input: binomial x,N,t, analysis of proportions
Input: trinomial x,y,N, plot conf. reg.

Input: Poisson x ... calculate pmf(x)
Input: Poisson X ... calculate cdf(x)
Input: Poisson % ... calculate x-critical

Input: Poisson x, estimate lambda and con.lim.
Input: a sample, test if distributed P(lambda)
Calculate: power and sample size

Calculate: change confidence limits (now ,i3,%)
Calculate: using the non-central beta distribution
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Choosing the first option allows you to change the binomial parameters as required for the subsequent binomial
options. For instance, the plot with default parameters N = 10 and p = 0.5 is as follows

Binomial Probabilities: N =10, p =0.5
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which demonstrates the symmetry when p = 0.5.
Changing the p value away from 0.5 results in skewing the probabilities and removing the symmetry as will
be seen from the next plot.

Binomial Probabilities: N =40, p = 0.25
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Critical values

It should be noted that calculating critical points for a discrete distribution, like the binomial distribution,
is problematical as the cumulative distribution is a step function, and so only ranges can be given, as in the
following example for the 99%, 95%, 90%, 75%, and 50% points.

Current binomial parameters: N = 100, p = 0.75

P(X =< 64) = 0.00941 P(X =< 65) = 0.01643

P(X > 64) = 0.99059 =%* P(X > 65) = 0.98357 (99%, 64 or 65)
P(X =< 67) = 0.04460 P(X =< 68) = 0.06935

P(X > 67) = 0.95540 =+ P(X > 68) = 0.93065 (95%, 67 or 68)
P(X =< 68) = 0.06935 P(X =< 69) = 0.10379

P(X > 68) = 0.93065 **+ P(X > 69) = 0.89621 (90%, 68 or 69)
P(X =< 71) = 0.20754 P(X =< 72) = 0.27762

P(X > 71) = 0.79246 ==+ P(X > 72) = 0.72238 (75%, 71 Or 72)
P(X =< 74) = 0.44653 P(X =< 75) = 0.53833

P(X > 74) = 0.55347 %% P(X > 75) = 0.46167 (50%, 74 or 75)

Binomial parameter confidence limits

If there are X successes in N trials then the best estimate for the population parameter is the sample estimate
p given by

5 =X/N.

However, to get some idea of the reliability of such estimates it is necessary to calculate confidence limits,
and it often surprises experimentalists that these limits are not symmetrical, as illustrated by the next set of
results.

Binomial p and 95% limits given X successes in N trials.

N=10 X =5 :Lower 95% = 0.18709, p = 0.5, Upper 95% = 0.81291
N =100 X = 50 :Lower 95% = 0.39832, p = 0.5, Upper 95% = 0.60168
N = 1000 X = 500 :Lower 95% = 0.46855, p = 0.5, Upper 95% = 0.53145
N=10 X =3 :Lower 95% = 0.06674, p = 0.3, Upper 95% = 0.65245
N =100 X = 30 :Lower 95% = 0.21241, p = 0.3, Upper 95% = 0.39981
N = 1000 X = 300 :Lower 95% = 0.27172, p = 0.3, Upper 95% = 0.32946

For large N and p close to 0.5 limits are approximately central, but the asymmetry increases and the confidence
range becomes increasingly skewed as p moves away from 0.5 since, of course, confidence limits must remain
between 0 and 1. When comparing sequential estimates for a binomial parameter, say as a function of some
variable ¢, it is useful to plot p values with individual confidence limits along with the overall estimate from
the combined sample to detect trends, as shown next.
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4.1.8 Poisson distribution

The Poisson distribution is widely used to model the occurrence of events in time or space. It can be presented
as a limiting form of the binomial distribution, or more formally by way of the Poisson postulates defined
using P,,(h) for the probability of n events occurring in an interval of width / in time (or space) as follows.

1. The number of events in nonoverlapping intervals of time are independent.
2. Probability does not change during the occurrence of the events.
3. Probability of 1 event in a small interval of time is approximately proportional to the size of the interval.

4. Probability of 1 event in a small interval of time is much larger than that for occurrence of multiple
events.

Definitions

A random integer variable X that can take all values > 0 is said to obey the Poisson distribution with parameter
A > 0 if the discrete probability mass function f(x) is

£ = exp(-)
X!

with mean and variance both equal to A.

Example 1: Counting arbitrary independent events.

In the case of the binomial distribution with parameters N and p where N is very large and p very small, then
the following approximation becomes valid

k
()=t s CE expi-np).

In other words, the Poisson distribution with one parameter 4 = Np becomes a good approximation to the
binomial distribution with two parameters N and p when N — oo and p — 0 but Np remains finite.

Example 2: Counting independent events as a function of time.

Again, for a process with an average rate of u events per unit of time, then the probability of k events in time
interval ¢ is

(un)*

Pi(1) = a

exp(-u1),
which defines a Poisson process with parameter A = ut.
Plotting Poisson probabilities

The next plots illustrate how the distribution moves to the right as A increses.
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Simfit program binomial

Choose [A/Z] from the main SIMF[T menu and open program binomial when the following Poisson options
will be available.

Input: Poisson x ... calculate pmf(x)
Input: Poisson x ... calculate cdf(x)
Input: Poisson % ... calculate x-critical

Input: Poisson x, estimate lambda and con.lim.
Input: a sample, test if distributed P(lambda)
Calculate: power and sample size

Calculate: change confidence limits (now 95%)
Calculate: using the non-central beta distribution

Choosing to analyze test file poisson.tfl for consistency with a Poisson distribution using a dispersion test,
and also a Fisher exact test first warns that Bonferroni n = 2 then outputs these results.

Sample size 40
Sample total 44
Sample sum of squares 80
Sample mean 1.1

Lower 95% confidence limit 0.7993
Upper 95% confidence limit 1.477

Sample variance 0.8103
Dispersion (D) 28.73
P(x* > D) 0.88632
Degrees of freedom 39

Fisher exact Probability 0.91999
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Note that the Bonferroni n = 2 declaration is a warning not to use both test statistics uncritically. Actually
SiMF[T often lists the results of several tests at the same time, but this is only for convenience, and users
should always take note if a Bonferroni correction is required.

It is frequently required to confirm that it is sensible to use the Poisson distribution, with all the associated

assumptions that are involved, as a model when analyzing a given data set. The dispersion test examines if
there is any evidence that the dispersion D

D= zn:(xi -x)%/x
i=1

is significantly greater than 1 (indicating over-dispersion, i.e. clumping or clustering) or significantly less 1
(indicating under-dispersion, i.e. too evenly scattered), while the Fisher exact test, which can only be done
with small samples, estimates the probability of the sample based on all partitions consistent with the sample
size, mean, and total. In this case there seems no evidence to reject the null hypothesis

Hy: the sample is consistent with a Poisson distribution.

The following plot compares the observed and expected frequencies in order to visualize the goodness of fit.

Fitting a Poisson Distribution
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Note the use of a Poisson distribution to assess the significance of k, a small number of counts for one outcome,
out of total number number n > k, by the rule of thumb of taking a 95% confidence range for the population
parameter K as k — 2Vk < K < k +2Vk.
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Simfit program chisqd

Radioactive decay is an exponential process but, during a sufficiently small time interval where the decay rate
can be regarded as approximately constant, particle emission follows a Poissson distribution. In a famous
experiment Rutherford counted k, the number of particles emitted in 2608 intervals of 7.5 seconds to obtain
the following results, where the expected values were calculated using 4 = 10094 /2608 = 3.87.

k Observed Expected

0 57 54.399
1 203  210.523
2 383  407.361
3 525  525.496
4 532  508.418
5 408  393.515
6 273  253.817
7 139 140.325
8 45 67.882
9 27 29.189
> 10 16 17.075

The SiMFIT program chisqd was used to analyze the observed and expected frequencies to obtain these
results.

Number of partitions (bins) 11
Number of degrees of freedom 9
Chi-square test statistic C 12.88
P(x>>C) 0.1679  Consider accepting Hy
Upper tail 5% critical point 16.92
Upper tail 1% critical point 21.67

and the following bar chart.

Radioactive Decay Analysis
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4.1.9 Bivariate normal distribution

The bivariate normal distribution is an extension of the univariate normal distribution to the case of two
variables. It is the basis of many procedures including Pearson product-moment correlation analysis.

Definitions

A pair of continuous random variables X and Y will constitute a bivariate distribution if there is a joint density
function f(x, y) which defines probabilities P as follows

flx,y) =0

[:[:f(x’”dxciy =1

R[/f(x, y)dxdy = P(X,Y € R)

b d
/ / f,y)dedy=Pa<X<bandc <Y <d)
a c

where R is an arbitrary region in the X,Y plane, while a < X < b together with ¢ < Y < d defines a
rectangular region in the X, Y plane.

The marginal distributions are defined as
= [ faay
w= [ fds

while the conditional distributions are

fxyy (x) = £,/ fr(y)
frix(y) = f(x, )/ fx(x).

Of particular interest are the definitions of variances o-f and o2, and the covariance Cov(X,Y) between X
and Y in terms of the expectations u, = E[X] and u, = E[Y]

ol =E[X-E(X))?
= E[X?] - E[X]?

oy =E[Y -E(Y)]?
= E[Y’]-E[Y]?

Cov(X.Y) = E{[X - E(X)][Y -EM)]}
= E[XY] - E[X]E[Y]
as this leads to the correlation coefficient p

3 Cov(X,Y)

OxOy

where —1 < p < 1, and the fact that when the two variables are independent p = 0. However, the condition
p = 01is not a sufficient condition that two variables are independent as this requires the stronger condition

fx,y) =gx)h(y).
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So, if variables X and Y are jointly distributed as a bivariate normal distribution, the density function is

1 1
flx,y) = ——————————exp (—_Q)
2rocayy1 - p? 2
1 — uy)? X - - Y
where Q = - (x /2‘ ) —2p( wx) (y = Hy) . (v /;y)
1_p Ox Ox0y O-y

with oy > 0,0, > 0,and -1 < p < 1.

Here the marginal and conditional densities for X and Y are normal, as will be clear from the following

fr(x) = —— exp 1(’“"‘X)2
X (x) = Xp—= | ——
\/ﬂo—x 2 (%

1 2

1
exp—
V21 (1 = p?) oy 2(1 - p?)o}

fxpy (x) = (x— [#x+p?(y—ﬂy)]
y

with corresponding expressions for fy (y) and fy x (y) by symmetry. At fixed probability levels, the quadratic
form Q defines an ellipse in the X,Y plane which will have axes parallel to the X, Y axes if p = 0, but with
rotated axes otherwise. Note that the marginal distribution for X has mean g, and variance o2, and the
marginal distribution of ¥ has mean u, and variance O'yz, but also consider the expressions for the means in
the conditional distributions, namely

Ox
mxpy = px+p—(y = py)
Ty
Ty
my|x = py +p—(y = fix)
Ox
which will be mentioned later.
Using program MAKDAT to simulate f(x,y)
From the StMF[T main menu select [A/Z], then run program makdat choosing the bivariate normal distribution.

Using the parameters

Hx=py =0, 0py=0y=1,p=0, -3<x<3, -3<y<3, ny=n,=7

allows the creation of the following three dimensional skyscraper plot for a bivariate normal distribution,
where the volume of the individual bars indicates the probability of a x, y pair of random variables occurring
in the area of the X, Y plane at the base of the bars. Increasing the number of divisions to ny = n, = 50
as in the subsequent plot indicates how the three dimensional bar chart converges to a smooth surface as the
number of divisions increases.
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Plotting bivariate normal contour diagrams

Contour diagrams are at the basis of checking scatter diagrams when using Pearson product-moment analysis,
and especially the practise of plotting lines on such plots to indicate linear correlation. From SiMF[T program
makdat simply change the the current value of p = 0 which models the absence of correlation to a value such
p = 0.8 for positive correlation then create the contour diagram below.

Bivariate Normal Contours: p, =y, =0, 0X2 = 0y2 =1,p=0.8
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This diagram also includes the two mean regression lines indicating the mean values of the conditional
distributions as functions of their arguments. These lines show the limiting positions that would be obtained
with a swarm of random points following a bivariate normal distribution when plotting best-fit lines for Y as
a function of X and X as a function of Y. The lines are

(O O-y
Formyix :  y=p—x+ {1y —p—x
Oy

1o o
Formyy : y= ;—yx+ {yy - ——xyx}
where it is understood that p> < 1 and p # 0.

Given two lines with slopes @ and S then the angle between them (subject to the usual sign conventions) is
given by tan 6 = (@ — B8)/(1 + aB). So, for the above conditional mean regression lines, we have

which, apart from the singular case with 6 as a right angle when p = 0, defines |0| as a decreasing function
of p? thereafter.
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4.2 Statistical tests
N Tutorials and worked examples for simulation,
@~ curve fitting, statistical analysis, and plotting.
N https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

4.2.1 Introduction

Once a data set has been collected it is useful to see what statistical tests could be done to characterize
a possible theoretical statistical distribution underlying the observations. Clearly success in this endeavor
depends on having a sufficiently large sample with maximum possible signal to noise ratio, as well as a
sensible presumed distribution. First we consider some standard data types.

* A single one-dimensional data set.
Such a sample would ordinarily consist of n observations x;, such as estimates of blood pressure in n
subjects, and it might be sensible in this case to consider an underlying normal distribution.
Such a sample will be referred to in SIMF[T as a n dimensional vector X that is

X =X1,X2,...,Xn.

However, in SIMF]T this data set would have to be submitted for analysis as a single vertical column of
numbers, either from the clipboard or else from a file.

* Two independent one-dimensional data sets, e.g. unpaired data.
For instance a set of n blood pressure measurements on one group, say X, and another set of m blood
pressure measurements on an independent group, say Y. That is

X =X1,X2,...,Xn

Y=y,¥2,....Ym-

Here the question could be if the two sample estimates for the means and variances suggest a common
distribution, and the data would have to be presented to SIMF[T as two separate vertical columns of
measurements, unless n = m when a two-dimensional matrix would be a possible data format.

* Two dependent one-dimensional data sets, e.g. paired data.
For instance a set of n blood pressure measurements on a group before medication, say X, and another
set of n blood pressure measurements on the same group, say X,, after medication. That is

Xa =Xa1,Xa2, .- Xan

Xp =Xp1,Xb2s - - - Xbn-

Here a more searching test for equality of means, that is for the presence or absence of a treatment
effect, could be conducted because in such cases the obvious correlation between the groups can be
exploited.

In this instance the two samples could also be submitted to SIMF[T as a matrix with n rows and 2
columns, or as two columns selected from a n by m matrix if m > 2.

Types of data

Before summarizing the simple statistical tests options in SIMFT it must be clear that there are essentially
two types of data.
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1. Continuous
These would be observations that can take values in a range and are collected using apparatus.
Examples could be where X is temperature measured using a thermometer, or time measured by a
clock. Of course continuous variables by definition can have an infinite number of values between any
two limits but, given the limits of measurement accuracy, they could well be collected as integers. For
example temperature to the nearest degree, or time to the nearest second, would still be analyzed using
continuous statistical distributions even though the values are expressed as integers.

2. Discrete

These would be observation that are definitely integers and are often presented as counts. Examples
could be where X is the number of observations in a limited number of defined categories, such as
the number responding to treatment or not responding to treatment in a group of subjects. A special
case is dichotomous data where each experiment has only one of two possible outcomes, for example
improvement or deterioration, say O or 1. Such categorical data are analyzed using discrete statistical
distributions, but often the test statistics are continuous random variables, such as a chi-square statistic
resulting from a contingency table.

Types of test

Another distinction that can be made separates statistical tests into one of two categories.

A) Parametric tests.

These depend upon choosing a defined statistical distribution to model the data. If the model is correct
these are the most powerful tests. However, if the model is wrong, or the parameters assumed for the
model are incorrect or are estimated from the sample, then performance is degraded. In extreme cases
the test may not just be compromised but could lead to completely erroneous conclusions.

B) Nonparametric tests.
These do not depend on an assumed model and frequently use ranks instead of just measured values.
They are much weaker than parameteric tests but have the advantage that they seldom lead to false
conclusions. That is, for instance, why the Mann-Whitney U test for equal medians is frequently
preferred to the Student ¢ test for equal means. It should be noted however that nonparametric tests
often lead to test statistics that are only asymptotic to known continuous distributions, so that they can
require large samples for reliability.

Statistics

Any function evaluated using a data set can be called a statistic, and some listed below are used as test statistics,
that is, numbers that can tested for extreme values given a data set and a theoretical distribution.

a) The sample mean
Given a sample X = x1, x, ..., X, of size n, the sample mean x defined as X = % Z:’zl x; estimates the
center of the distribution, as opposed to the median which is the point where half of the sample is below
the median and half above. The sample mean is frequently used in parametric tests, and the sample
median in nonparametric tests.

b) The sample variance
The sample variance s is defined as

1 n
2 _ =2
$°=—— izgl(xl X)

and its square root s is the sample standard deviation. It is also known as the dispersion and sums up
the spread of the data.
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¢) The sample cumulative distribution
Suppose the sample is rearranged into a non-decreasing order, then the sample cumulative distribution
function C(x;) is a step function which is zero for values below x1, one for values greater than or equal
to x,,, and increases in steps of 1/n at each consecutive value of x;.

d) Rank
The rank of an observation is the position it would take if the sample was to be arranged into non-
decreasing order, and ranks are used in many nonparametric tests.

Summary of available tests

* 1-sample ¢ test.
This is a parametric test used to check if a single sample of observations can be considered as arising
from a defined normal distribution with a known mean which users can input interactively.

* 1-sample Kolmogorov-Smirnov test.
This is a nonparametric test to see if a single sample is consistent with one of a known set of stan-
dard distributions. The test statistic calculated is the maximum vertical distance between the sample
cumulative distribution and the theoretical distribution. It is only really useful when the assumed
distribution is a known continuous distribution with specified parameters, and is much weaker with
discrete distributions, or where the parameters are estimated from the sample.

 1-sample Shapiro-Wilks test for normality.
This is a recommended test to see if a sample is consistent with a normal distribution. It is based on
the correlation between the sample scores and the expected normal scores.

* 1-sample Dispersion and Fisher exact Poisson test.
This tests if a sample of non-negative integers is consistent with a Poisson distribution. It is based
on examining the sample variance to see if the data suggest over-dispersion due to clumping or an
over-uniform dispersion, both of which can suggest departure from the behavior expected for a Poisson
distribution. The Fisher exact test is only performed for small samples.

» 2-sample unpaired ¢ and variance ratio tests.
This is the most frequently used test to see if two samples have the same mean. It relies on the samples
being normally distributed with the same variance and, with large samples, these two assumptions can
be tested interactively. It is essentially analysis of variance (ANOVA) but with only two columns.

* 2-sample paired 7 test.
This depends on the same assumptions as the 2-sample unpaired ¢ test for equality of means, but in
the additional circumstance that pairs of corresponding values are necessarily correlated. For instance,
when the column vectors are body temperatures measured with the same subjects but before and after
treatment. The correlation allows the use of a test statistic that is more searching than with the 2-sample
unpaired 7 test.

* 2-sample Kolmogorov-Smirnov test.
This is a nonparameteric test for equality of distribution. It is based on the maximum vertical distance
between the two sample cumulative distributions but is rather weak and requires large samples.

* 2-sample Wilcoxon-Mann-Whitney U test.
This is the most widely used nonparametric test to see if two samples can be regarded as having the
same but unspecified distribution. It is based on the extent to which one of the samples dominates the
other, that is, has a larger median.

* 2-sample Wilcoxon signed-ranks test.
Just as the Wilcoxon-Mann-Whitney U test is the nonparametric equivalent of the unpaired # test, this is
the nonparametric equivalent of the paired ¢ test and tests for equality of medians in two paired samples.
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Chi-square test on observed and expected frequencies.
Given a set of n actual observed frequencies this tests if the observed frequencies are consistent with
those generated as expected frequencies by some assumed distribution. It requires users to supply the
expected frequencies along with the observed frequencies.

Chi-square and Fisher-exact contingency table tests.

The chi-square test can always be done on an arbitrary n by m contingency table, but the Fisher-exact
test is only useful with small contingency tables. Yates’s continuity correction is used for two by two
tables.

McNemar test.
This requires paired samples of dichotomous data (i.e. values O or 1) as a two by two contingency table.

Cochran Q repeated measures test.
This also requires dichotomous data, but in a repeated measures design.

Binomial test.
This test checks to see if a set of dichotomous observations are consistent with a binomial distribution.
The binomial p value and number of trials N are input along with the number of successes or failures.

Sign test.
Checks if a set of outcomes such as success or failure are consistent with a binomial distribution with
p = 0.5, that is, equally likely outcomes.

Run test.

This is used to test if a set of residuals have a succession of signs that is consistent with equally likely
positive and negative values occurring randomly along the sequence and not clustering to suggest a
biased fit. Whereas the sign test just examines the overall number of positive and negative signs, the run
test also depends on the order of occurrence. For instance, if a model fitted to 20 data points resulted in
10 positive and 10 negative residuals the sign test would report this as perfectly normal. If there were 10
positive residuals followed by 10 negative residuals, that is the sign pattern ++++++++++-————————- ,
the run test would draw attention to a badly fitting model.

F test for excess variance.

This test is performed automatically when SiMF]T fits a nested set of models to some data but can also
be done interactively using this option. It is based on the fact that adding extra parameters to a model,
for example higher order terms in a polynomial, will generally improve the fit, i.e. decrease WSSQ, the
weighted sum of squared residuals resulting from fitting. This test examines if the increased number of
parameters required to decrease the WSSQ is justified on statistical grounds.

Runs up and down for randomness.

This is used to test for correlation in a set of numbers, for example pseudo random numbers from
a random number generator. The runs up test is based on counting the lengths of runs of numbers
increasing in magnitude within in a sequence, and the runs down test is done by simply changing the
signs of all the numbers and doing the runs up test.

Mood and David tests for equal dispersion.
This is a nonparametric test for variance equality in two samples. It examines the ranks of observations
in a pooled sample.

Kendall coefficient of concordance.
This measures the degree of agreement between k comparisons of n objects.

Bartlett and Levene tests for homogeneity of variance

Analysis of variance is based on the presumption that the samples under investigation are all normally
distributed with the same variance. This test examines if all the variances are consistent with this
assumption.
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4.2.2 1-samplet test

The one sample t test is one of many tests designed to see if a sample can be regarded as consistent with
a normal distribution but, for this test, it is also a strict requirement that the theoretical mean value is po, a
parameter that is known in advance from previous investigations.

To be precise, the user has a sample (i.e. vector X) of n observations
X =(x1,X2,...,Xn)

and wishes to test if these numbers are consistent with a normal distribution where the mean ¢ has been
previously estimated with great precision from an independent very large sample. Preferably the data should
cover a wide range and n should not be too small, say n > 20 ?

Choose [A/Z] from the main SiMF[T menu, open program ttest, select the 1-sample-t-test option, input a
theoretical mean ¢ = 0, then analyze the test data set to obtain the following results.

Normal distribution test

Data: Test file normal. tf1 with 50 pseudo-random numbers
Shapiro-Wilks statistic W 0.9627
Significance level for W 0.1153
Conclusion: Tentatively accept normality

One sample ¢ test

Number of x-values 50
Number of degrees of freedom 49
Theoretical mean () 0
Sample mean () -0.02579
Standard error of mean (SE) 0.1422
TS =(x—-uy)/SE -0.1814
P(t > TS) (upper tail p) 0.5716
P(t < TS) (lower tail p) 0.4284
p for two tailed ¢ test 0.8568
Difference D = X — uo —-0.02579
Lower 95% confidence limit for D -0.3116
Upper 95% confidence limit for D 0.2600

Conclusion: Consider accepting equality of means

The analysis begins by performing a Shapiro-Wilks test to see if the sample can be regarded as normally
distributed using the sample estimates for both the mean and the standard deviation. This test is less powerful
than the one sample t test and, if it rejects the null hypothesis of an arbitrary normal distribution, the subsequent
results can be ignored. Clearly, there is no evidence to support rejection of the hypothesis of an arbitrary
normal distribution. The further analysis goes on to examine the size of the difference between the sample
mean X and the theoretical mean p, given the sample variance estimate, using the 7 distribution, and concludes
that the data do appear to be normally distributed with mean close to g = 0, as the two tail p value is 0.8568.

In order to appreciate the sensitivity of this test to the assumed value for p, you should repeat the test using
a different value for the theoretical mean, say po = 1 for instance, which leads to the next results.
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One sample ¢ test

Number of of x-values 50
Number of degrees of freedom 49
Theoretical mean (uo) 1
Sample mean (x) —-0.02579
Standard error of mean (SE) 0.1422
TS =(x—pup)/SE -7.214
P(t > TS) (upper tail p) 1.0000
P(t < TS) (lower tail p) 0.0000
p for two tailed ¢ test 0.0000
Difference D = x — uyo -1.026
Lower 95% confidence limit for D -1.312
Upper 95% confidence limit for D -0.740

Conclusion: Reject equality of means at 1% significance level

Obviously the Shapiro-Wilks test result is unchanged, but now the lower tail p value strongly indicates that
the sample is shifted to the left of a normal distribution with u = 1, and the two tail p value, which is twice
the lesser of the upper and lower tail probabilities, clearly rejects the null hypothesis Hy : o = 1.

The following graph makes it clear why Hy : ro = 1 was rejected.

Sample and Theoretical Distributions
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4.2.3 1-sample Kolmogorov-Smirnov test

The Kolmogorov-Smirnov nonparametric test is used to check if a sample is consistent with a known continuous
distribution. It is most powerful with large samples from such a distribution when the true parameters are
known, and is much weaker if parameters have to be estimated from the sample, or if a discontinuous
distribution is to be considered.

To be precise, the user has a sample (i.e. vector X) of n observations
X = (.XI,.XZ, e 7-xn)

and wishes to test if these numbers are consistent with a known distribution, where the parameters have been
previously estimated with great precision from an independent very large sample, or are known due to further
information. Preferably the data should cover a wide range and n should not be too small, say n > 20 ?

The test is based upon the largest vertical distance where the sample cumulative exceeds the theoretical
distribution (D+), the largest vertical distance where the theoretical distribution exceeds the sample cumulative
distribution (D —-), or the the maximum of these (D = max(D+, D—)). The standardized Z values are defined
as Z = D+/n, and SIMF[T calculates exact p for small samples, but uses a series expansion for Z with large
samples.

Choose [A/Z] from the main SIMF[T menu, open program simstat, select statistical tests, then choose the
1-sample Kolmogorov-Smirnov test. First of all select to test for a uniform distribution U(A, B) with A =0
and B = 2 to get the following results.

Kolmogorov-Smirnov one sample test 1: Uniform(A,B)

Data: test file g08cbf.tf1 (Kolmogorov-Smirnov 1-sample test)
Parameters fixed by user: A=0,B=2

Sample size = 30, i.e. number of x-values

Hy: F(x) equals G(y) (x and theory are comparable) against
H,: F(x) notequal to G(y) (x and theory not comparable)
D  0.2800
VA 1.534
p 0.0143 Reject Hy at 5% significance level
Hj: F(x) > G(y) (x tend to be smaller than theoretical)
D  0.2800
VA 1.534
p 0.0071 Reject Hy at 1% significance level
Hjs: F(x) < G(y) (x tend to be larger than theoretical)

D 0.02333
Z  0.1278
p  0.5000

Here F(x) is the sample distribution while G (y) is the theoretical distribution, and these figures are interpreted
as follows. The three D values were

D+ =10.28
D~-=0.02333
D =0.28

and the three cases are therefore as follows.

1. Reject Hy against H; as a two-tail test indicates F(x) and G(y) are unlikely to be equal (p = 0.0143).
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2. Reject Hy against H, as a one-tail test indicates that F'(x) is more likely to be larger than G(y) than to
be equal to it (p = 0.0071).

3. Do not reject Hy against H3 as a one tail test offers no support for the case that F(x) is smaller than
G(y) (p=0.5).

These results clearly reject the case F(x) = G(y), in favor of Hy, i.e. that x values tend to be smaller than y
values, indicating that the sample cumulative distribution was heavily displaced to the left of the theoretical
distribution. To confirm this interpretation visually we can plot the sample cumulative distribution and
theoretical distribution as in the next graph.

Kolmogorov-Smirnov test for U(0,2)
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The sample values

Having rejected the null hypothesis Hy: the sample is distributed as U(0, 2), we can try another theoretical

distribution.

So, in this next case, we proceed to test the null hypothesis that the theoretical distribution is normal with
parameters u = 0.6967 and o> = 0.2564 as estimated from the sample. We conclude that this cannot be
rejected and that the sample distribution is close to the theoretical distribution, as displayed graphically.
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Kolmogorov-Smirnov one sample test 2: Normal(u, o-%)

Parameters estimated from sample are:

u =6.967E-01, se = 9.244E-02, 95%confidence limits = (5.076E-01, 8.857E-01)

o =5.063E-01, 0% = 2.564E-01, 95%cl = (1.626E-01,4.633E-01)

Hy: F(x) equals G(y) (x and theory are comparable) against
H,: F(x) notequal to G(y) (x and theory not comparable)

D 0.1108
Z 0.6068
p 08162
H: F(x) > G(y) (x tend to be smaller than theoretical)
D 0.1108
V4 0.6068
p  0.4081
H3: F(x) < G(y) (x tend to be larger than theoretical)
D 0.08753
VA 0.4794
p  0.4801
Shapiro-Wilks normality test (Note: Bonferronin > 2):
w 0.9529

)2 0.2019 Tentatively accept normality

Kolmogorov-Smirnov test for N(u,crz)
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The sample values

Note that SIMF[T often presents the results from several tests at the same time, which is convenient for
preliminary data investigation but not for precise analysis. Which is why, as in the last table, hints about the

Bonferroni correction are frequently given.
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4.2.4 1-sample Shapiro-Wilks test

Of the many tests for normality, the Shapiro-Wilks test is usually recommended to check if a sample is
consistent with a normal distribution, and it leads naturally to the normal scores plot which is a convenient
technique to examine normality graphically.

To be precise, the user has a sample (i.e. vector X) of n observations
X = (x1,X2,...,Xn)

and wishes to test if these numbers are consistent with a normal distribution, where the parameters have been
previously estimated with great precision from an independent very large sample, or are known due to further
information. Preferably the data should cover a wide range and n should not be too small, say n > 20 ?

There are many statistical methods provided by SIMF[T program normal for doing this as now summarized.

* Kolmogorov-Smirnov
This only has advantages in the case when both parameters are known, and not estimated from the
sample.

* One sample t
This always uses the sample variance, and also is best when the true mean is known in advance.

e Chi-square
This is also a rather poor test, especially if the expected values are estimated from the sample.

 Shapiro-Wilks
This is now generally thought to be the best all purpose test where parameters are estimated from
the sample, but it does require intensive computation which can limit the maximum value of n, e.g.
n < 5000 in StMF{T.

In addition there are the following graphical methods.

* Histogram
This can easily be done, but SIMF[T can also be used to rationalize the situation by analyzing the data
after transformation to U(0, 1), as it is somewhat easier to detect deviations of a histogram from the
case where all cells have equal expected frequency from one where a bell-shaped curve is anticipated.

* Cumulative distribution
This is much better than a histogram, as histogram shape depends on the number of bins whereas the
sample cumulative distribution is of fixed shape.

* Normal scores
The n values that can be calculated to divide a standard normal cumulative distribution into n + 1
sections, each of area 1/(n+1), are referred to as normal scores. A plot of sample scores against normal
scores should be close to a straight line, and is widely recognized as the best plot for detecting departure
from normality. A variant is the half normal plot, where negative values are changed in sign, and this
is usually preferred for testing that residuals from regression do not differ too widely from normality.

In the case of mixtures of normal distributions there are dedicated statistical tests, but SIMF[T program gnfit
also provides the ability to fit histograms or cumulative distributions if the sample size is very large, and the
distributions well separated. The advantage here is that the SIMF[T graphical deconvolution technique can be
used to display how the distribution is made up from sums of normal distributions.

Here is the conclusion from program normal and the test data normal.tf1 provided, which establishes that
a normal distribution cannot be rejected, as the Shapiro-Wilks test statistic is W = 0.9627 with p = 0.1153,
i.e. close to W = 1, which indicates strong correlation between the sample scores and normal scores.
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Ordered Values

Ordered Absolute Values

-1.0

-2.0

3.0 1 1 1 1 1

Normal distribution test

Data: Test file normal.tf1 with 50 pseudo-random numbers
Shapiro-Wilks statistic W 0.9627
Significance level for W 0.1153
Conclusion: Tentatively accept normality

Normal Scores Plot: r = 0.9851
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4.2.5 1-sample Poisson distribution test

The situation envisaged is where a user has a set counts of nonnegative integers and wishes to see if the
frequencies observed are consistent with a Poisson distribution with parameter A. In SIMF]T this can be done
using a chi-square test, a dispersion test, a Fisher exact test, or a Kolmogorov-Smirnov test.

From the StMF[T main menu choose [A/Z], then program binomial, and select the option to test for a Poisson
distribution. The most widely used test is a chi-square test so this is done first, choosing to use the sample
estimate of A = 1.1 instead of the current fixed value of 2, and opting for a minimum of 5 counts per bin,
leading to the next results.

Chi-square test for P(1) with 1 = 1.1

Hy: Poisson distribution for data with title:
Test file Poisson. tf1: 40 random numbers
Sample estimate used in chi-square test

Sample estimate for A 1.100
Lower 95% confidence limit 0.7993
Upper 95% confidence limit 1.477
Mean of x-values 1.100
Variance of x-values 0.8103
Standard deviation of x 0.9001
Mean using fixed A 2.000
Poisson dispersion value D 28.73
P(x* = D) 0.8863
Number of partitions (bins) used 3
Number of degrees of freedom 1
Chi-square test statistic C 5.857
P(x*=C) 0.0155  Reject Hy at 5% level
Upper tail 5% critical point 3.841
Upper tail 1% critical point 6.635

Now it should be emphasized that the chi-square test is an approximate test, as the test statistic only becomes
asymptotic to a chi-square variable with large samples. Further, if any cells have a small frequency, say < 35,
it is usually recommended to combine adjacent bins until this is the case. That is why choosing a minimum
frequency of 5 resulted in only 3 bins. If the test is now repeated on the same data but choosing a minimum
frequency of 3 the next results are obtained.

Number of partitions (bins) used 4
Number of degrees of freedom 2

Chi-square test statistic C 5.858
P(x* > C) 0.0535  Consider accepting Hy
Upper tail 5% critical point 5.991
Upper tail 1% critical point 9.210

It should be noted that by simply changing the number of bins from 3 to 4 a rejection (p = 0.0155) becomes
an acceptance (p = 0.053), which should serve to emphasize how the outcome of such chi-square tests depend
on the number of bins.

A classical example is the famous data collected by von Bortkiewicz for 0, 1, 2, 3, or 4 deaths per year by
horse kick in the Prussian cavalry during the period 1875 - 1894 for 10 groups, as this is a typical example of

using the Poisson distribution to model rare events.

The 200 frequencies recorded are contained in the test file poisson.t£f2 as follows
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Deaths 0

Frequency | 109

65 | 22

leading to the result, shown below, that p = 0.8506, so that the null hypothesis of a Poisson distribution with
A =0.61 cannot be rejected.

Chi-square test for P(1) with A =

0.61

Hy: Poisson distribution for data with title:
Death from horse kicks in Prussian cavalry 1875-1894
Sample estimate used in chi-square test

Sample estimate for A

Lower 95% confidence limit
Upper 95% confidence limit
Mean of x-values

Variance of x-values

Standard deviation of x
Number of partitions (bins) used
Number of degrees of freedom
Chi-square test statistic C
P(x*>C)

Upper tail 5% critical point
Upper tail 1% critical point

0.6100
0.5066
0.7283
0.6100
0.6110
0.7816
4

2
0.3235
0.8506
5.991
9.210

Consider accepting Hy

The observed and expected values used in this test are displayed below.

O/E Frequencies

120

100

80

60

40

20

x2 Bins for A = 0.61

Bin number
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The Fisher Exact test will frequently fail with large or aberrant data sets and this will be indicated when it
happens, but the dispersion test can always be used to test for data that are too uniform or too clustered to be
from a Poisson distribution. This is used to study clumping of objects studied microscopically, and similar
situations concerning spatial or temporal distributions of counts. Consider, for instance, the analysis of this
data set contained in the test file poisson.tf3.

Counts | O | 1| 2|3 |4 |5|6|7|8|9]10
Frequency |0 |2 | 10| 0|00 |1 |2|9]|1] 5

Dispersion and Fisher-exact Poisson tests
Bonferronin =2
Data: Poisson clumping data

Sample size 30

Sample total 173

Sample sum of squares 1333

Sample mean 5.767

Lower 95% confidence limit 4.939

Upper 95% confidence limit 6.693

Sample variance 11.56 Too large ?
Dispersion (D) 58.16

P(x* > D) 0.00104  Reject Hy at 1% sig.level
Number of degrees of freedom 29

Fisher exact probability 1.00000

IFAIL = 1: Fisher p is only an upper bound

In a Poisson distribution the mean is equal to the variance, and a variance much less than the mean suggests
a distribution that is too uniform, while a variance exceeding the mean could indicate clustering, as will be
clear from the results above and the following plot.

Using Poisson D to lllustrate Clustering
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4.2.6 2-sample Unpaired t test

The unpaired 7 test is used to see if it is reasonable to conclude that two sets of independent observations have
the same population means. It is based on the assumptions that

* Both samples are normally distributed
* Both samples have the same variance

* Both sample sizes are greater than 1 (and preferably very much greater)

and hence it is equivalent to analysis of variance (ANOVA) with just two columns.

To be precise, the user has two samples (i.e. vectors X and Y) with m and n observations

X= (xl7-x2""7xm)
Y= ()71»)’2’-'-’)’11)

and wishes to test the null hypothesis that the samples have the same population means, u, and uy, against
the alternative hypothesis that they are not equal, or possibly the one-sided alternatives. That is

Ho @ pix = pty
Hy:px # py
Hy :py > py
H3:py < py

and SiMFTT provides all the information that is required to perform such tests.
From the main SIMF[T menu select [A/Z], choose to open program ttest, then analyze the test files provided.

The first choice offered is to test for a normal distribution and equal variances and, if these are chosen, we get
the following analysis.

Normal distribution test 1

Data: X-data for ¢ test

Shapiro-Wilks statistic W 0.9539

Significance level for W 0.7146 Tentatively accept normality

Normal distribution test 2

Data: Y-data for t test

Shapiro-Wilks statistic W 0.9360

Significance level for W 0.5089 Tentatively accept normality

This informs us that the Shapiro-Wilks test does not provide any evidence to reject the assumption that both
samples are normally distributed. However, this test should only be used if both m and n are sufficiently large,
say m,n > 20, so in this case we should really have chosen not to do Shapiro-Wilks tests.

Then a F test for equality of variances is carried out, yielding the next results.
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F test for equality of variances

X-data: Test file ttest.tf2: for paired t test with TTEST.TF3

Number of x-values 10
Mean x 14.80
Sample variance of x 21.96
Sample standard deviation of x 4.686

Y-data: Test file ttest.tf3: for paired r test with TTEST.TF2

Number of y-values 10
Mean y 16.10
Sample variance of y 24.54
Sample standard deviation of y 4.954
Variance ratio VR 1.118
Degrees of freedom (numerator) 9
Degrees of freedom (denominator) 9

P(F > VR) 0.4354
Two tail p value 0.8708

Conclusion: Consider accepting equality of variances

Again, although this does not reject equality of variances, it should be pointed out that this test is only reliable
with large samples, say m,n > 50 and should not have been performed with such small samples. It is
anticipated that, for routine analysis with small samples, the Shapiro-Wilks and variance ratio tests would be
switched off.

Finally, the unpaired 7 test yields the following results.

Unpaired ¢ test ([ ] = corrected for unequal variances)

Number of x-values 10

Number of y-values 10

Number of degrees of freedom 18 [ 18]
Unpaired ¢ test statistic U -0.6029  [-0.6029]
P(t = U) (upper tail p) 0.7229  [0.7229]
P(t < U) (lower tail p) 0.2771  [0.2771]
p for two tailed ¢ test 0.5541 [ 0.5541]
Difference between means DM —1.300

Lower 95% confidence limit for DM —5.830 [ -5.830]
Upper 95% confidence limit for DM 3.230 [ 3.230]

Conclusion: Consider accepting equality of means

Note that p values are given for either two-tailed or one-tailed testing, but this is just for convenience as users
should have decided in advance which p value to accept, or in doubt would usually just rely on the two-tailed
test.

For situations where there is doubt about variance equality, corrected values are given, but in this case where
the sample size is small and the data are actually paired, correction is not required. Provided that deviations
from normality and variance equality are fairly small, the unpaired 7 test has been claimed to be reassuringly
robust. However this does not mean that using sample sizes much less than 10 is acceptable.

To explore these last points note that SIMFT can calculate power as a function of sample size and, in addition,
has extensive facilities to explore particular situations concerning sample size, deviations from normality, and
variance inequality by simulation.
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4.2.7 2-sample Paired t test

The paired ¢ test should not be viewed as an alternative to the unpaired ¢ test. It is used to see if it is
reasonable to conclude that the mean of the differences between two sets of dependent observations is zero in
the poulations, and the null hypothesis is based on the following assumptions.

* The pairwise differences are normally distributed

* The mean of the pairwise differences is zero

* The sample sizes are equal and greater than 1 (and preferably very much greater)
* The samples are pairwise dependent, i.e. highly correlated

For instance, the columns could be repeated observations of blood pressure on the same set of subjects, before,
then after treatment.

The paired ¢ test is equivalent to repeated analysis of variance (ANOVA) with just two columns if the samples
are normally distributed with the same variance. Alteratively, as the test is only examining the hypothesis
that a single sample of differences is normally distributed with zero mean, and variance estimated from the
sample, it can be viewed as a one sample 7 test.

To be precise, the user has two samples (i.e. vectors X and Y) with n observations

X = (x1,x0,...,Xn)

Y= ()’]7)’2"-'»)’11)

and wishes to test the null hypothesis that the samples have the same zero differences, against the alternative
hypothesis that they are not equal, or possibly the one-sided alternatives. That is

Hy: x; =y;
Hi: xi #yi
Hy: xi >y
H3: x; <y

and SiMFTT provides all the information that is required to perform such tests.

It is important to emphasize the difference between a paired and an unpaired 7 test, so that it will not be
mistakenly assumed that the choice between them is arbitrary. For instance, given two random variables X
and Y, then the expectation and variance of the difference is as follows.

E(X-Y)=E(X)-E(Y)

VIX-Y)=V(X)+V(Y)-2CV(X,Y)
When the samples are uncorrelated the covariance CV(X,Y) would be zero, so that the variance of the
difference only depends on the variance of X and Y. However, the paired hypothesis under consideration

would be consistent with a strong positive correlation between X and Y, so that the covariance term would
make the variance of the difference smaller.

In the case of the unpaired ¢ test, the test statistic is
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which is ¢ distributed with m + n — 2 degrees of freedom under the unpaired ¢ test null hypothesis. Here x
and y are sample means, and the pooled estimate of variance is expressed in terms of the independent sample
variance estimates s> and si as

5 (m—1)s2+(n— 1)s§

s
p m+n-2

The paired ¢ test is quite different. It uses the paired differences d;, the mean difference d, and the variance
estimate for the differences sfl to define the test statistic 4, defined as follows

3= d=dP =)
i=1

__d
td—\/sz7

which is 7 distributed with n — 1 degrees of freedom under the paired ¢ test null hypothesis. It therefore makes
allowances for the strong correlation between the two samples.

From the main StMF]T menu select [A/Z], then choose to open program ttest, and perform a paired 7 test to
obtain the following results.

Paired 7 test

Number of paired comparisons 10
Number of degrees of freedom 9
Paired 7 test statistic S —-0.9040
P(t>S) 0.8052
P(t<S) 0.1948
p for two tailed t test 0.3895
Mean of differences MD —1.300

Lower 95% confidence limit for MD  —4.553
Upper 95% confidence limit for MD 1.953
Conclusion: Consider accepting Hy : MD =0

Note that the paired ¢ test only requires that the differences x; — y; are normally distributed with zero mean,
and the requirement for X and Y to be both normally distributed with the same variance, is not so strictly
required. Nevertheless, as discussed for the unpaired ¢ test, the Shapiro-Wilks and variance ratio tests are
provided to explore the distribution of the observations if that is thought necessary, but they should only be
used routinely for large samples, say n > 50.
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4.2.8 2-sample Kolmogorov-Smirnov test

The Kolmogorov-Smirnov two sample nonparametric test can be used to examine if it is reasonable to conclude
that two sets of independent observations have the same unknown distribution. It is based on a test statistic
estimated from the largest differences between the two sample cumulative distributions.

To be precise, the user has two samples (i.e. vectors X and Y) with m and n observations

X= (xl7-x2""7xm)
Y= ()’l»yz’-'-’)’n)

and wishes to test the null hypothesis that the samples have the same distribution, against the alternative
hypothesis that they are not equal, or possibly the one-sided alternatives. That is

Ho: F(x) =G(y)
Hy:F(x) #G(y)
Hy: F(x) > G(y)
Hs: F(x) <G(y)

and SiIMF]T provides all the information that is required to perform such tests.

From the main SIMF[T menu select [A/Z], choose to open program rstest, then analyze the test files provided
to obtain the following results.

Kolmogorov-Smirnov two sample test 1

X-data: Test file ttest.tf2: for paired ¢ test with TTEST.TF3
Y-data: Test file ttest.tf3: for paired ¢ test with TTEST.TF2

X sample size 10

Y sample size 10

Hy: F(x) is equal to G(y) (x and y are comparable) against
H,: F(x) notequal to G(y) (x and y are not comparable)

D  0.2000
Z 0.08944
p  0.7869
H>: F(x) > G(y) (x tend to be smaller than y)
D  0.2000
Z 0.08944
p  0.3935
Hj: F(x) < G(y) (x tend to be larger than y)
D 0.1000
Z 0.04472
p  0.4972

The test statistic uses D, which would be either the largest difference where F(x) > G(y), D,,, the largest
difference where F(x) < G(y), D, or the maximum of these, D, = max(D,,, D), and is defined as

7 = mn

m+n

This test is very weak unless the distributions are continuous and the sample sizes fairly large, so it is not
surprising that the first example does not lead to a rejection of the null hypothesis. However, the next example
compares data from two test files, normal.tf1l with 50 pseudo random numbers from a normal distribution
with u = 0 and o = 1, and normal. tf2 with 50 pseudo random numbers from a normal distribution with
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u = 1and o = 2. The plot confirms very convincingly the table results, that identical distribution can be
rejected in favor of the alternative hypothesis that X < Y, but not in favor of the alternative that X > Y.

Sample Cumulative Distributions

Kolmogorov-Smirnov two sample test 2

1.0

0.8

0.6

0.4

0.2

0.0

X-data:Test file normal.tf1: mean = 0, standard deviation = 1
Y-data:Test file normal.tf2: mean - 1, standard deviation = 2
X sample size 50
Y sample size 50
Hy: F(x) is equal to G(y) (x and y are comparable) against
H,: F(x) notequalto G(y) (x and y are not comparable)

D  0.3600

Z 0.07200

)4 0.0013 Reject Hy at 1% significance level
Hj: F(x) > G(y) (x tend to be smaller than y)

D  0.3600

Z 0.07200

p 0.0007 Reject Hy at 1% significance level
Hj: F(x) < G(y) (x tend to be larger than y)

D 0.06000
Z 0.01200
p  0.4989

Kolmogorov-Smirnov Two Sample Test

L normal.tfl

normal.tf2

Values
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4.2.9 2-sample Mann-Whitney U test

The Mann-Whitney U test is a sort of nonparametric equivalent of the unpaired 7 test that is used to examine
the relative size of observations in two data sets, say X and Y without assumptions about the distributions.

To be precise, the user has two samples (i.e. vectors X and Y) with m and n observations

X = (x19x27 s »xm)

Y= (y1,2, -5 Vn)

where the ranks of the two sets of observations within a combined, i.e. pooled, data set can be consulted to
see if is is reasonable to conclude that either

* data values in both samples are similar,
* data values in sample X tend to be smaller than those in sample Y, or
* data values in sample X tend to be larger than those in sample Y.

The test is weak unless large samples are used, and is further weakened by ties within the data, that is, multiple
observations with the same value.

From the main SIMF[T menu select [A/Z], choose to open the SIMF[T nonparametric testing program rstest,
then analyze the test files provided to obtain the following results.

Wilcoxon-Mann-Whitney U test
X-data: g08ahf.tf1 (Mann-Whitney U test)
Y-data: g08ahf.tf2 (Mann-Whitney U test)

X sample size 16
Y sample size 23
U 86.00
Z -2.804

Hy: F(x) is equal to G(y) (x and y are comparable)
as null hypothesis against the alternatives:-
H,: F(x) is not equal to G(y) (x and y not comparable)

p 0.0050 Reject Hy at 1% significance level
Hj: F(x) > G(y) (x tend to be smaller than y)

p 0.0025 Reject Hy at 1% significance level
Hj3: F(x) < G(y) (x tend to be larger than y)

p 0.9977

Note that U is the Mann-Whitney test statistic which is used to calculate an exact p value, while Z is an
approximately normal test statistic and, using SIMF[T program normal, we find that P(Z < —2.804) = 0.0025.

To understand how to interpret the meaning of the above two-tail and one-tail test statistics you can just look
at a table of frequencies. This is easily constructed using SIMFTT program editmt to rearrange the samples
into increasing order as follows, where bracketed values are frequencies.

X 6(1) 7(5) 8(2) 9(1) 10(3) 11(0) 12(2) 13(1) 14(0) 15(0) 16(1) 17(0)
Y 6(1) 7(0) 8(2) 9(0) 10(4) 11(2) 12(4) 13(3) 14(3) 15(3) 16(0) 17(1)

Alternatively, the frequencies can be plotted, as lines and symbols by first using SIMFJT program makfil to
generate plotting files, followed by SIMFT program simplot to create the following plot which emphasizes
the test results, i.e. the most likely conclusion is that X-sample values tend to be smaller than the Y-sample
values.
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Mann-Whitney U Test Data

Frequencies

6 8 10 12 14 16 18
Values

Using the built-in data editor in simplot to move X leftwards and Y rightwards to prevent overlapping, then
replacing symbols by bars and suppressing the lines gives the next alternative way to plot the data.

Mann-Whitney U Test Bar Chart

X Sample

Y sample

Frequencies

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Values
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4.2.10 2-sample Wilcoxon signed rank test

The Wilcoxon signed rank test is a sort of nonparametric equivalent of the paired ¢ test that is used to examine
the differences between matched observations in two data sets, say X and Y, just assuming a symmetrical, but
unspecified, distribution for the paired differences.

To be precise, the user has two samples (i.e. vectors X with median X,,,.4, and Y with median Y,,.4) with n
observations, and specifies a hypothetical median for the paired differences, say D .4, that generates a vector
of signed differences d; = x; — y; defined by

X = (.XI,.XZ, e 7-xn)

Y= (V1,25 Vn)
D = (dy,dy,...,dy).

Users have to decide whether to include or discard zero differences, and whether to change the default median
difference of D,eq = 0 to D,eq = k for some hypothetical k, then analysis of the signed differences is
performed to test if it is reasonable to conclude that either

* both samples have the same population median,
¢ the population median for sample X is smaller than that for sample Y, or
e the population median for sample X is larger than that for sample Y.

The test is weak unless large samples are used, and is further weakened by ties within the data, that is, multiple
observations with the same value.

From the main StMF[T menu select [A/Z], choose to open the SIMF[T statistics program simstat, then the
standard tests option to analyze the test files provided. Choosing a specified zero median and opting to
suppress zero differences yields the following results.

Wilcoxon paired-sample signed-rank test

Zero differences suppressed, median test value = 0

X-data: test file g08agf.tfl

Y-data: test file g08agf.tf2

Size of data = 8, Number of values suppressed = 0
w  32.00
V4 1.890

Hy: X median = Y median

as null hypothesis against the alternatives:-

H|: Medians differ

p 0.0547
H>: X median < Y median
p 0.9805

Hj3: X median > Y median
p 0.0273 Reject Hy at 5% significance level

In this example there were no zero differences to reject, and here W is the signed ranks test statistic, while Z
is an approximate normal test statistic. Using SiMF[T program normal, we find that P(Z > 1.89) = 0.0294.
In order to make the interpretation of this test as clear as possible, especially the effect of the value chosen
for Dyyeq, the results from sequential analysis of data in SIMFT test files wilcoxon.tf1l and wilcoxon.tf2
using two different values of D4 = 0 then D4 = —2 are displayed next.
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Wilcoxon paired-sample signed-rank test 1 and test 2
Median test value = 0
X-data: test file wilcoxon. tfl
Y-data: test file wilcoxon.tf2
Size of data = 50, Number of values suppressed = 0
W  306.0
Z -3.195
Hy: X median = Y median
H|: Medians differ
p 0.0011 Reject Hy at 1% significance level
H>: X median < Y median
p 0.0005 Reject Hy at 1% significance level
H3: X median > Y median
p 0.9995

Median test value = -2
w 783.0
Z 1.400
Hy: X median =Y median
H: Medians differ
p 0.1629
H>: X median < Y median
p 0.9200
Hj;: X median > Y median
p 0.0815

The following graph shows that, although X and Y do appear to be matched, the difference is mostly around
—2, which explains why D .4 = 0 is rejected, but D,,,.q = —2 is not rejected, emphasizing the importance of
choosing D4 sensibly on the outcome of this test.

Data for Wilcoxon Signed Rank Test
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4.2.11 Chi-square test on observed and expected frequencies

The chi-square test on observed and expected frequencies is based on forming a test statistic that, in the limit
of a very large sample size, becomes asymptotic to a chi-square distribution, with the number of degrees of
freedom dependent on the number of categories, and also on the number of parameters estimated from the
sample.

To be precise, it is assumed that the user has counted the frequency of occurrence of k observations partitioned
into n categories with O; in category 7, and also knows the frequencies E; expected under the null hypothesis
that the observations are consistent with the expected frequencies given by the assumed distribution. This
allows the calculation of C defined as

_ 2 _ 2 _ 2
— (01 El) + (02 E2) bt (On En)
E; E, E,

which has an approximate chi-square distribution with v degrees of freedom given by

C

v=n—-1-m

where v > 2, and m is the number of parameters estimated from the sample. The reason for subtracting 1 + m
from n to get the degrees of freedom will be clear by considering the identity

n n
D Ei=>0i=k
i=1 i=1

which reduces the effective numbers of terms in the calculation of C to n— 1. Similarly, every further equation
of constraint can be considered to reduce by one the effective number of terms in the calculation of C.

It is usually recommended that the expected values are at least 5 and, if this cannot be realized, then categories
could be combined until this condition is met. Alternatively, if the total number of observations is k as above,
and the number of categories is not fixed by other considerations, then the number of bins n used to partition
the data is sometimes suggested as

n~ k04,

but obviously this all depends on the shape of the assumed distribution.

To illustrate this test consider the next table, which records the results from one hundred observations on the
number of heads resulting from tossing five different coins. Clearly there are six categories, as the number of

heads per toss of the five coins can only be 0, 1,2, 3,4, or 5, but note that 10094 ~ 6 anyway in this case.
Number of Heads 0 1 2 3 4 5
Observed 3 16 36 32 11 2
Expected 40| 179 | 326 | 296 | 135 | 24

There were 238 heads in all from the total of 500 tosses, so the expected frequencies were calculated using
a binomial distribution with binomial N = 5 and estimated parameter p = 238/500 = 0.476, and therefore 4
degrees of freedom.

Choose [A/Z] from the main SIMF[T menu, open program chisqd, select chi-square test on observed and
expected frequencies, then analyze the above data contained in the test files chisqd.tf2 and chisqd.tf3,
with one parameter estimated from the sample to get these results.

Number of partitions (bins) 6

Number of degrees of freedom 4

Chi-square test statistic C 1.531

P(x*>C) 0.8212  Consider accepting HO
Upper tail 5% critical point 9.488

Upper tail 1% critical point 13.28
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SimFqT first displays a warning that the expected frequencies for 0 and 5 heads are below 5, and so these two
categories could be combined if it was thought necessary. However, in this case the p value of 0.8212 is
much larger than 0.05, so the conclusion is that the null hypothesis of a binomial distribution with parameters
N =5, and p = 0.476 cannot be rejected.

Note that SIMF]T also lists the 1% and 5% upper tail critical points, as this is how the test results were analyzed
in the past by looking up tables of critical points, before the availability of computers made this unnecessary.

The most widely used technique to display the agreement between the observed and expected frequencies is
a bar chart, as in the next figure.

Observed and Expected Frequencies
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4.2.12 Contingency table analysis

A contingency table is an array of nonnegative frequencies with n rows and m columns, such as this table
contained in SIMF]T test file chisqd. tf4, for 15 observations carried out on two populations to test for equal
probabilities of success.

Success  Failure
Sample 1 3 3 6
Sample 2 7 2 9
10 5| 15

Here, the cell frequencies are (3,3,7,2), the sum of row frequencies known as row marginals are (6,9),
the sum of column frequencies known as column marginals are (10, 5), and obviously the row and column
marginals must separately both add up to the total number of frequencies (15).

To be precise, in the general case there will be frequencies f;; wherei =1,2,...,n,and j = 1,2,...,m, and
it is wished to test for homogeneity, i.e. independence, or no association between the variables, which can be
stated as the null hypothesis

HO:,uij:,ui./J.jy fori = 1,2,...,n,andj= 1,2,...,m

where each cell probability y;; is completely determined by the corresponding row marginal y; , and the
column marginal y ;. To examine a given data set SIMF[T provides the following three alternatives.

1. The chi-square test.
This is the easiest to perform and and interpret, and is the test most generally used. However, it must be
emphasized that the test statistic is only asymptotically distributed as chi-square with (n — 1)(m — 1)
degrees of freedom in the limit for large samples. Where there are small frequencies the option to
combine cells should be considered, and note that the Yate’s continuity correction may be used where
appropriate.

2. The Fisher exact test.
This is very powerful and widely used, but sometimes suffers from being difficult to interpret with large
samples, which also may lead to computational problems.

3. The loglinear contingency table analysis.
This uses general linear modeling assuming a Poisson error distribution and log link, but it does require
some expertise on the part of users.

Choose [A/Z] from the main SIMF[T menu, then open SIMF[T program chisqd.
Chi-square contingency table test
For all tables, SIMF]T calculates a chi-square test statistic C from the observed frequencies f;;, and expected

frequencies ¢;;, and also a likelihood ratio test statistic L defined in terms of the expected values ¢;; and
marginals f; and f; as follows

eij = fi.fjIN
n m (ﬁj _el_j)z
c= 35 Yuenr
i=1 j=1 J
L=-2logAd

23 fitogtifer)

i=1 j=1
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It is often recommended to combine cells where the expected values are small, say e;; < 0.5, and this facility
is provided.

Select chi-square contingency table analysis, then analyze the above data which leads to calculation of the
approximate chi-square test statistic with the Yate’s continuity correction

_ NAfufo = faful - N/2)?

rirncica

c

for this 2 by 2 contingency table, where N is the sum of frequencies f;;, r; are the row marginals, and c; are
the column marginals, leading to the following results, which do not suggest rejecting Hy.

Number of rows 2
Number of columns 2
chi-square test statistic C 0.3125
Number of degrees of freedom 1
P(x*>0) 0.5762
Upper tail 5% point 3.841
Upper tail 1% point 6.635
L =-2log(1) 1.243
P(x*> L) 0.2649

Fisher exact test

For 2 by 2 contingency tables, and N < 100, tables like the following are also displayed.

Observed Rearranged so r; = smallest marginal,c, > ¢

3 3 3 2

7 2 3 7

p(r) p for fi1 = r after rearranging and adjusting
p(0) 0.041958

p(1) 0.251748

p(2) 0.419580

p(3) 0.239760 p(x), observed frequencies
p(4) 0.044955

p(5) 0.001998

P_sums, 1-tail and 2-tail test statistics

P_sum1 0.041958 sumof p(r) < p(x) forr <3
P_sum2 0.953047 sumofall p(r)forr <3
P_sum3 0.286713 sumofall p(r) forr > 3
P_sum4 0.046953 sumof p(r) < p(x) forr >3
P_sum5 1.000000 P_sum2 + P_sum4

P_sum6 0.328671 P_sum1 + P_sum3

For convenience, this test starts by rearranging the data table until r; is the smallest marginal and ¢, > cj.
Then all hypothetical tables that are possible with the same marginals are considered, but now for r = fj; for
r=0,1,...,r as follows, where the observed frequencies are indicated by stars (*).

0O 5{1 4|2 3|3 2|4 1|5 0
6 4|5 5|4 6|3 7|2 8|1 9

Assuming the null hypothesis, the probabilities p(r) for tables with fj; = r are then calculated for a
hypergeometric distribution using
r !VQ!C] !6‘2!

B Sirlfar!l fia! f2IN!

p(r)



Contingency table analysis 109

With the tables under consideration it is clear that, had the outcome been as for the hypothetical tables
indicated by p(0), p(4), or p(5) then the possibility of rejecting Hy would have to be considered. However,
the current data p(3), indicated by p(x) would be accepted, as for the chi-square test on the same data. With
less obvious results, various one-tailed and two-tailed tests can be based on considering probabilities for more
extreme contingency tables, or sums of such probabilities. As an example consider the following data

Boys Girls
Left-handed 6 (18%) 12 (22%) | 18
Right-handed | 28 (82%) 24 (67%) | 52
34 36 70

and possible hypotheses for this sample
Hy: left-handedness is not less common in boys than girls
H 4: left-handedness is less common in boys than girls.

p(r) p for fi1 = r after rearranging and adjusting
p(0) 0.000000

p(1) 0.000013

p(2) 0.000177

p(3) 0.001436

p(4) 0.007590

p(5) 0.027720

p(6) 0.072572  p(x), observed frequencies
p(7) 0.139338

p(8) 0.198959

p(9) 0.212877

p(10) 0.171062

p(11) 0.102959

p(12) 0.046046

p(13) 0.015082

p(14) 0.003535

p(15) 0.000571

p(16) 0.000060

p(17) 0.000004

p(18) 0.000000

P_Sums, for 1-tail and 2-tail test statistics

P_sumi 0.036936 sumofp(r) < p(x)forr <6
P_sum2 0.109508 sum of all p(r) for r < 6 (one-tailed p)
P_sum3 0.963064 sumofall p(r)forr > 6
P_sum4 0.065297 sumof p(r) < p(x) forr > 6
P_sum5 0.174805 P_sum2 + P_sum4

P_sum6 1.000000 P_sumi + P_sum3

Adding up the probabilities for the observed table p(6) = p(x) and all the possible tables more extreme than
this that would favor H4 against Hy we see that the appropriate one-tailed p value is

p(0)+p(1) +p(2) + p(3) + p(4) + p(5) + p(6) = 0.109508
and so, for this sample with @ = 0.05 we would not consider rejecting Hy.
loglinear contingency table test
The full details for this test will be found in the SIMFT reference manual, but meaningful interpretation of

the results is possible without detailed understanding. Essentially, a statistical model is constructed for the
contingency table with the following characteristics.
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* Best-fit theoretical cell frequencies are calculated using a loglinear model.
* The parameter estimates are displayed along with standard errors and p values.

* Predicted cell frequencies are then compared with the observed data to generate differences, residuals,
and leverages.

* The deviance is calculated, and the chi-square significance reported.

Here are the results for the SIMF]T test data set.

Log-linear contingency table analysis

Data: Test file chisqd.tf4

number of rows = 2, number of columns = 2
Deviance (D) = 1.243, degrees of freedom = 1
P(x* > D) =0.2649

Parameter Estimate Std.Err. Lower 95% Upper 95% p
Constant 1.792 0.380 -3.04 6.62 0.1330 ***
Row 1 -0.4055 0.527 -7.10 6.29 0.5823 ***
Row 2 0.4055 0.527 -6.29 7.10 0.5823 ***
Col 1 -0.6931 0.547 -7.65 6.26 0.4254 ***
Col 2 0.6931 0.547 -6.26 7.65 0.4254 ***

Data Model Delta Residual Leverage

3 4 -1 -0.5234 0.7997

3 2 1 0.6579 0.6005

7 6 1 0.3976 0.8664

2 3 -1 -0.6149 0.7335

The model that is assumed expresses the theoretical cell probability u;; as a constant 6, plus row parameters
@;, column parameters (3 ;, and mixed row-column parameters y;; in the following way

10g#ij = 9+a/,~ +,8j+’yij
where
n m
Z a; = Z'Bj =0.
i=1 Jj=1
The null hypothesis of homogeneity, that is u;; = u; p.;, can then be stated as
Hy: yij=0fori=1,2,...,n,and j = 1,2,...,m

and the deviance measures the extent to which the hypothesis of homogeneity can be supported. Note that
the purpose of starred parameter estimates is simply to warn users about suspiciously large ratios of standard
errors to parameter estimates, i.e. where p > 0.05. Also, with large contingency tables, the ability to plot the
residuals in a variety of ways to visualize goodness of fit is provided.

As before, this test provides no support for rejecting the null hypothesis of homogeneity with these data.
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4.2.13 McNemar test

The McNemar test is used to analyze paired observations of a dichotomous variable, i.e. where there can
only be one of two possible values such as: success/failure, +/-, 0/1, etc. and it is of interest to examine if the
paired values are associated or are independent.

To be precise, consider the possible outcome from testing fifty specimens of sputum cultured on two different

culture media, A and B, with the intention of detecting a particular bacterium. The four possible outcomes
were as follows.

Type Medium A Medium B Number

Both + + 20
A only + - 12
B only - + 2
Neither - - 16

These data can be arranged as a 2 by 2 contingency table, such as this table contained in SIMF{T test file
mcnemar. tfl1.

B+ B- | Total
A+ 20 12 32
A - 2 16 18
Total 22 28 50

Here, the cell frequencies are (f1; = 20, fi2 = 12, fo1 = 2, f»o = 16), the sum of row frequencies known
as row marginals are (32, 18), the sum of column frequencies known as column marginals are (22, 28), and
obviously the row and column marginals must separately both add up to the total number of frequencies
(n =50).

From the main SiMF]T menu choose [Statistics] then [Standard tests] and analyze the above data using the
McNemar option to get the following table.

McNemar test 1
Hy: Expected value of [(f(1,2) - (f(2,1))/n] =0
Title: Data for 2 by 2 McNemar test

Number of rows/columns 2
Chi-square test statistic C 5.786
Number of degrees of freedom 1
P(x*>0C) 0.0162 Reject H at 5% level
Upper tail 5% point 3.841
Upper tail 1% point 6.635

Continuity correction used in chi-square

The frequencies f;; in this table are analyzed by calculating the X test statistic given by

¥ = (Ifiz = ful - 1)?
fo+f

which has an approximate chi-square distribution with 1 degree of freedom. The outcome emphasizes the
obvious fact that culture medium A is more effective than culture medium B.

Note that this test does not perform so well with small frequencies and, in particular, if » = 2 and

Sfiz+ fo1 £20
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a warning will be displayed. In such cases it may be preferable to do a binomial test using N = fi2 + f2
then X = fi or X = f»; to check if p = X/N is consistent with a binomial distribution with parameters N
and p = 0.5. Since in the 2 by 2 case the McNemar test is equivalent to testing if two sample estimates for
a binomial probability parameter differ significantly, we can use SIMF[T to calculate exact 95% confidence
limits as follows

For 2/14: 0.0178 < p =0.1429 < 0.4281
For 12/14: 0.5719 < p = 0.8571 < 0.9822

which convincingly demonstrates the superiority of culture medium A over culture medium B.

To explain the logic behind this analysis, note that the overall proportion of successes with medium A is
(f11 + f12) /n, while the overall proportion of successes with medium B is (f1; + f21)/n, so that the difference
between these estimates for the probability of success depends only on fi2 — f21, and the null hypothesis for
such a 2 by 2 table can be expressed as expectations in several equivalent ways without using the diagonal
frequencies f;; except in the sample size n, such as

H():E(f12 f21)=0, or
Ho E(f”) 1.
o

Note that it is important that tables for the McNemar test are set up correctly to reflect the pairwise nature of
the data, so an additional example is given using data in test file mcnemar . tf2 for the case where medication
A was applied to one arm and medication B to the other arm with subjects suffering from a rash on both arms.

B worked B failed | Total
A worked 11 6 17
A failed 10 24 34
Total 21 30 50
Chi-square test statistic C 0.5625
Number of degrees of freedom 1
P(x*>0) 0.4533  Consider accepting Hy
Upper tail 5% point 3.841
Upper tail 1% point 6.635

The outcome is that there is no evidence to support a significant difference between medications A and B in
this experiment.

More generally, for larger r by r tables with identical paired row and column categorical variables, the
continuity correction is not used, and the appropriate test statistic is

(fij = fii)?
XZ_ZZ flj] +fjjz

i=1 j>i
with r(r — 1) /2 degrees of freedom. Unlike the normal contingency table analysis where the null hypothesis is
independence of rows and columns, with this test there is intentional association between rows and columns.
The test statistic does not use the diagonal frequencies f;; and is testing whether the upper right corner of the
table is symmetrical with the lower left corner. The SIMF]T test file mcnemar. t£3 contains data for a such a
3 by 3 McNemar table.
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4.2.14 Cochran Q test

The Cochran Q test is used to analyze randomized block or repeated-measures observations of a dichotomous
variable, i.e. where there can only be one of two possible values such as: success/failure, +/-, 0/1, etc. and it
is of interest to examine if successive measurements differ significantly.

To be precise, consider the possible outcome from testing eight people exposed to mosquito attacks with five
different types of clothing as follows, where a 1 indicates attacked by mosquitos and a 0 indicates freedom
from attack.

Blocks Groups (Clothing Type)
(Subjects) | Light-loose Light-tight Dark-long Dark-short None
1 0 0 0 1 0
2 1 1 1 1 1
3 0 0 0 1 1
4 1 1 0 1 0
5 0 1 1 1 1
6 0 1 0 0 1
7 0 0 1 1 1
8 0 0 1 1 0

The results for blocks (e.g., subjects) are in rows from 1 to n of a matrix while the attributes, which can
be either O or 1, are in groups, that is, columns 1 to m. So, with n blocks, m groups, G; as the number of
attributes equal to 1 in group i, and B; as the number of attributes equal to 1 in block j, then the statistic Q is

calculated, where
m 1 m
(m-1)|>.G61-—|> G
m
i=1 i=1

- n 1 n R
ZBJ_ZZ;BJ
j=

=1

2

and Q is distributed as approximately chi-square with m — 1 degrees of freedom. It is recommended that m
should be at least 4 and mn should be at least 24 for the approximation to be satisfactory.

For example, open the main SIMF]T menu, select [Statistics], then [Standard tests], and perform the Cochran
Q test on the test file cochrang. tf1 to obtain the results shown below.

Number of blocks (rows) 7 Rows suppressed: 1 (all 0 orall 1)
Number of groups (columns) 5 Columns suppressed: 1 (not data)
Cochran Q value 6.947
P(x*>0) 0.1387
95% chi-square point 9.488
99% chi-square point 13.28

Clearly, the test provides no reason to reject the null hypothesis that the proportion of humans in this study
attacked by mosquitos is the same for all clothing types. Also, note the following facts about the SIMF[T file
format for a Cochran Q test.

1. Rows containing only a 0 or only a 1, like row 2 above, can be included in the data file but they do not
contribute to the analysis.

2. An extra column of successive integers, which must be in order from 1 to n, can be included as a first
column if required to help you identify the subjects in the results file.
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4.2.15 Binomial test

This procedure, based on the binomial distribution, is used with dichotomous data, i.e., where an experiment
has only two possible outcomes and it is wished to test Hy: binomial p = pg for some 0 < pg < 1. For
instance, to test if consecutive outcomes are independent with the same probability, i.e. are Bernoulli trials.

To be precise, you input the number of successes, k, the number of Bernoulli trials, N, and the supposed
probability of success, po, then SIMF[T calculates the probabilities associated with k, N, pg, and [ = N — k,
including the estimated probability parameter p with 95% confidence limits, and the two-tail binomial test
statistic. The probabilities for X equal to the number of successes, which can be used for upper-tail, lower-tail,
or two-tail testing are

p=k/N
P(X =) = (],Z)pkm N
NN .
Pacn= Y (Y)pra-pr
i=k+1
S .
Poc <=3 o= p
i=0

pec=n=(Y)pra-p¥

NNy .
P(X>D= ) (l.)p‘(l -
i=l+1
-1
PX<D =3 (’l.v)p“u )N
P(two tail) = min(P(X > k), P(X < k)) + min(P(X > [),P(X < 1)).

Open the SIMF]T main menu then choose [Statistics] followed by [Standard tests] and run the binomial test
option using the default parameters to obtain this table of results.

Binomial test analysis 1

Successes k 5
Trials N 10
I=N-k 5
p-theory 0.50000

p-estimate 0.50000 95% confidence limits = 0.18709,0.81291
P(X > k) 0.37695
P(X < k) 0.37695
P(X =k) 0.24609
P(X > k) 0.62305
P(X <k) 0.62305

P(X > 1) 0.37695
P(X <) 0.37695
P(X =1 0.24609

P(X>1 0.62305
P(X < 0.62305
Two tail binomial test statistic = 1.00000

From this table it is obvious that 5 successes in 10 trials is perfectly consistent with a binomial distribution
having N = 10 and p = 0.5. However, consider the results when the number of Bernoulli trials is reduced to
5, where intuition might suggest that five successive heads in coin tossing would suggest a two-headed coin.
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Binomial test analysis 2

Successes k 5
Trials N 5
[=N-k 0
p-theory 0.50000

p-estimate 1.00000 95% confidence limits = 0.47818,1.0000
P(X > k) 0.00000
P(X < k) 0.96875
P(X =k) 0.03125
P(X > k) 0.03125
P(X <k) 1.00000

P(X > 1) 0.96875
P(X <) 0.00000
P(X=1) 0.03125
P(X >1) 1.00000

P(X < 0.03125
Two tail binomial test statistic = 0.06250

This shows, for example, that the probability of obtaining five successes (or alternatively five failures) in an
experiment with equiprobable outcome would not lead to rejection of Hp : p = 0.5 in a two tail test. Note, for
instance, that the exact confidence limits for the estimated probability include 0.5. Many life scientists when
asked what is the minimal sample size to be used in an experiment, e.g. the number of experimental animals
in a trial, would use a minimum of six, since the null hypothesis of no effect would never be rejected with a
sample size of five.

The next table illustrates that an experiment with six consecutive successes (or failures) would indicate that

the 95% confidence region for the parameter p does not include 0.5, and would provide grounds for rejecting
the null hypothesis Hy: The trials are all independent with p = 0.5.

Binomial test analysis 3

Successes k 6
Trials N 6
[=N-k 0
p-theory 0.50000

p-estimate 1.00000 95% confidence limits = 0.54074,1.0000
P(X > k) 0.00000
P(X < k) 0.98438
P(X =k) 0.01563
P(X > k) 0.01563
P(X <k) 1.00000

P(X > 1) 0.98438
P(X <) 0.00000
P(X=1) 0.01563
P(X >1) 1.00000

P(X <) 0.01563
Two tail binomial test statistic = 0.03125, Reject Hp at 5% significance level
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4.2.16 Sign test

This procedure, which is based on the binomial distribution, but assuming the special case p = 0.5, is used
with dichotomous data, i.e., where an experiment has only two possible outcomes, and it is wished to test if
the outcomes, say success or failure, are equally likely. The test is usually described in terms of positive signs
(+) or negative signs (-) but, as it is only concerned with a succession of observations that can only be one
of two types and does not necessarily involve any sort of measurement scale, it has much wider application.
Unfortunately the test does not take into account the order of positive and negative signs and would not
differentiate between the patterns + — + — + — + — +— and + + + + + — — — ——, so the test is rather weak and
large samples, say greater than 20, are usually recommended. The run test does take the order of occurrence
into account, and should be used where order in the sequence of signs has significance.

Open the SIMF[T main menu, choose [Statistics] then [Standard tests] and run the sign test option. This can
be used to input numbers of positive and negative signs and, using the default options for number of positive
signs m =5, and negative signs n = 5, the next results are obtained.

Sign test analysis 1, m +n = 10
P(+ve =m) 024609 m=5
P(+ve > m) 0.37695

P(+ve <m) 0.37695

P(+ve > m) 0.62305

P(+ve <m) 0.62305
P(-ve=n) 0.24609 n=>5
P(-ve <n) 0.37695

P(-ve >n) 0.37695

P(-ve <n) 0.62305

P(-ve >n) 0.62305

Two tail sign test statistic = 1.00000

The test could be used, for instance, to find out how many consecutive successes you would have to observe
before the likelihood of an equiprobable outcome would be questioned. From these five successes and five
failures it is quite clear that such an outcome is perfectly consistent with the null hypothesis Hy : p = 0.5,

On the other hand, the case with m =9, and n = 1, summarized in the next table is obviously more extreme.

Sign test analysis 2, m +n = 10
P(+ve=m) 0.00977 m=9
P(+ve > m) 0.00098

P(+ve <m) 0.98926

P(+ve > m) 0.01074

P(+ve < m) 0.99902
P(-ve=n) 0.00977 n=1
P(-ve <n) 0.00098

P(—ve >n) 0.98926

P(-ve <n) 0.01074

P(-ve >n) 0.99902

Two tail sign test statistic = 0.02148, Reject Hy at 5% significance level

Clearly, nine outcomes of one kind but only one of the opposite kind, suggests rejection of the null hypothesis
that both outcomes are equally likely irrespective of the order of occurrence of the observations.



Run test 117

4.2.17 Run test

SMF[T provides two types of run test.

1. Run test on successive signs.
This is used to analyze residuals from regression or, in fact, any succession of observations of a variable
which can only have one of two values, say positive (+ve) or negative (-ve).

2. Runs up or down test.
This is mainly used to test sequences of numbers for significant correlation, as in examining the
performance of a random number generator, and is discussed elsewhere.

To be precise, the run test considered in this article is based on an application of the binomial distribution,
and is used when the sequence of successes and failures (presumed in the null hypothesis to be equally likely)
is of interest, not just the overall proportions. To understand the definition of runs as dealt with by this test,
just consider the sequence

+H+——++———+—

or alternatively

111001100010
which has twelve items with six runs, as will be clear by adding brackets like this

(aaa)(bb)(aa)(bbb)(a)(b).

Open the SIMFTT main menu, select [A/Z], then choose to run SIMF[T program rstest. This provides three
quite separate ways to perform a run test as follows.

1. Direct input of parameters.
You simply type in the number of negative and positive signs observed and the associated runs to get
an analysis like the following results for the default values of 10 positives, 10 negatives, and 10 runs.

Run and sign test 1

Number of -ve values 10
Number of +ve values 10
Number of runs 10
Probability(runs < observed;

given number of +ve, -ve values) 0.41407
Critical number for 1% significance level 5
Critical number for 5% significance level 6
Probability(runs < observed,;

given number of non zero values) 0.50000
Probability(signs < observed)

(Two tail sign test statistic) 1.00000

Note that when defining parameters in this way you will be warned if there is an inconsistency in the
data supplied.

2. Direct input of residuals.
Using this method a file containing the residuals is input to give results like the following for the default
test file rstest.tfl.
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Run and sign test 2

Number of -ve values 29
Number of +ve values 21
Number of runs 21
Probability(runs < observed,;

given number of +ve, -ve values) 0.12867
Critical number for 1% significance level 17
Critical number for 5% significance level 19
Probability(runs < observed,;

given number of non zero values) 0.12643
Probability(signs < observed)

(Two tail sign test statistic) 0.32224

3. Direct input of two sequences of values.
Another way is to input two files containing numerical values, then allow SIMF[T to calculate the
residuals as for the next results with the default test files rstest.tfl and normal.tfl.

Run and sign test 3

Number of -ve values 24
Number of +ve values 26
Number of runs 26
Probability(runs < observed,;

given number. of +ve, -ve values) 0.56142
Critical number for 1% significance level 17
Critical number for 5% significance level 20
Probability(runs < observed,;

given number of non zero values) 0.61228
Probability(signs < observed)

(Two tail sign test statistic) 0.88772

To emphasize the advantages of the run test over the sign test, consider a situation that a sample of ten new
born babies in a hospital ward consisted of five boys and five girls? That would appear reasonable. However,
what if all the boys were born first in the morning, then all the girls in the afternoon, that is, two runs? Clearly
the sign test alone does not help, but the next table would confirm what most would believe intuitively: the
event may not represent random sampling but could suggest the operation of other factors. In this way the run
test, particularly when conditional upon the number of successes and failures, is using information from the
sequence of outcomes and is therefore more powerful than the sign test alone.

Run and sign test 4
Number of -ve values
Number of +ve values
Number of runs 2

Probability(runs < observed;

given number of +ve, -ve values)  0.00794 Reject Hy at 1% significance level
Critical number for 1% sig. level 2

Critical number for 5% sig. level 3

Probability(runs < observed;

given number of non zero values) 0.01953 Reject Hy at 5% significance level
Probability(signs < observed)

(Two tail sign test statistic) 1.00000

a o,

Note that every time SMF[T performs curve fitting it gives an analysis of goodness of fit which includes
the run test to draw attention to bias in the fit resulting in too few runs caused by sections where the best-fit
curve lies appreciably to one side of the data. Actually residuals from regression are not exactly normally
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distributed even if the experimental errors are and the model fitted is correct, due to dependence introduced
by the estimation of parameters. However, if the total numbers of data points fitted is much larger than the
number of parameters estimated, this complication will not be very important.

Note that the run test in the analysis of residuals depends on a natural ordering, for instance, when the residuals
are arranged to correspond to the order of a single independent variable. This is not possible if there are
replicates, or several independent variables so, to use the run test in such circumstances, the residuals must
be arranged in some meaningful sequence, such as the order in time of the observation, otherwise arbitrary
results can be obtained by rearranging the order of residuals. The formulas used by SIMFJT to calculate the
statistics in the run test analysis are presented next.

Given the numbers of positive and negative residuals, the probability of any possible number of runs can be
calculated by enumerating all possible arrangements. For instance, the random number of runs R given m
positive and n negative residuals (redefining if necessary so that m < n) depends on whether the number of

runs is even or odd as follows
m-—1\(n—-1
2(k - 1)(k - 1)

m+n
")
(m—l)(n—l)+(m—1)(n—l)
k-1 k k k-1
m+n ’
")
Here the maximum number of runsis 2m + 1 if m <n,or2mif m =n,and k = 1,2,...,m < n. However,

in the special case that m > 20 and n > 20, the probabilities of r runs can be estimated by using a normal
distribution with

P(R=2k) =

or P(R=2k+1) =

2mn

=
|

El

m+n

5 2mn(2mn —m —n)
(m+n)2m+n-1)"
r—u+0.5

andz= ——,
(oa

where the usual continuity correction is employed.

The previous conditional probabilities depend on the values of m and n, but it is sometimes useful to know the
absolute probability of R runs given N = n + m nonzero residuals. There will always be at least one run, so
the probability of  runs occurring depends on the number of ways of choosing break points where a sequence
of residuals changes sign. This will be the same as the number of ways of choosing r — 1 items from N — 1
without respect to order, divided by the total number of possible configurations, i.e. the probability of r — 1
successes in N — 1 independent Bernoulli trials given by

_ N-1
a2

This is the value referred to as the probability of runs given the number of nonzero residuals in the previous
tables of results.
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4.2.18 F test for excess variance

Is is often required to fit two or more possible models in sequence to a data set in order to decide which
model is best justified for the data supplied. SIMF[T has several programs designed to do this automatically,
e.g., exfit for sums of exponentials, mmfit for sums of Michaelis-Menten equations, rffit for positive rational
functions, etc. At each stage of model fitting these programs output goodness of fit measures, and perform an
F tests for excess variance. The SIMF[T program qnfit, like these other programs, also allows users to store
F test details for retrospective testing which can also be done interactively, as now described.

Open the SIMF]T main menu, choose [Statistics], then [Standard tests], and select the F test option. This
requires you to input the following values.

1. The objective function Q1 and number of parameters m in the simpler model.

2. The objective function O, and number of parameters m, in the richer model.

3. The number of experimental data points n.

Obviously this test requires Q1 > Q», my > my, and n > ms.

For instance, using the default parameters gives these results.

F test results

Q1 ((W)SSQ for model 1) 12.00
02 ((W)SSQ for model 2) 10.00
m1 (number of parameters in model 1) 2
m?2 (number of parameters in model 2) 3
n (number of experimental points) 12
Numerator degrees of freedom 1
Denominator degrees of freedom 9
F test statistic T'S 1.800
P(F>TS) 0.2126
P(F <TS) 0.7874
5% upper tail critical point 5117
1% upper tail critical point 10.56
Conclusion:

Model 2 is not justified ... Tentatively accept model 1

From such values SIMF{T calculates the test statistic 7'S given by

TS = (Q1 - 02)/(my—m)
02/(n—m3)
which may be distributed, or more usually only approximately distributed, according to the F distribution

with my —m; an n —m, degrees of freedom. The table indicates that, as T'S was less than the upper 5% critical
point, there are no grounds for accepting the richer model in this particular case.

It must be emphasized that, while simulations suggest that this test is fairly robust in simple cases like
distinguishing one exponential from two, the test is only really justified for fitting linear nested model families
like polynomials, or multilinear regression, as now outlined.

Justification for the F test can be illustrated by successive fitting of polynomials to the same data
Ho : f(x) = ao
Hy:f(x)=ap+ax
Hy: f(x)=ap+ax+ x>

Hk:f(x)=a’0+a’1x+a2x2+...+a,kxk
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in a situation where experimental error is normal with zero mean and constant variance, and the true model
is a polynomial, a situation that will never be encountered in real life.

The important distributional results, can be illustrated for the case of two models i and j, with j > i > 0, so
that the number of points and parameters satisfy n > m; > m; while the sums of squares are Q; > Q;, then

1. (Qi - Qj)/O'2 is Xz(mj — m;) under model i
2. Q;/c?is x*(n — m;) under model j
3. Q; and Q; — Q; are independent under model j.

So the likelihood ratio test statistic

(Qi = Q;)/(mj —m;)

Qj/(n—mj)
is distributed as F(m; — m;,n — m;) if the true model is model i, which is a special case of model j in the
nested hierarchy of the polynomial class of linear models.

F =

In most experiments the models f(x, ) fitted to n observations y; are nonlinear in the parameters 6, and the
variance of the experimental error usually increases as the measured responses increase. In an attempt to
allow for this, weighting factors w; are introduced so that the objective function at the minimum would be the
sum of weighted squared residuals WSSQ given by

WSSQ = > wilyi = £ (xi, 0)}2.
i=1

However, the choice of weighting factors is highly controversial. For instance, if the variances of the
experimental errors were known to be o-l.z, then an obvious choice for the weighting factors would be

1

w; = —
77

effectively reducing the problem to the special case of constant variance, much beloved by theoreticians.

To study individual cases, these options are available using SIMF[T, especially with program gnfit.

e Setall w; = 1.
Fitting will tend to be unduly dominated by large responses y;.

e Setallw; =1/ s%, where s; are standard errors determined from replicates.
Standard error estimates will be unreliable unless large number of replicates are available.

e Setall w; = 1/g(y;), for some specified function g(y).
Fitting may be dominated by small responses y; if g(y) = (ay)? for some a.

e Setall w; = 1/h(f), for some specified function h(f(x, 0)).
Weights will change for each cycle of optimization as the parameters change.

All these can lead to bias and using s, g(y) or i(f) should be justified by further investigation.
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4.2.19 Tests for equal dispersion

It is frequently of interest to compare two samples without any assumptions about the population distribution,
and SIMF]T provides an interface to conduct such nonparametric tests for equality of the median and dispersion,
i.e. the variance, with two such samples.

Open the main SIMF[T menu, choose [A/Z], then select the SIMF[T nonparametric test program rstest, and
run the Median, Mood, and David tests using the following default data

X-values 6 9 12 4 10 11
Y-values 8 1 3 7 2 5

leading to these results.

Median, Mood and David tests number 1
Current data sets X and Y are:
GO8BAF.TF1: Mood-David tests for equal dispersions

Number of X-values 6
GO8BAF.TF2: Mood-David tests for equal dispersions
Number of Y-values 6

Results for the median test:
Hj: medians are the same

Number of X-scores < pooled median 2
Number of Y-scores < pooled median 4
Probability under Hy 0.2835

Results for the Mood test
Hy: dispersions are equal
H;: X-dispersion > Y-dispersion
H»: X-dispersion < Y-dispersion

The Mood test statistic 75.50
Probability under Hy 0.8339
Probability under H 0.4170
Probability under H, 0.5830

Results for the David test
Hy: dispersions are equal
H;: X-dispersion > Y-dispersion
H»: X-dispersion < Y-dispersion

The David test statistic 9.467
Probability under Hy 0.3972
Probability under H 0.8014
Probability under H» 0.1986

As usual with SIMF]T, all three results are given for convenience, but with the understanding that either only
one pre-decided test is to be used, or that the Bonferroni correction will be employed if more than one test
result is to be considered.

These tests all start by forming a pooled sample, then calculating the overall median M of the pooled sample
and considering various functions of the ranks r; within this pooled sample. It is not surprising that with such
small samples no significant differences were detected in this case.

However, to better understand what these tests do, you should now use test files g08acf.tf1 and g08acf.tf2,
which have larger and more distinct samples and lead to the following results.
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Median, Mood and David tests number 2
Current data sets X and Y are:
GO8ACF.TF1: the median test

Number of X-values 16
GO8ACF.TF2: the median test
Number of Y-values 23

Results for the median test:
Hj: medians are the same

Number of X-scores < pooled median 13
Number of Y-scores < pooled median 6
Probability under Hy 0.0009 Reject Hy at 1% significance level

Results for the Mood test
Hy: dispersions are equal
Hy: X-dispersion > Y-dispersion
H;: X-dispersion < Y-dispersion

The Mood test statistic 1947
Probability under Hy 0.8200
Probability under H 0.5900
Probability under H, 0.4100

Results for the David test
Hy: dispersions are equal
Hy: X-dispersion > Y-dispersion
H;: X-dispersion < Y-dispersion

The David test statistic 69.77
Probability under Hy 0.0130 Reject Hy at 5% significance level
Probability under H 0.9935
Probability under H, 0.0065 Reject Hy at 1% significance level

The calculations used to perform these tests will now be outlined.

The Median test

If there are n observations overall, with individual sample sizes n, and ny so that n = ny + ny, then the data
can be expressed as a 2 by 2 contingency table with frequencies

fi1 = Numberof X < M

1 =nx = fm
f12 = Numberof Y < M
f2=ny - fi2

then a chi-square test, or with small samples (n < 100) a Fisher exact test, is carried out. The analysis for
these data leads to the following table of results when a contingency table analysis is performed using SIMFT,
but displaying only the most important results.
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Fisher exact test
Observed Rearranged so r; = smallest marginal, ¢2 > ¢
13 6 13 3

3 17 6 17

p(13) 0.000820 p(x*), observed frequencies
p(14) 0.000059

p(15) 0.000002

p(16) 0.000000

P_sum3 0.000881 sumofall p(r) forr > 13

Of course, it is obvious from the way the two data sets are partitioned by the overall median M in this
contingency table that the Y values tend to be larger than the X values, and the Fisher exact probability
confirms this. Note that, in order to calculate the significance level for this table, the Fisher exact test must
not only consider the probability of the given table p(x) but must add the sum of probabilities for the more
extreme tables, i.e., with fi; equal to 14, 15, and 16.

Mood’s test

This assumes that the two samples have the same mean so that

which is the sum of squares of deviations from the average rank in the pooled sample, is approximately
normally distributed for large n. The test statistic is

W —n,(n®>-1)/12
\/nxny(n +1)(n%2-4)/180

=

This test suffers from the disadvantage that is assumes equal means for the two samples and, if this is not
justified, it can lead to inflated values for W.

David’s test

This test uses the mean rank

F= Zri/nx

i=1

to reduce the effect of the assumption of equal means in Mood’s test by calculating

1 & 5
V= ;= F)°,
nx—I;(rl }")

and V is also approximately normally distributed for large n. The test statistic is

_ V-nn+1)/12
ST i (it DGt Dy + 1) = mny) [360ms(ny — 1)

Note that it is not the values of W or V alone that determine the significance level for these dispersion tests,
but the z statistics calculated from them as defined above. It is often recommended that David’s test is more
discerning than Mood’s test, which seems to be the case with these data.
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4.2.20 Tests for equal variance

Itis frequently necessary to check for homogeneity of variance given n samples, that is to perform a statistical
test to see if it reasonable to assume they have a common variance in the poulation. In particular, analysis
of variance (ANOVA) is based on the assumption that all samples are normally distributed with the same
variance.

Now it is often stated that ANOVA procedures are relatively insensitive to small departures from normality,
but are much more affected by differences in variances between groups so, for that reason, variance-stabilizing
transformations are frequently resorted to. Variance homogeneity tests are best done interactively on the data
set, so that the effect of transformations on variance stabilizations can be judged before proceeding to ANOVA.
SiMF[T provides the facility to read in samples as individual data sets with possibly differing sample sizes, or
as a matrix if all samples have the same size, but then to test for homogeneity of variance under all conditions
of variance stabilizing transformations in order to check that the transformation selected has succeeded.

The next table illustrates analysis of data in the test file anoval.tfl for homogeneity of variance, using the
Bartlett test, and also the Levene test.

Homogeneity of variance test 1: Bartlett

Transformation x (untransformed data)
B 0.69006
C 1.0800
B/C 0.63895
Number of degrees of freedom 4
P(x* > B/C) 0.9586
Upper tail 1% point 13.277
Upper tail 5% point 9.4877

Homogeneity of variance test 2: Levene (median)

Transformation x (untransformed data)
w 0.18458
Degrees of freedom 1 4
Degrees of freedom 2 25
P(F >=W) 0.9442
Upper tail 1% point 41774
Upper tail 5% point 2.7587

In order to interpret these results it is necessary to understand the assumptions involved and the statistics that
are calculated, so such issues will now be discussed.

Bartlett’s test

With just two normal samples the F test is recommended, and this can be performed routinely in St(MF[T as
part of the ¢ test procedure, which is actually equivalent to 1-way ANOVA when there are only two samples.
Where there are n normal samples the Bartlett test is recommended, and this is just the same as the F' test when
there are two samples of the same size. If there are k groups, with sample size n;, v; = n; — 1, and sample
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variances s?, then the pooled variance estimate si, and parameters B and C can be calculated as follows,

To test homogeneity of variance, the Bartlett test statistic B/C is approximately chi-square distributed with
k — 1 degrees of freedom.

Levene’s test

When normality cannot be assumed, the Levene test can be performed. If the total number of observations is
N = Z[’.‘ZI n;, then the test statistic W is defined as

k
(N - k)zni(zi. -z)?
=1

= k n;
(k=1 >\(Zij - 2.)

i=1 j=1

w

b}

where Z__ is the mean of all Z;;, and Z;_is the group mean of the Z;;. If ¥;; is observation j in group i the
definitions are

th - |Yij Yl |
1 k n;
Z = NZZZ”
i=1 j=1
1<
Z;. = e Zij,

but note that there are several ways to define ¥; . Usually this is taken to be the median of group i, but if
there are long tails in the distribution as with the Cauchy distribution, the the trimmed mean can be used. The
group mean can also be used if the data are similar to a normal distribution. To test variance homogeneity,
the Levene test statistic W is approximately F' distributed with k — 1 and N — k degrees of freedom.

The above table illustrates that the null hypothesis

L2 _ _ 2
Hy:op=05="=0}

cannot be rejected for the data in test file anoval.tfl.



Kendall’s coefficient of concordance 127

4.2.21 Kendall’s coefficient of concordance

Kendall’s coefficient of concordance estimates the extent of agreement between n objects ranked on k different
variables in order to test the null hypothesis

Hy : There is no agreement between the comparisons.

Open the SIMF[T main menu, choose [A/Z], select the SIMFTT nonparametric test program rstest, then run
the Kendall coefficient of concordance option and examine the following default data set of rankings for 10
objects ranked on 3 variables.

10 45 20 45 30 75 6.0 9.0 7.5 10.0
25 10 25 45 45 80 9.0 6.5 100 6.5
20 1.0 44 45 45 45 80 8.0 8.0 10.0

The results are as follows, suggesting that Hy should be rejected.

Kendall coefficient of concordance analysis 1
Hy: no agreement between comparisons
Data: test file GOS8DAF.TF1

Number of columns (objects) 10
Number of rows (variables) 3
Kendall coefficient W 0.8277
P(/\,/2 > W) 0.0078 Reject Hy at 1% significance level

The data matrix supplied for analysis can contain observations or ranks as follows.
* Data must have n columns for data/objects/ranks (across), and k rows for comparisons/variables (down).

* The matrix can have original values to be ranked automatically along rows, or else contain pre-calculated
ranks instead of values.

* Tied ranks are averaged as usual, so a ranked matrix must have these two properties:

1. A(i,j)>0fori=1,2,..,kand j =1,2,...,n
2. Sum of A(i, j) foreach i and for j = 1,2,...,n mustbe n(n + 1) /2

* Note that, if data values are supplied instead of ranks, then SIMF]T will calculate the ranks automatically.

For instance, the data in test file kendall.tf1 contains these measurements for wing length, tail length,and
bill length for 12 birds

104 108 11.1 102 103 102 107 105 108 112 106 114
7.4 7.6 7.9 7.2 7.4 7.1 7.4 7.2 7.8 7.7 7.8 8.3
170 17.0 200 145 155 13.0 195 16.0 21.0 20.0 180 22.0

and then the following ranks, calculated internally by SIMF[T before performing the test,

40 85 100 15 30 15 70 50 85 11.0 6.0 120
50 70 110 25 50 1.0 5.0 25 9.5 8.0 95 120
55 55 95 20 30 1.0 80 40 11.0 95 7.0 120

lead to the next table of results.

Kendall coefficient of concordance analysis 2
Hp: no agreement between comparisons
Data: test file KENDALL.TF1

Number of columns (objects) 12
Number of rows (variables) 3
Kendall coefficient W 0.9241

P(/\,/2 > W) 0.0013 Reject Hy at 1% significance level
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As before, the null hypothesis is rejected for this alternative data set.
Calculating the Kendall coefficient of concordance W

Ranks r;; for the the rank of object j in comparison i (with tied values being given averages) are used to
calculate the n column rank sums R ;, which would be approximately equal to the average rank sum k(n+1)/2
under

Hy : There is no association among the variables.

For total agreement the R; would have values from some permutation of k, 2k, . .., nk, and the total squared
deviation of these is k*n(n> — 1)/12.

Then the coefficient W is calculated according to

Zn:(Rj —k(n+1)/2)*
j=1

W D 12= k3T

which lies between 0 for complete disagreement and 1 for complete agreement.

Here the denominator correction for ties uses 7" defined as

T=Zt(t2— /12

where ¢ is the number of occurrences of each tied rank within a comparison.

For large samples (n > 7), k(n — 1)W is approximately Xﬁ—l distributed, otherwise tables should be used for
accurate significance levels.
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4.3 Data exploration
- Tutorials and worked examples for simulation,
o~ curve fitting, statistical analysis, and plotting.
S https://simfit.uk

https://simfit.org.uk
https://simfit.silverfrost.com

4.3.1 Introduction

It is frequently useful to examine a given data set without necessarily having any particular statistical tests in
mind, but rather as a preliminary to more searching investigations.

In this section the following two definitions are used.

1. A single sample supplied as a column of numbers will be referred to as a vector

2. Arectangular table of numbers will be referred to as a matrix

SMF[T provides a selection of techniques that can be used in order to make a preliminary examination of
such data sets by choosing [Statistics] from the main SIMF[T menu followed by [Data exploration].
* Exhaustive analysis of a vector
Displays a table with a summary of estimated moments, ranges, coefficients of variation/skew/kurtosis.
Creates plots as histograms, cumulative distributions, pie charts, bar charts, time series, centered rods,
normal/half-normal scores. Performs tests on runs, and/or signs, or for a normal distribution.
* Exhaustive analysis of a matrix
In addition to plotting barcharts and calculating covariance or correlation matrices it is possible to select
individual rows or columns for the previous exhaustive analysis of a vector procedure.
* Exhaustive analysis of a multivariate normal matrix
Numerous tests are provided to ascertain if it is reasonable to assume multivariate normality and
sphericity before uncritically proceeding to employ MANOVA techniques.
* Parametric 7 tests on groups across rows of a matrix

This creates a summary of the results from tests on rows where columns have been assigned to groups.

¢ Nonparametric tests across rows of a matrix

Where the normality and constant variance required for # tests are not justified a similar procedure can
be performed using nonparametric tests.

All possible pairwise tests on n vectors or a library file

Given sets of vectors it is possible to use a selection of parametric and nonparametric tests on all possible
pairs of columns. Naturally, with such a procedure there are limits to the number of comparisons allowed,
i.e. n(n—1)/2 for n vectors.

* Robust analysis of 1 sample

Results can be obtained for parameters from winzorized samples.

* Robust analysis of 2 samples

Two samples can be compared by robust methods.

Of course it is assumed that users will be aware of the limitations arising from multiple tests on the same data
implied by some of these procedures, as described for the Bonferroni and related techniques in the St(MF[T
reference manual. They should rather interpret the results as preliminary, as should be expected for data
exploration.
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4.3.2 Exhaustive analysis of a vector

Given any sample it is useful to generate a summary of the all the parameters that can be estimated together
with the ability to plot the data in alternative ways.

Summary statistics

For example, from the main StMF]T menu choose [Statistics] then [Data exploration] and read the default
vector test file normal.tf1 into the procedure called exhaustive analysis of a vector. Here you can obtain
the usual summary statistics as in this table, including the range, hinges (i.e. quartiles), mean X, standard
deviation s, coefficient of variation CV% (100s/x, i.e. the reciprocal of the signal to noise ratio), and the
normalized sample moments s3 (coefficient of skewness), and s4 (coefficient of kurtosis).

Exhaustive analysis of a vector
Data: Test file normal.tf1: 50 random numbers

Sample size 50

Minimum, Maximum values -2.20820, 1.61750
Lower and Upper Hinges -0.85502, 0.78597
Coefficient of skewness -0.01669

Coefficient of kurtosis -0.76840

Median value -0.09736

Sample mean -0.02579

Sample standard deviation 1.00553: CV% = 3899%
Standard error of the mean 0.14220

Upper 2.5% t-value 2.00958

Lower 95% confidence limit for mean -0.31156

Upper 95% confidence limit for mean 0.25998

Variance of the sample 1.01109

Lower 95% confidence limit for variance  0.70552

Upper 95% con limit for variance 1.57006

Shapiro-Wilks W statistic 0.96270

Significance level for W 0.11583 Tentatively accept normality

Testing for a normal distribution

The normalized sample moments shown in this table are useful for seeing how far a sample departs from a
normal distribution and are defined in a sample of size n by the following equations.

.l n
)Ez;z;x[
1 n
_ 2
s Jn_];(xl X)

_ n 2?:1(%'_)2)3
BT - Dn-2) S

_ (n+n =0 3(m-1)?
4= (n-1)(n-2)(n-3) 54 C(n-2)(n-3)°

The coeflicient of skewness or symmetry indicates the extent to which the sample suggest deviation from a
symmetrical distribution. Values less than zero indicate skew to the left with a mean less than the median,
while values greater than zero indicate skew to the right with mean greater than the median. The coefficient
of kurtosis indicates the amount of peakedness in the distribution. Values less than zero indicate a platykurtic
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distribution which is more humped than a normal distribution, while values greater than zero indicate a
leptokurtic distribution which is more peaked than a normal distribution. A normal distribution is said to be
mesokurtic with both coefficients equal to zero.

As it is often wished to see how closely a sample resembles a normal distribution several options are provided
for this purpose. You can perform a Shapiro-Wilks test for normality (only on demand since this will, of
course, not always be appropriate) or create a histogram, pie chart, cumulative distribution plot or appropriate
curve-fitting files. This option is a very valuable way to explore any single sample before considering other
tests.

Graph plotting options

Since vectors have only one coordinate, graphical display requires a further coordinate. In the case of
histograms the extra coordinate is provided by the choice of bins, which dictates the shape, but in the case of
cumulative distributions it is automatically created as steps and therefore of unique shape. Pie chart segments
are calculated in proportion to the sample values, which means that this is only appropriate for positive
samples, e.g., counts.

The other techniques illustrated in this next figure may require further explanation.
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If the sample values have been measured in some sequence of time or space, then the y values could be the
sample values while the x values would be successive integers, as in the time series plot. Sometimes it is
useful to see the variation in the sample with respect to some fixed reference value, as in the zero centered rods
plot. The data can be centered automatically about zero by subtracting the sample mean if this is required.

The half normal and normal plots are particularly useful when testing for a normal distribution with residuals,
which should be approximately normally distributed if the correct model is fitted.
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In the half normal plot, the absolute values of a sample of size n are first ordered then plotted as y;,i = 1,...,n,
while the half normal order statistics are approximated by
c 1
n+i+s
xizd)_l 792 ,i=1,...,n
2n + 3

which is valuable for detecting outliers in regression.

The normal scores plot simply uses the ordered sample as y and the normal order statistics are approximated

by
.3
-3
—8),1’:1,...,11

xizd)_l 1
n+Z

which makes it easy to visualize departures from normality. Best fit lines, correlation coefficients, and
significance values are also calculated for half normal and normal plots.

Note that elsewhere in SIMF[T a more accurate calculation for expected values of normal order statistics is
employed for a normal scores plot and also the Shapiro-Wilks test is just one of several tests for normality
available.
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4.3.3 Exhaustive analysis of a matrix

Given any data sample in the form of a rectangular table of values with no missing values it is useful to
generate a summary of the all the parameters that can be estimated together with the ability to plot the data in
alternative ways.

For instance, choose [Statistics] from the main SIMF[T menu then [Data exploration]. Open the [Exhaustive
analysis of an arbitrary matrix] option and examine the data set contained in test file cluster.tfl which is
the following 12 by 8 matrix.

1.0 4.0 20 110 6.0 4.0 3.0 9.0
8.0 5.0 1.0 140 190 7.0 13.0 21.0
3.0 1.0 3.0 1.0 3.0 6.0 23.0 37.0
9.0 0.0 7.0 7.0 1.0 20 210 20
7.0 120 9.0 50 140 9.0 12.0 14.0
20 130 150 20 230 6.0 340 8.0
11.0 7.0 2.0 1.0 40 170 11.0 4.0
6.0 3.0 70 120 11.0 8.0 8.0 0.0
80 210 1.0 10.0 310 9.0 3.0 18.0
19.0 140 120 9.0 16.0 100 0.0 27.0
170 18.0 100 6.0 19.0 140 1.0 24.0
15.0 21.0 8.0 70 170 120 4.0 220

The possibilities for further analysis are now listed.
e Summarize all columns (or rows)
* Exhaustive analysis of any column (or row)
* Analyze/paired-test any two rows (or columns)

* Plot
2D barchart or stack plot with rows as groups
2D box and whisker plot or bars and error bars
2D scattergrams with symbols (and lines if requested)
3D barchart or cylinder plot

 Display/file Sum—of-Squares, covariance, or correlation matrix

Summarizing all rows or columns

For instance, the option to summarize all columns results in this analysis.

Column Mean Variance  St.Dev. Coeff.Var.
1 8.83333 33.4242 5.78137 65.45%
2 991667 57.7197 7.59735 76.61%
3 6.41667 21.5379 4.64089 72.33%
4 7.08333 18.6288 4.31611 60.93%
5 13.6667 81.3333 9.01850 65.99%
6 8.66667 17.6970 42.0678 48.54%
7 11.0833 107.720 10.3788 93.64%
8 15.5000 127.364 11.2855 72.81%

Here, for each column, the summary statistics are calculated downwards for all rows, and a similar table can
be generated for rows calculated across all columns.
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Pairwise statistical tests between rows or columns

Next consider pairwise statistical tests between selected rows or columns. If you choose to apply more than
one statistical test this would be to use the absolutely forbidden technique of multiple tests on the same data.

In such a situation you can either use the Bonferroni method or similar with a factor related to the actual
number of tests applied as explained in the SIMFT reference manual, or just use commonsense and regard this
as a preliminary examination where the p values are simply being regarded as indicators of the differences
between paired or columns and not being used for hypothesis tests.

Analysis and two-tail tests for:
N =12, X = column1,Y = column 2
Unpaired ¢ test:

t -0.39309
p 0.69804
Paired ¢ test:
t -0.56175
p 0.58555
Kolmogorov-Smirnov 2-sample test:
d 0.25000
z 0.10206
p 0.53610
Mann-Whitney U test:
u 68.5000
z -0.17339
p 0.85377
Wilcoxon signed rank test:
w  33.5000
z -0.39299
p 0.70752
Run test:
+ 6(no.x>y)
- 6(no.x<y)
p 0.60823
Sign test: N for non-tied pairs
N 12
- 6(no.x<y)
p 1.00000

After an analysis like the above has been carried out, less controversial results are calculated, that is, the
inner product of the two selected rows or columns regarded as vectors, leading to the angle between them and
Euclidean distance between them, i.e. the square root of the sum of squared differences.

n | dot product X size y size | distance cos(#) | radians | degrees
12 1307.0 | 36.1109 | 42.6028 | 22.4722 | 0.849569 | 0.5556 31.835

Plotting a matrix

As long as the number of rows and columns is fairly small, say < 20, and for some procedures the matrix
contains only positive values, several graphs can be drawn to visualize the relative magnitude of column
values across row.
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For instance, the left-hand figure below plots a bar for each row with a stacked bar of segments each
proportional to the column values for the corresponding rows. On the right is a box and whisker plot to
illustrate the quartiles for each column calculated for all rows. Of course it is easy to interpret the row and
column effects illustrated when it is realized that the data set has 12 rows and 8 columns.
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The next plot illustrates a 3D skyscraper plot where, for each value in the data matrix, say x;;, the vertical
height of the bars is proportional to the x;; values.

3D Skyscraper Plot from cluster.tfl
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Numerous other graphs are available where the sign of x;; is irrelevant, for instance clusters and 95%
confidence ellipses for the data means or for the overall data ranges, and also linear regression according to
all three conventions is possible for selected pairs of rows and/or columns.
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Lower triangles of the covariance and correlation matrices

The exhaustive analysis of an arbitrary matrix can also calculate several symmetrical matrices from the data.
For instance the sum of squares matrix or the covariance matrix as this will give some idea if the columns are
independent.

Variance-Covariance matrix
33.4242
23.2576 57.7197
7.71212 115833 21.5379
1.65152 -0.71970 -5.67424  18.6288
10.1212 54.3333  9.06061 10.8485 81.3333
15.2121 17.0606 0.51515 -5.15152 7.69697 17.6970
-35.2576 -33.3561 11.1439 -283.4621 -18.2424 -19.7879 107.720
19.6364 25.7727 -1.59091 -5.68182 21.8182 6.45455 -19.8636 127.364

An easier matrix to visualize for correlations in the data is the correlation matrix, which is sometimes given,
as below, with unit diagonals to avoid confusion.

Pearson product-moment correlations
1

0.529507 1

0.287436  0.328526 1

0.066185 -0.021948 -0.283279 1

0.194119  0.792994 0.216482 0.278704 1

0.625474  0.533805 0.026387 -0.283722  0.202879 1
-0.587590 -0.423024 0.231361 -0.523754 -0.194895 -0.453213 1

0.300959  0.300591 -0.030375 -0.116647 0.214369 0.135954 -0.169585 1

For a n by m matrix X with values x;;, the sample column means i, vector of column means &, variance
of the j’th variable s;;, covariance between the j and k’th variable s, correlation between the j and k’th
variable c jx, and covariance matrix S are defined as follows.

.l n
Xj=— § Xij
J n 4 J
i=1

&l = (X1,%, ..., %m)

1 n
- \2
Sjj = > (xij - %)
i=1

n—14
] n
Sjk = (xij = Xj) (xik — Xx)
n—1
=1
Sjk
Cjk = ———
\/SjjSkk
1

S =

Zn:(mi -z)(z; - 2)"
i=1

n—14

Alternatively, if X is the matrix centered by subtracting the sample column means and X is the centered
matrix scaled by dividing by the column standard deviations, then the sample covariance .S and correlation
matrices C' are

N N 1 - -
XTX and C = X
n-1 n-—1
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4.3.4 Exhaustive analysis of a multivariate normal matrix

Most multivariate techniques make no assumptions about the data and therefore do not calculate significance
levels. Actually, where multivariate hypothesis tests are provided, they are based on definite assumptions about
the data, generally assuming a multivariate normal population, and also often making additional assumptions
about the nature of the covariance matrix.

For these reasons the SIMF|T procedure for exhaustive analysis of a normal multivariate matrix provides
options that are useful before proceeding to more specific techniques that depend on multivariate normality,
e.g., MANOVA and some types of ANOVA. These multivariate normal analysis procedures can be used by
selecting [Statistics] from the main SiIMF[T menu, then [Data exploration] followed by [Exhaustive analysis
of a multivariate normal matrix].

Example 1: The sample means and covariance matrix

Choosing the option to display the means and covariance matrix leads to the following results with test file
hotel.tfl.

Variable Mean Std.err.  lower95%cl  upper95%cl
1 -0.53000 0.46261 -0.55983 -0.50017
2 -0.03000 0.38559 -0.05486 -0.00514
3 -0.59000 0.49091 -0.62165 -0.55835
4 3.10000 1.94622 2.97451 3.22549
Covariance matrix
2.14011
-0.11878 1.48678
-0.89411 0.79144 2.40989
3.569222 1.88111 -4.60111 37.8778
Correlation matrix
1
-0.066588 1
-0.393709 0.418118 1
0.398982 0.250668 -0.481584 1

CV matrix eigenvalues
0.683568
0.821943
0.775086
0.231793

Determinant 9.81414E+01

The column means X, and m by m sample covariance matrix S displayed here are defined for a n by m data
matrix x;; withn > 2,m > 2 as

1 n
Xj=— § Xij
J n 4 J
i=1

1 < _ -
Sjk =7 Zl:(xij — Xj) (Xik — Xk)
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Example 2: Graphical test for multivariate normality

A graphical technique is provided for investigating if a data matrix with n rows and m columns, where
n >>m > 1, is consistent with a multivariate normal distribution. For example, the next figure

Multivariate Plot: r = 0.754 Multivariate Plot: r = 0.980
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which shows plots for two random samples from a multivariate normal distribution. The plot uses the fact
that, for a multivariate normal distribution with sample mean X and sample covariance matrix S,

m(n* —1)

x-0)Ts ' (x-%) ~ P

m,n—n»

where x is a further independent observation from this population, so that the transforms plotted against
the quantiles of an F distribution with m and n — m degrees of freedom, i.e. according to the cumulative
probabilities for (i — 0.5) /n fori = 1,2,...,n should be a straight line. It can be seen from the above figure
that this plot is of little value for small values of n, say n ~ 2m but becomes progressively more useful as the
sample size increases, say n > Sm.

Example 3: Hotelling 77 test H, : means = a supplied reference vector

It is possible to perform two variants of the Hotelling 72 test, namely
* testing for equality of the mean vector with a specified reference vector of means, or
* testing for equality of all means without specifying a reference mean.
Dealing first with testing that a vector of sample means is consistent with a reference vector, consider the next

table for a zero reference vector.

Hotelling one sample 72 test

Hy: Column means = Expected values supplied (i.e. 0)

Number of rows = 10, Number of columns = 4
Hotelling 72 = 7.43910

F Statistic (FT'S) = 1.23985

Degrees of freedom (d1,d2) = 4,6
P(F(d1,d2) > FTS) = 0.386864

Column Mean  Std.Err. Expected Delta t p
1 -0.53000 0.46261 0.0000 -0.53000 -1.14567 0.281481
2 -0.03000 0.38559 0.0000 -0.03000 -0.07780 0.939687
3 -0.59000 0.49091 0.0000 -0.59000 -1.20186 0.260086
4 3.10000 1.94622 0.0000 3.10000 1.59283 0.145662

This resulted when the test file hotel. tfl was analyzed using the Hotelling one sample test procedure. This
tests the null hypothesis Hy : u = po against the alternative Hy : u # uo, where po is a known mean vector
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and no assumptions are made about the covariance matrix X. Hotelling’s 7 is
T? = n(x - po)" 7' (% - o)

and, if Hy is true, then an F test can be used since (n — m)T?/(m(n — 1)) is distributed asymptotically as
Fy.n—m- Users can input any reference mean vector p to test for equality of means but, when the data columns
are all differences between two observations for the same subjects and the aim is to test for no significant
differences, so that py is the zero vector, as with hotel.tf1, the test is a sort of higher dimensional analogue
of the paired ¢ test. The table also shows the results when ¢ tests are applied to the individual columns of
differences between the sample means X and the reference means g, which is suspect because of multiple
testing but, in this case, the conclusion is the same as the Hotelling 72 test: none of the column means are
significantly different from zero.

Example 4: Hotelling 77 test H : all means are equal

Now, turning to a test that all means are equal as displayed in the next table.

Hotelling one sample T? test

Hy: Column means are all equal

Number of rows 5

Number of columns 4

Hotelling 772 170.474

F Statistic (FT'S) 28.4123

Degrees of freedom (d1,d2) 3,2

P(F(d1,d2) > FTS) 0.034191  Reject Hy at 5% significance level

This shows the results when the data in anova6. tf1 are analyzed, and the theoretical background to this test
is explained in the reference manual in connection with repeated measures analysis.

Example 5: Compound symmetry

Options are provided for investigating the structure of the covariance matrix. The sample covariance matrix
and its inverse can be displayed along with eigenvalues and determinants, and there are also options to check
if the covariance matrix has a special form, namely

* testing for compound symmetry,
* testing for spherical symmetry, and

* testing for spherical symmetry of the covariance matrix of orthonormal contrasts.

For instance, using the test file hotel. tf1 produces the results in the next table.

Compound symmetry test

Hy: Covariance matrix has compound symmetry

Number of groups 1
Number of variables (m) 4
Sample size (n) 10
Determinant of CV 98.14
Determinant of S 1452.0
LRTS (-21log(1)) 36.30
Degrees of Freedom 8

P(x? > LRTS) 0.0000 Reject Hy at 1% significance level
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This shows an application of a test for compound symmetry which is when a covariance matrix X has a special
form with constant nonnegative diagonals and equal nonnegative off-diagonal elements as follows.

1 L ... p
s P 1 ... p
p p ... 1

This can be tested using estimates for the diagonal and off-diagonal elements o> and o2 p as follows

Example 6: Sphericity

The sphericity test, designed to test the null hypothesis Hy : £ = kI against H; : £ # kI. In other words, the
population covariance matrix X is a simple multiple of the identity matrix, which is a central requirement for
some analytical procedures.

Likelihood ratio sphericity test

Hy: Covariance matrix = k*Identity (for some k£ > 0)

Number of small eigenvalues 0 (i.e. < 1.00E —07)

Number of variables (m) 4

Sample size (n) 10

Determinant of CV 98.1414

Mauchly W statistic 0.00676

LRTS (-21log(1)) 49.9740

Degrees of Freedom 9

P(/\,/2 > LRTS) 0.000000 Reject Hy at 1% significance level

The Wilks generalized likelihood-ratio statistic is

1S

L= (52— s2r)ym=1[s2 + (m — 1)s?r]’

where the numerator is the determinant of the covariance matrix estimated with v degrees of freedom, while
the denominator is the determinant of the matrix with average variance on the diagonals and average covariance
as off-diagonal elements, and this is used to construct the test statistic LRT'S

2__[ B m(m+1)2(2m - 3)
=0 6(m—1)(m?+m—4)

log L
which, for large v, has an approximate chi-squared distribution with m(m + 1) /2 — 2 degrees of freedom.

If the sample covariance matrix S has eigenvalues a; fori = 1,2, ..., m then, defining the arithmetic mean A
and geometric mean G of these eigenvalues as

A= (l/m)zm:a/[
i=1

m
G = (H a)'/m,
i=1
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the likelihood ratio test statistic
—2logd =nmlog(A/G)

is distributed asymptotically as y> with (m — 1)(m + 2)/2 degrees of freedom. Using the fact that the
determinant of a covariance matrix is the product of the eigenvalues while the trace is the sum, the Mauchly
test statistic W can also be calculated from A and G since

_ sl
{Tr(S)/m}m
_ l—lf'il a;
AT @) /mym
so that —2logd = —nlogW.

Clearly, the test rejects the assumption that the covariance matrix is a multiple of the identity matrix in this
case, a conclusion which is obvious from inspecting the sample covariance and correlation matrices. Since
the calculation of small eigenvalues is very inaccurate when the condition number of the covariance matrix is
appreciable, any eigenvalues less than the minimal threshold indicated are treated as equal to that threshold
when calculating the test statistic.

Example 7: Helmert orthonormal contrasts

The next table results from analysis of hotel.tfl and full details will be found in the tutorial on repeat
measures ANOVA or in the SIMF]T reference manual.

Sphericity test on CV of Helmert orthonormal contrasts

Hy: Covariance matrix = k*Identity (for some k > 0)

Number of small eigenvalues 0 (i.e. < 1.00E —07)

Number of variables (m) 4

Sample size (n) 10

Determinant of CV 41.5788

Trace of CV 32.6105

Mauchly W statistic 0.03237

LRTS (-2log(1)) 26.4909

Degrees of Freedom 5

P(x? > LRTS) 0.000072 Reject Hy at 1% significance level
e (Geisser-Greenhouse) 0.402592

e (Huynh-Feldt) 0.431104

e (lower bound) 0.333333




142 Statistical analysis

4.3.5 ttests across rows of a matrix

Sometimes data are stored in a matrix such that each row contains values observed within groups that are
defined by columns, and where it is wished to test for equality of group means. If normality and identical
variance are assumed then systematic ¢ tests can be performed as long as membership of groups is easy to
define and change interactively.

To clarify the situation choose [Statistics] from the main StMF[T menu followed by [Data exploration] and
then [7 tests across rows of a matrix], and browse the default test file ttest.tf6 which has the following data.

8.8 8.4 7.9 8.7 9.1 9.6 9.9 9.0 111 9.6 8.7 10.4 9.5
8.0 7.4 6.9 8.2 9.7 9.1 9.9 70 1141 8.6 9.7 8.4 9.1
202 16.8 154 17.1 181 20.0 7.7 8.9 9.7 9.1 106 102 101
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
7.7 8.9 10.2 8.5 9.1 86 189 19.2 151 195 189 199 194

begin{indicators}
1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1
end{indicators}

Note that, after the data, the group membership is defined by the sectioning commands
begin{indicators} ... end{indicators}

with a | if a column belongs to group X, a -1 if the column belongs to group Y and a 0 if a column is not to
be used. So in this data set the first 6 columns belong to group X while the next 7 columns belong to group Y
and there are no suppressed columns.

Analysis leads to the following results for the sample means, standard deviations, standard error of the
differences, ¢ values, and p values, and where a -1 in the significance level column indicates zero sample
variance, as with row 4 emphasized in red, so that a ¢ test cannot be performed.

Variables: NX =6, NY =7
X std X Y stdY  se diff t 2-tail p
8.7500 0.5822 9.7429 0.8182 0.4009 -2.4765 0.030765
8.2167 1.0420 9.1143 1.3005 0.6621 -1.3558 0.202338
17.933 1.8886 9.4714 0.9878 0.8164 10.365 0.000001
-1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.000000
8.8333 0.8238 18.700 1.6258 0.7360 -13.405 0.000000

The type of # test (i.e. lower, upper, or 2-tail) and partitioning of columns into groups can be done interactively.
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4.3.6 Nonparametric tests across rows of a matrix

Sometimes data are stored in a matrix such that each row contains values observed within groups that are
defined by columns, and where it is wished to test for equality of group means. If normality and identical
variance cannot be assumed then systematic nonparametric tests can be performed as long as membership of
groups is easy to define and change interactively.

To clarify the situation choose [Statistics] from the main StMF[T menu followed by [Data exploration] and
then [Nonparametric tests across rows of a matrix], and browse the default test file ttest.tf6 which has the
following data.

8.8 8.4 7.9 8.7 9.1 9.6 9.9 9.0 111 9.6 8.7 104 9.5
8.0 7.4 6.9 8.2 9.7 9.1 9.9 70 1141 8.6 9.7 8.4 9.1
202 16.8 154 17.1 181 20.0 7.7 8.9 9.7 9.1 106 102 101
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
7.7 8.9 10.2 8.5 9.1 86 189 19.2 151 195 189 199 194

begin{indicators}
1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1
end{indicators}

Note that, after the data, the group membership is defined by the sectioning commands

begin{indicators} ... end{indicators}

with a | if a column belongs to group X, a -1 if the column belongs to group Y and a 0 if a column is not to
be used. So in this data set the first 6 columns belong to group X while the next 7 columns belong to group Y
and there are no suppressed columns.

Choosing to perform both the Mann-Whitney U and Kolmogorov-Smirnov D two sample tests leads to the
following results.

Mann-Whitney U and Kolmogorov-Smirnov D tests

Variables: NX =6, NY =7
MW U MW Z MW 2-tail p KS D KSZ KS2-alil p
7.00000 -1.93389 0.981352 0.54762 0.30467  0.146853
11.0000 -1.36089 0.927739 0.52381 0.29142  0.277389
42.0000 2.92857 0.000583 1.00000 0.55635  0.000000
-1.00000 -1.00000 -1.000000 -1.00000 -1.00000 -1.000000
0.00000 -2.93260 1.000000 1.00000 0.55635  0.000000

The type of test (i.e. lower, upper, or 2-tail) and partitioning of columns into groups can be done interactively,
but the Bonferroni or similar correction must be used if, as here, both tests are done. Note the setting of values
to -1 with singular data as emphasized in red for row 4.
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4.3.7 All pairwise comparisons on n samples

Given a set of samples it is useful to perform pairwise statistical tests to determine if any of the samples can
be regarded as atypical. For instance, if the samples are normally distributed with the same variance then
ANOVA followed by the Tukey post-ANOVA would be used, but SIMF[T also provides a facility to perform
all pairwise comparisons on sets of samples using nonparametric tests as well as ¢ tests.

As the sample sizes may differ then individual samples could be input, however the library file approach should
be used to facilitate this procedure. From the main StMF]T menu choose [Statistics] then [Data exploration]
followed by [All pairwise tests] and input the library file npcorr . t£1 which contains the following information.

Data for non-parametric correlation analysis
column2.tfl
column2.tf2
column2.tf3

This library file has a title followed by the data file names which, as they are SIMF[T test files, are identified by
filename only, otherwise the full path would have to be be supplied. The data contained in the three files are
shown in the next table followed by the results from analysis quoting the Dunn-Sidak corrected significance
levels instead of the Bonferroni ones for & procedures on n samples, i.e. considered as kn(n — 1)/2 tests in
all on the same data to test Hy: samples have the same distributions.

column2.tf1  column2.tf2 column2.tf3

1.70 1.00 0.50
4.00 2.80 3.00
0.60 6.00 2.50
9.00 1.80 6.00
0.99 4.00 2.50
2.00 1.40 5.50
1.80 9.00 7.50
7.00 2.50 0.00
0.99 5.00 3.00

Mann-Whitney-U/Kolmogorov-Smirnov-D/unpaired- tests
Number of tests = 9, p(1%) = 0.001116, p(5%) = 0.005683 [Dunn-Sidak]
C:\Program Files (x86)\simfit\dem\column2.tfl
C:\Program Files (x86)\simfit\dem\column2.tf2
N1=9,N2=9 MWU =8.00000 p =0.002262 "
KS D =0.77778 p =0.000740 **
t=-3.71551 p =0.001880 "
C:\Program Files (x86)\simfit\dem\column2.tfl
C:\Program Files (x86)\simfit\dem\column2.tf3
N1=9,N2=9 MWU =21.0000 p =0.088893
KS D =0.55556 p =0.033566
t =-2.04236 p =0.057955
C:\Program Files (x86)\simfit\dem\column2.tf2
C:\Program Files (x86)\simfit\dem\column2.tf3
N1=9,N2=9 MWU =555000 p =0.195886
KS D =0.44444 p =0.125874
t =1.46055 p =0.163497
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4.3.8 One sample robust analysis

It is obvious that outliers in a sample lead to biased parameters estimates. In some instances an experimenter
is able to examine the data and make a decision to eliminate certain observations, usually extremely low or
high values, that indicate a systematic source of variation beyond the usual spread of observational errors.
Alternatively, to avoid subjective doctoring of data, a robust method can be used which generally involves
discarding extreme values and using more appropriate numerical methods that do not assume that the sample
is normally distributed.

As an example, choose statistics from the main StMF[T menu, navigate to [Data exploration] and open the
option for [Robust analysis of one sample]. The results from examining the test file robust.tfl after
trimming 10% off the extreme values are shown below, followed by the results from handling the full data set
without any trimming in the exhaustive analysis procedure.

Robust analysis
Data: 50 N(0,1) random numbers with 5 outliers

Total sample size 50
Median value 0.2019
Median absolute deviation 1.0311
Robust standard deviation 1.5288
Trimmed mean (TM) 0.2227
Variance estimate for TM 0.0192
Winsorized mean (WM) 0.2326
Variance estimate for WM 0.0192
Number of discarded values 10
Number of included values 40
Percentage of sample used 80% (for TM and WM)
Hodges-Lehmann estimate (HL) 0.2586

Exhaustive analysis

Minimum, Maximum values -2.208, 7.000
Lower and Upper Hinges -0.829, 1.307
Coefficient of skewness 1.690
Coefficient of kurtosis 3.566
Median value 0.202
Sample mean 0.512
Sample standard deviation 1.853: CV% = 361.736%
Standard error of the mean 0.262

Upper 2.5% t-value 2.010

Lower 95% confidence limit for mean -0.014

Upper 95% confidence limit for mean 1.039
Variance of the sample 3.435

Lower 95% confidence limit for variance  2.397
Upper 95% confidence limit for variance  5.335
Shapiro-Wilks W statistic 0.851
Significance level for W 0.000 Reject normality at 1% sig.level

Clearly the exhaustive analysis indicates that the presence of outliers has created a sample that is not normally
distributed and the results from robust analysis yield better estimates for the population mean and variance
which, before adding outliers, were u = 0, o2 = 1. An outline of the theory and definitions used in this robust
analysis follows.
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Theory

If the sample vector is x1, x2, . . ., x,, the following calculations are done.

1. Using the whole sample and the inverse normal function dD‘l(.), the median M, median absolute
deviation D and a robust estimate of the standard deviation S are calculated as

M = median(x;)
D = median(|x; — M|)
S =D/®(0.75).
2. The percentage of the sample chosen by users to be eliminated from each of the tails is 100a%, then

the trimmed mean 7'M, and Winsorized mean WM, together with variance estimates VT and VW, are
calculated as follows, using k = [an] as the integer part of an.

1 n—k
™ = Z i
i=k+1
1 n—k
WM = - { Z Xi + kX +kxn_k}
n i=k+1

1 n—k
VI = — { D (i = TM)? + k(i = TM)? + k (xp = TM)?
(e Oy

S

1 n—k
VW= — { Z (xi = WM)? + k(xpe1 = WM)? + k(xp-i — WM)Z} .
i=k+1

3. If the assumed sample density is symmetrical, the Hodges-Lehman location estimator H L can be used
to estimate the center of symmetry. This is

. Xi tX; .
HL:medlan{ 5 ,1313]311},

and it is calculated along with 95% confidence limit. This would be useful if the sample was a vector
of differences between two samples X and Y for a Wilcoxon signed rank test that X is distributed F(x)
and Y is distributed F(x — 0).



Two samples robust analysis 147

4.3.9 Two samples robust analysis

Sometimes a robust estimate is required for the difference in location (with corresponding confidence limits)
for two samples, not necessarily of the same size, but without assuming normality or any other distribution.

From the main SiMF[T menu choose [Statistics], navigate to [Data exploration] and open the option for [Robust
analysis of two samples]. The two default test files are ttest.tf4 and ttest.tf5 with these values

ttest.tf4 | ttest.tfs
134 70
146 118
104 101
119 85
124 107
161 132
107 94
83
113
129
97
123

while analysis produces the following results.

Robust analysis of two samples

X-sample size 12
Y-sample size 7
Difference in location -18.501
Lower confidence limit -40.009
Upper confidence limit 2.997

Percentage confidence limit 95.30%
Lower Mann-whitney U-value 19.000
Upper Mann-Whitney U-value  66.000

The procedure is based on the assumption that X of size n, is distributed as F(x) and Y of size n, as F(x —6),
so an estimate 6 for the difference in location is calculated as

6= median(y; —x;,i = 1,2,...,nc,j = 1,2,...,ny).
100 % confidence limits Uy, and Uy are then estimated by inverting the Mann-Whitney U statistic so that

P(U<UL) <a/2
P(U<UL+1)>a/2
P(U=>Upg) <a/2
PU>Uy—-1)>a/2.
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4.4 Analysis of variance (ANOVA)
Tutorials and worked examples for simulation,
2*‘\' curve fitting, statistical analysis, and plotting.
A

https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

4.4.1 Introduction

Analysis of Variance (ANOVA) is one of the most widely used techniques in data analysis. For example,
this next data set which is contained in the test file anova.tfl is for six replicate estimates for strontium
concentrations (mg/ml) in five different locations, and it is wished to test if there are significant differences
between population means based on the sample means as listed in the last row.

282 39.6 46.3 41.0 56.3
33.2 40.8 421 441 541
36.4 379 435 464 594
34.6 371 48.8 402 627
29.1 43.6 43.7 386 60.0
31.0 424 401 36.3 573
Means 32.1 402 441 411 583

In the subsequent discussion concerning ANOVA it will be assumed that the reader is familiar with the normal,
chi-square, and F distributions, and statistical tests based on them as described in the appropriate S(MF|T
tutorial documents. In particular, the Shapiro-Wilks test for normality and the Bartlett or Levene tests for
homogeneity of variance could be used by purists determined to check if ANOVA is justified, because it should
be pointed out that ANOVA is often used uncritically where better techniques may be more appropriate.

Theory

In studying the distribution of the variance estimate from a sample of size n from a normal distribution with
mean y and variance o2, you will have encountered the following decomposition of a sum of squares

IR 3 EEL B EEVY

i=1 i=1

into independent chi-square variables with n — 1 and 1 degrees of freedom respectively. Analysis of variance
is an extension of this procedure based on linear models, assuming normality and constant variance, then
partitioning of chi-square variables into two or more independent components, invoking Cochran’s theorem
and comparing the ratios to F variables with the appropriate degrees of freedom for variance ratio tests. It can
be used, for instance, when you have a set of samples (column vectors) that come from normal distributions
with the same variance and wish to test if all the samples have the same mean. Due to the widespread use
of this technique, many people use it even though the original data are not normally distributed with the
same variance, by first applying variance stabilizing transformations, like the square root with counts, which
can sometimes transform non-normal data into transformed data that are approximately normally distributed.
Note that you should never make the common mistake of supposing that ANOVA is model free: ANOVA is
always based upon data collected as replicates and organized into groups, where it is assumed that all the data
are normally distributed with the same variance but with mean values that differ from cell to cell according to
an assumed linear model.

Variance stabilizing transformations

A number of transformations are in use that attempt to create new data that is more approximately normally
distributed than the original data, or at least has more constant variance, as the two aims can not usually both
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be achieved. If the distribution of a random variable X is known, then the variance of a function of X can in
some cases be calculated explicitly. However, to a very crude first approximation, if a random variable X is
transformed by Y = f(X), then the variances are related by the differential equation

2
V() ~ (%) V(X)

which yields f(.) on integration, e.g. for constant variance where V(Y) = k for some constant k& would be
required, given V(X).

Note that SIMFT provides the ability to explore the commonly used transformations, to be discussed next,
whenever ANOVA or tests for homogeneity of variance are used.

The angular transformation

This arcsine transformation is sometimes used for binomial data with parameters N and p, e.g., for X successes
in N trials, when

X ~b(N,p)

Y = arcsin(+/X/N)
E(Y) =~ arcsin(+/p)
V(Y) =~ 1/(4N) (using radial measure).

However, note that the variance of the transformed data is only constant in situations where there are constant
binomial denominators.

The square root transformation

This is often used for counts, e.g., for Poisson variables with mean y, when

X ~ Poisson(u)

Y =+x
E(Y) =i
V(Y) =~ 1/4.

The log transformation

When the variance of X is proportional to a known power @ of E(X), then the power transformation Y = X%
will stabilize variance for 8 = 1 — /2. The angular and square root transformations are, of course, just special
cases of this, but a singular case of interest is the constant coefficient of variation situation V(X) o E(X)?
which justifies the log transform, as follows

E(X)=p
V(X) qu
Y =logX

V(Y) = k, aconstant.

Introduction to 1-way ANOVA

As this is the most frequently encountered situation and is the model for subsequent variants it will be discussed
in some detail.
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This procedure is used when you have groups (i.e. samples) of normally distributed measurements with the
same variance and wish to test if all the population means are equal. With two groups it is equivalent to the
two-sample unpaired ¢ test, so it can be regarded as an extension of this test to cases with more than two
groups. Suppose a random variable Y is measured for groupsi = 1,2, ..., k and subjects j = 1,2, ... n;, and
it is assumed that the appropriate general linear model for the n = Zf.‘:] n; observations is

Yij =,u+al~+el~j
k
where Za,- =0
i=1

and the errors e;; are independently normally distributed with zero mean and common variance 2.

Then the 1-way ANOVA null hypothesis is
Hy:a;=0, fori=1,2,...,k,

that is, the means for all & groups are equal, and the basic equations are as follows.
ni

Vi = Zyij/ni

k n;
i=1

k n; k
(vij —9)*= Z Z(J’ij -5+ Z ni(3: - 5)2
=1

Jj=1 i=1 j=1

k n;
Total SSQ = Z Z(yij — )2, withDF =n -1
i=1 j=1

k n;
Residual SSQ = Z Z(yij —5)% withDF =n—k
i=1 j=I

k
Group SSQ = Z ni(3: — )2, with DF = k — 1.

i=1

Here Total SSQ is the overall sum of squares, Group SSQ is the between groups (i.e. among groups) sum of
squares, and Residual SSQ is the residual (i.e. within groups, or error) sum of squares. The mean sums of
squares and F value can be calculated from these using

Total SSQ = Residual SSQ + Group SSQ
Total DF = Residual DF + Group DF

Group SSQO
G MS=——
roup Group DF
Residual S§
Residual MS = M
Residual DF
Group MS

~ Residual MS’

so that the degrees of freedom for the F variance ratio to test if the between groups M S is significantly larger
than the residual MS are k — 1 and n — k. The SIMF[T 1-way ANOVA procedure allows you to include or
exclude selected groups, i.e., data columns, and to employ variance stabilizing transformations if required, but
it also provides a nonparametric test, and it allows you to explore which group or groups differ significantly
in the event of the F value leading to a rejection of Hy.
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4.4.2 1-way ANOVA

Example 1

Open the SIMF]T main menu, select the [Statistics] option, choose 1-way-ANOVA, indicate that untransformed
data are to be used, then analyze the test file provided which is a data matrix contained in anova.tfl. This
particular data set is for six replicate estimates for strontium concentrations (mg/ml) in five different locations,
and it is wished to test if there are significant differences between the mean levels as listed in the last row.

28.2 39.6 46.3 41.0 56.3
33.2 408 421 441 541
36.4 379 435 464 594
346 37.1 48.8 402 627
29.1 43.6 43.7 386 60.0
31.0 424 401 36.3 57.3
Means 32.1 402 441 411 583

The results, followed by a scatter plot, are as follows.

1-Way Analysis of Variance: Grand Mean 43.16
Transformation: x (untransformed data)

Source SSQ NDOF MSQ F p
Between Groups 2193 4 548.4 56.15 0.0000
Residual 244 1 25 9.765

Total 24383 29

Scatter Plot
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Columns

Clearly the null hypothesis of equal column means must be rejected at the 1% significance level as p < 0.01.
However, this does not tell us which columns are significantly different from the rest, only that at least one
column differs significantly. The previous scatter plot does however suggests that column 5 appears atypical,
and possibly column 1 also.
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Another way to explore this data set is to plot the means with error bars representing the 95% confidence

limits as follows.

Data and Error-Bars

65 | -
55 | -
0
@
S 451 -
b=
35 | -
25 | -
1 1 1 1
1 2 3 5
Columns
Example 2

The sample sizes need not be identical for 1-way ANOVA, and the next case to be considered is where there
are 5 groups of sizes 5, 8, 6, 8, and 8 for weight gain in pounds of pigs from 5 different litters.

23
27
26
19
30

29
25
33
36
32
28
30
31

38
31
28
35
33
36

30
27
28
22
33
34
34
32

31
33
31
28
30
24
29
30

As the sample sizes differ the data cannot be entered as a matrix this time, and must be entered as individual
column vectors, from a project archive, or as a library file which simply holds the locations of individual data

files for each of the columns.

So now repeat the above procedure, but this time select to supply a library file and input the test file anova . TFL
which then reads in data from the test files columnl.tfl, columnl.tf?2, ..., columnl. tf5.
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1-Way Analysis of Variance: Grand Mean 29.89
Transformation: x (untransformed data)

Source SSQ NDOF MSQ F p
Between Groups 202.0 4 5051 3931 0.0111
Residual 385.5 30 12.85

Total 587.5 34

There is yet another way to display 1-way ANOVA data as illustrated by the next plot.

Range and Percentiles

T T T T T
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1 1 1 1 1
1 2 3 4 5

Samples

Here the lowest line segments join the lowest sample value for the corresponding groups, the upper line
segments join the largest sample values, while between them the line segments join the points corresponding
to the 25%, 50%, and 75% levels.

This time the results suggest rejecting the null hypothesis of equal means at the 5% significance level as
p < 0.05, but not the 1% significance level as p > 0.01.

The Tukey post-ANOVA Q test to further illuminate the results from this type of analysis will be described in
another tutorial document.
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4.4.3 1-way ANOVA (Kruskal-Wallis nonparametric)

If it is clear that the data are not normally distributed with the same variance then it is possible to perform the
nonparametric Kruskal-Wallis test, either alone, or at the same time as 1-way ANOVA to compare the results.
Of course, it would be usual to pre-determine which result to accept, otherwise the Bonferroni principle would
have to be used.

Example 1

Open the SIMF]T main menu, select the [Statistics] option, choose 1-way-ANOVA, indicate that untransformed
data are to be used, then analyze the test file provided which is a data matrix contained in anova.tfl. This
particular data set is for six replicate estimates for strontium concentrations (mg/ml) in five different locations,
and it is wished to test if there are significant differences between the mean levels as listed in the last row.

282 39.6 46.3 41.0 56.3
33.2 40.8 421 441 541
36.4 379 435 464 594
34.6 371 48.8 402 627
291 43.6 43.7 386 60.0
31.0 424 401 36.3 573
Means 32.1 402 441 411 583

The results are as follows.

1-Way Analysis of Variance: Grand Mean 43.16
Transformation: x (untransformed data)

Source SSQ NDOF MSQ F p
Between Groups 2193 4 548.4 56.15 0.0000
Residual 2441 25 9.765

Total 24383 29

Kruskal-Wallis Nonparametric One Way Analysis of Variance
Test statistic  NDOF p
23.30 4 0.0001

Clearly the null hypothesis of equal column means and medians must be rejected at the 1% significance level
as p < 0.01 for both parametric and nonparameteric 1-way ANOVA.

Example 2

The sample sizes need not be identical for 1-way ANOVA, and the next case to be considered is where there
are 5 groups of sizes 5, 8, 6, 8, and 8 for weight gain in pounds of pigs from 5 different litters.

23 29 38 30 31
27 25 31 27 833
26 33 28 28 31
19 36 35 22 28
30 32 33 33 30
28 36 34 24
30 34 29
31 32 30

As the sample sizes differ, the data cannot be entered as a matrix this time, and must be entered as individual
column vectors, from a project archive, or as a library file which simply holds the locations of individual data
files for each of the columns.

So now repeat the above procedure, but this time select to supply a library file and input the test file anova . TFL
which then reads in data from the test files columnl.tfl, columnl.tf2, ..., columnl. tf5.
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1-Way Analysis of Variance: Grand Mean 29.89
Transformation: x (untransformed data)

Source SSQ NDOF MSQ F p
Between Groups 202.0 4 50.51 3.931 0.0111
Residual 385.5 30 12.85

Total 587.5 34

Kruskal-Wallis Nonparametric One Way Analysis of Variance
Test statistic  NDOF p
10.54 4 0.0323

Clearly the null hypothesis of equal column means and medians must be rejected at the 5% significance level,
but not the 1% level, as p < 0.05 for both the parametric and nonparameteric 1-way ANOVA.

There is yet another way to display 1-way ANOVA data as illustrated by the next plot.

Box and Whisker Plot
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This is more in keeping with a nonparameteric test and displays the ranges and medians as a box and whisker
plot, that is: the lowest value, the 25% point, the 50% median point, the 75% point, and the largest value.

The Kruskal-Wallis test
The null hypothesis for standard 1-way ANOVA is

Hy: The groups (i.e., column vectors) are from the same normal distribution,
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while for the Kruskal-Wallis analysis of variance by ranks it is the weaker condition
Hy: The groups (i.e., column vectors) are from the same distribution.

The Kruskal-Wallis test is in reality an extension of the Mann-Whitney U test to k independent samples, and
it is actually designed to test Hy: the medians are all equal.

The pooled sample is ranked, with tied scores assigned average ranks, then a test statistic H for k groups, each
with n; observations, is calculated as

k 2
12 R’
H= 4 -3 1

n(n+1)iz:;n,~ (n+1)

k

where n = Z n;

i=1

and R; is the sum of the ranks of the n; observations in group i.

This test is actually a 1-way ANOVA carried out on the ranks of the data. The p value are calculated exactly
for small samples, but the fact that H approximately follows a Xi_] distribution is used for large samples.

If there are ties, then H is corrected by dividing by A defined as

Z(f? —1;)
|

A=
nd—n

where #; is the number of tied scores in the ith group of ties, and m is the number of groups of tied ranks.

The test is 3/7 (i.e, 95%) as powerful as the 1-way ANOVA test when the parametric test is justified, but it is
more powerful, and should always be used if the assumptions of the linear normal model are not appropriate.

As it is unusual for the sample sizes to be large enough to verify that all the samples are normally distributed
and with the same variance, rejection of Hy in the Kruskal-Wallis test (which is the higher order analogue of
the Mann-Whitney U test, just as 1-way ANOVA is the higher analogue of the 7 test) should always be taken
seriously. This is one reason why SIMF]T provides the convenient option to perform both 1-way ANOVA and
the Kruskal-Wallis test at the same time.
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4.4.4 Tukey Q post-ANOVA test

The ANOVA 1-way analysis tests for equality between the means in a number of samples but, if the null
hypothesis is rejected, it does not indicate for which samples the means are significantly different. In fact, for
k samples there are k(k — 1) /2 possible pairwise comparisons so alternative techniques have been developed.
The SIMFIT ANOVA procedure provides the option to use the Tukey O post-ANOVA test for this multiple
comparison purpose.

Open the SIMF]T main menu, select the [Statistics] option, choose 1-way-ANOVA, indicate that untransformed
data are to be used, then analyze the test file provided which is a data matrix contained in anova.tfl. This
particular data set is for six replicate estimates for strontium concentrations (mg/ml) in five different locations,
and it is wished to test if there are significant differences between the mean levels as listed in the last row.

282 39.6 46.3 41.0 56.3
33.2 40.8 421 441 541
364 379 435 464 594
346 371 48.8 40.2 627
29.1 43.6 43.7 386 60.0
31.0 424 401 36.3 57.3
Means 32.1 402 441 411 583

The results are as follows.

1-Way Analysis of Variance: Grand Mean 43.16
Transformation: x (untransformed data)

Source SSQ NDOF MSQ F p
Between Groups 2193 4 548.4 56.15 0.0000
Residual 244 1 25 9.765

Total 24383 29

Clearly the null hypothesis of equal column means must be rejected at the 1% significance level as p < 0.01
so the following results were obtained for the Tukey test.

Tukey Q-test with 5 means and 10 comparisons
5% point = 4.189, 1% point = 5.125

Column  Column Q p 5% 1% np na
5 1 20.55  0.0001 * * 6 6
5 2 14.16  0.0001 * * 6 6
5 4 13.48  0.0001 * * 6 6
5 3 11.14  0.0001 * * 6 6
3 1 9.406  0.0001 * * 6 6
3 2 3.018  0.2377 NS NS 6 6
3 4 [[2.338 0.4792]] No-Test No-Test 6 6
4 1 7.068  0.0005 * * 6 6
4 2 [[0.6793 0.9885]] No-Test No-Test 6 6
2 1 6.388  0.0013 * * 6 6

[ 5%)] and/or [[ 1%)]] No-Test results given for reference only

In this table, columns where means differ significantly are indicated by *, columns where means are not
significantly different are indicated by NS, and columns that were not tested are indicated by No-test with
hypothetical p values in square brackets.

Note that, for the Tukey test, the means are ranked and columns with means between those of extreme columns
that differ significantly are not tested, according to the protocol that is recommended for this test. This involves
a systematic procedure where the largest mean is compared to the smallest, then the largest mean is compared
with the second largest, and so on. If no difference is found between two means then it is concluded that no
difference exists between any means enclosed by these two, and so no testing is done.
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The test statistic Q for comparing columns A and B with means y4, yp and sample sizes n4, np is

_YB—Ya
0= SE
$2
where SE =/ —, ifn=ns =ng
n

2 (1 1
SE = |& (—+—), ifna # np
2 \nax np

s2 = error M.S

and the significance level for Q is calculated as a studentized range.

Evidently, for these data, we reach the conclusion that
* data in column 5 differs significantly from data in columns 1, 2, 3, and 4,
* data in column 3 differs significantly from data in column 1, and
* data in column 1 differs significantly from data in columns 2 and 4.

This conclusion is also fairly obvious from the plot of means with error bars representing the 95% confidence
limits as follows.

Data and Error-Bars
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4.45 2-way ANOVA

The difference between 1-way ANOVA and 2-way ANOVA is that, whereas 1-way ANOVA only tests for
differences between column means, 2-way ANOVA also considers the possibility of effects dependent on the
rows. Note that, because the number of observations is the same for each subject, the data can be input as a
data matrix into the SIMF]T file selection control either from a data file, by typing in from the keyboard, or by
copying and pasting from a spreadsheet.

Worked example for treatments and clotting times

From the main SIMF[T menus choose [Statistics] followed by [ANOVA] then select [2-way ANOVA] and,
instead of using the default test file anova2.tfl, use the [Browse] feature on the file selection control to
search for and then open the SIMF]T test file anova2.tf2 which has the following data set.

Treatment

Subject 1 2 3 4

1 840 940 980 122
12.8 152 129 144
960 9.10 11.2 9.80
9.80 880 9.90 12.0
8.40 820 8.50 8.50
860 990 9.80 10.9
890 9.00 920 104
790 810 8.20 10.0

0N O WN

These are clotting times in minutes from eight subjects treated by four methods and analysis leads to the
following results, indicating both subject and treatment dependent effects.

2-Way Analysis of Variance: Grand mean 9.994

Source SSQ NDOF MSSQ F p
Between rows (Subjects) 78.99 7 11.28 17.20 0.0000
Between columns (Treatments) 13.02 3 4339 6.615 0.0025
Residual 13.77 21 0.6559

Total 105.8 31

Note that now there are variance ratio test statistics ' and corresponding p values for both the rows and the
columns and the calculations involved in constructing this ANOVA 2-way table follow.

The assumed linear model

The 2-way ANOVA procedure is used when you want to include row and column effects in a completely
randomized design, i.e., assuming no interaction and one replicate per cell so that the appropriate linear model
is

Yij =t ai+Bj+eij

Zr:a[ =0
l:l
Zﬁj =0
Jj=1

for a data matrix with » rows and ¢ columns, i.e. n = rc.
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Calculating the variance ratio statistics

The mean sums of squares and degrees of freedom for row and column effects are worked out, then the
appropriate I and p values are calculated. Using R; for the row sums, C; for the column sums, and
T=Y _,R = 25:1 C; for the sum of observations, these are

Row SSQ =

Riz/c —T%/n, with DF =r — 1
i=1
C
Column §SQ = » C}/r—T?/n, with DF = ¢ -1

Jj=1

Total SSQ = Z Zy%j —T%/n, with DF =n — 1
i=1 j=I

Residual SSQ = Total SSQ — Row SSQ — Column SSQ, with DF = (r — 1)(c - 1)

where Row SSQ is the between rows sums of squares, Column SSQ is the between columns sum of squares,
Total SSQ is the total sum of squares and Residual SSQ is the residual, or error sum of squares. Now two F
statistics can be calculated from the mean sums of squares as

Rows M S

R= Residual M S
Column M S

€~ Residual MS

The statistic Fg is compared with F(r — 1, (r — 1)(c — 1)) to test
Hg :a;=0,i=1,2,...,r

i.e., absence of row effects, while F¢ is compared with F(c — 1, (r — 1)(c — 1)) to test
Hc:p;=0,j=12,...,c

i.e., absence of column effects.

As with 1-way ANOVA, normality is assumed, and the technique can be extended to the case with replicates
if it is wished to study variation within cells.
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4.4.6 2-way ANOVA (Friedman nonparametric)

When the 2-way ANOVA assumptions are not justified, the Friedman nonparametric 2-way analysis of variance
by ranks is often used. This investigates the score differences between k matched sets of size [. If k = 2 then
the sign test, or else the Wilcoxon signed rank test, should be used.

From the main SIMF|T menu choose [Statistics], [ANOVA], then the Friedman test, and read in data from
the default test file anova2.tf1, which has data for scores for matched samples of eighteen rats under three
different patterns of enforcement as follows.

1.00 3.00 2.00
2.00 3.00 1.00
1.00 3.00 2.00
1.00 2.00 3.00
3.00 1.00 2.00
2.00 3.00 1.00
3.00 2.00 1.00
1.00 3.00 2.00
3.00 1.00 2.00
3.00 1.00 2.00
2.00 3.00 1.00
2.00 3.00 1.00
3.00 2.00 1.00
2.00 3.00 1.00
250 250 1.00
3.00 2.00 1.00
3.00 2.00 1.00
2.00 3.00 1.00

Analysis then leads to the results below.

Friedman Nonparametric 2-way ANOVA

Test Statistic (FR) 8.583
Number of degrees of freedom 2
Significance (i.e., p-value) 0.0137

As the data matrix represents scores rather than normally distributed variables with identical variances, the
matrix was analyzed as a two way table using the nonparametric Friedman 2-way ANOVA procedure to test

Hj : all medians are equal, against the alternative,
H, : they come from different populations.
For this analysis SIMF[T first rearranges these data into a k = 3 by n = 18 matrix, then ranks column scores

for this transposed matrix as r;; for row i and column j, assigning average ranks for ties, works out rank sums
ast; = Zi.:] rj, then calculates FR given by

2
FR = nk(kH)Z(;, n(k +1)/2)%.

For small samples, exact significance levels are calculated, while for large samples it is assumed that FR
follows a X]%_l distribution.
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4.4.7 Repeat measures ANOVA

Repeat measures ANOVA is a special type of 2-way ANOVA where the rows in the data matrix are subjects
but the columns are now repeated observations of the same variable in some sequence, for instance at fixed
intervals of time. It is usual to investigate the data for sphericity, which is when the covariance matrix of
orthonormal contrasts is a multiple of the identity matrix, as this is required before the repeat measures
ANOVA procedure is valid. Note that SIMFT also provides the options for Hotelling 72 and Friedman
nonparametric ANOVA tests at the same time, in case the hypothesis of sphericity is not supported but the
indication of a column effect is still of interest.

Open the main SIMF]T menu, choose [Statistics], [ANOVA], then repeat measures, and analyze the default
data set contained in test file anova6. tf1, which has four measurements of the same variable for each of five
subjects arranged as follows.

Subject Measurement1 Measurement2 Measurement3 Measurement 4

A 30 28 16 34
B 14 18 10 22
C 24 20 18 30
D 38 34 20 44
E 26 28 14 30

Now choose to analyze without a data transformation which leads to the following result where a likelihood
ratio test statistic (LRTS) is calculated to test for sphericity.

Repeat-Measures Analysis of Variance
Data file: anova6.tfl

Sphericity test on CV of Helmert orthonormal contrasts
Hy: Covariance matrix = k*ldentity (for some k > 0)

Number of small eigenvalues 0 ie. <1.00E-07
Number of variables (m) 4
Sample size (n) 5
Determinant of CV 154.9
Trace of CV 28.20
Mauchly W statistic 0.1865
LRTS(-21log(4)) 4.572
Degrees of Freedom 5
P(x? > LRTS) 0.4704
e(Geisser-Greenhouse) 0.6049
e (Huynh-Feldt) 1.0000
e (lower bound) 0.3333

Clearly the hypothesis of sphericity cannot be rejected for these data.

The next table displays the ANOVA results with, in this example, the optional Friedman nonparametric test,
and Hotelling 72 test also included.
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Results for repeat-measures ANOVA: Grand mean 24.90

Source SSQ NDOF MSSQ F p

Subjects 6.808E+02 4

Treatments  6.982E+02 3 232.7 24.76 0.0000
0.0006 Greenhouse-Geisser
0.0000 Huyhn-Feldt
0.0076 Lower-bound

Remainder 112.8 12 9.400
Total 1492 19

Results for Friedman Nonparametric Two-Way Analysis of Variance

Test Statistic 13.56
Number of degrees of freedom 3
Significance 0.0036

Results for the Hotelling one sample T2 test
Hy: Column means are all equal

Number of rows 5
Number of columns 4
Hotelling 72 170.5
F Statistic (FT'S) 28.41
Degrees of Freedom (d1, d2) 3,2
P(F(d1,d2) > FTS) 0.0342 Reject Hy at 5% significance level

Note that, for these data, all three tests reject the null hypothesis of the absence of a column effect.
Theory

The repeat measures procedure is used when you have paired measurements, and wish to test for absence of
treatment effects. With two samples it is equivalent to the two-sample paired ¢ test, so it can be regarded
as an extension of this test to cases with more than two columns. If the rows of a data matrix represent the
effects of different column-wise treatments on the same subjects, so that the values are serially correlated,
and it is wished to test for significant treatment effects irrespective of differences between subjects, then
repeated-measurements design is appropriate. The simplest, model-free, approach is to treat this as a special
case of 2-way ANOVA where only between-column effects are considered and between-row effects, i.e.,
between subject variances, are expected to be appreciable, but are not considered. Many further specialized
techniques are also possible, when it is reasonable to attempt to model the treatment effects, e.g., when the
columns represent observations in sequence of, say, time or drug concentration, but often such effects are best
fitted by nonlinear rather than linear models. A useful way to visualize repeated-measurements ANOVA data
with small samples (< 12 subjects) is to input the matrix into the exhaustive analysis of a matrix procedure
and plot the matrix with rows identified by different symbols.

The previous tables show the results from analyzing data in the test file anova6.tfl in three sections, a
Mauchly sphericity test, an ANOVA table, and a Hotelling T2 test, all of which will now be discussed.

In order for the normal two-way univariate ANOVA to be appropriate, sphericity of the covariance matrix of
orthonormal contrasts is required. The test is based on a orthonormal contrast matrix, for example a Helmert
matrix of the form
/N2 -1/\2 0 0 0
1/v6  1/¥6 -2/V6 0 0
1/N12 1412 1/V12 =3/412 0
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which, for m columns, has dimensions m — 1 by m, and where every row sum is zero, every row has length
unity, and all the rows are orthogonal. Such Helmert conrasts compare each successive column mean with
the average of the preceding (or following) column means but, in the subsequent discussion, any orthonormal
contrast matrix leads to the same end result, namely, when the covariance matrix of orthonormal contrasts
satisfies the sphericity condition, then the sums of squares used to construct the F test statistics will be
independent chi-square variables and the two-way univariate ANOVA technique will be the most powerful
technique to test for equality of column means.

The sphericity test uses the sample covariance matrix S to construct the Mauchly W statistic given by

|CSCT|
[Tr(CSCT)/(m - 1)]m1"

If § is estimated with v degrees of freedom then

2m%-3m+3

2

=y - g w
X T Tem—1) |8

is approximately distributed as chi-square with m(m — 1)/2 — 1 degrees of freedom. Clearly, the results in
the previous tables show that the hypothesis of sphericity cannot be rejected, and the results from two-way
ANOVA can be tentatively accepted. However, in some instances, it may be necessary to alter the degrees of
freedom for the F statistics as discussed next.

The model for univariate repeated measures with m treatments used once on each of n subjects is a mixed
model of the form

yij=/1+‘l'i+ﬂj+€ij,

where 7; is the fixed effect of treatment i so that 3} 7; = 0, and ; is the random effect of subject j with
mean zero, and Z;le fB; = 0. Hence the decomposition of the sum of squares is

z’”: zn:()’ij -5 = ”Zmz(?i‘ -5.)? +Zmlzn:()’tj Y =V +5)%
im1

i=1 j=1 i=1 j=1
that is
§SOWithin subjects = SSCtreatments + SSCError

with degrees of freedom
nm-—1)=(m-1)+(m-1)(n-1).

To test the hypothesis of no treatment effect, that is
Hy:7=0fori=1,2,...,m,
the appropriate test statistic would be

_ SSQtreatment/ (m — 1)
SSQError/[(m - 1)(” - ])]

but, to make this test more robust, it may be necessary to adjust the degrees of freedom when calculating
critical levels. In fact the degrees of freedom should be taken as

Numerator degrees of freedom = e(m — 1)

Denominator degrees of freedom = e(m —1)(n—1)

where there are four possibilities for the correction factor €, all with 0 < e < 1.

1. The default epsilon.
This is € = 1, which is the correct choice if the sphericity criterion is met.
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2.

The Greenhouse-Geisser epsilon.
This is
(Zmtag)?
S P ——" Y
(m—1) T 4
where A; are the eigenvalues of the covariance matrix of orthonormal contrasts, and it could be used if
the sphericity criterion is not met, although some argue that it is an ultraconservative estimate.

. The Huyhn-Feldt epsilon.

This is can also be used when the sphericity criterion is not met, and it is constructed from the
Greenhouse-Geisser estimate € as follows

a=n(m-1)é-2
b=(m-1)(n-G—-(m-1)é
€ =min(1,a/b),

where G is the number of groups. It is generally recommended to use this estimate if the ANOVA
probabilities given by the various adjustments differ appreciably.

The lower bound epsilon.
This is defined as
e=1/(m-1)

which is the smallest value and results in using the F statistic with 1 and n — 1 degrees of freedom.

If the sphericity criterion is not met, then it is possible to use multivariate techniques such as MANOVA as

long as n > m, as these do not require sphericity, but these will always be less powerful than the univariate
ANOVA just discussed.

One possibility is to use the Hotelling 72 test to see if the column means differ significantly, and the results
displayed in the previous tables were obtained in this way. Again a matrix C of orthonormal contrasts is used
together with the vector of column means

y = (y]’y2»~-~»ym)T

to construct the statistic

since

T? = n(Cy)T (cscT) ' (Cy)

(n—m+1)T?

m“’F(}ﬂ—l,ﬂ—ﬂ’l-l-l)

if all column means are equal.
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4.4.8 3-way ANOVA (Latin square)

Experimental design seeks to optimize ANOVA in order to eliminate systematic effects, and one such design
is the Latin square. This requires a m by m matrix of observations, but also a corresponding m by m Latin
square matrix of treatments, so that

 each row of the Latin square contains all of the m treatments;
¢ the order of treatments is different within every row; and
* the observations are arranged according to the pattern dictated by the Latin square.

Note that SIMF[T provides the option to generate random Latin squares to avoid systematic effects with
repeated experiments.

From the SiMFIT main menu choose [Statistics], [ANOVA], then [Latin squares] and open the test file
anova3.tfl which contains a 10 by 5 data matrix as follows.

5 4 1 3 2
2 5 4 1 3
3 2 5 4 1
1 3 2 5 4
4 1 3 2 5

6.67 7.15 829 8.95 09.62
540 4.77 540 754 6.93
7.32 853 850 9.99 9.68
492 500 729 7.85 7.08
488 6.16 7.83 5.38 8.51

Here the upper 5 by 5 matrix colored red is the Latin square, which corresponds to the lower 5 by 5 matrix
of observations. In other words, observation(5 + 7, j) corresponds to treatment(i, j) fori = 1,2,...,5 and
Jj =1,2,... 5. For example, observation(1, 1) which is 6.67 resulted from treatment 5, observation(1,2)
which is 7.15 resulted from treatment 4, observation(5,4) which is 5.38 resulted from treatment 2, etc.

Analysis leads to the following table.

Three Way Analysis of Variance: Grand mean 7.186
Data file: anova3.tfl
Data title: Latin square ANOVA Data ... see NAG routine GO4ADF

Source NDOF  SSQ MSQ F p
Rows 4 29.42 7.356 9.027 0.0013
Columns 4 22.99 5.749 7.055 0.0037
Treatments 4 0.5423 0.1356 0.1664 0.9514
Error 12 9.779 0.8149

Total 24 62.74 2.614

Mean Values

Row means 8.136  6.008 8.804 6.428 6.552

Column means 5.838 6.322 7.462 7.942 8.364
Treatment means 7.318 7.244 7.206 6.900 7.260
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Theory for Latin square ANOVA
The linear model for a m by m Latin square ANOVA is

Vijk = H+ai+Bj+ Vi +eijk
m

Za/,- =0

i=1

B;=0

EMS I

[
\<
S
Il
(e

kel
I

where «@;, B and y, represent the row, column and treatment effect, and e;; is assumed to be normally
distributed with zero mean and variance o>. The sum of squares partition is now

Total SSQ = Row SSQ + Column SSQ + Treatment SSQ + Residual SSQ

where the m? observations are arranged in the form of a m by m matrix so that every treatment occurs once
in each row and column. This design, which is used for economical reasons to account for row, column, and
treatment effects, leads to the three variance ratios

Row M S
FR=——"7"—F7
Residual M S
Column M S
Fo=——r
Residual M S
Treatment M S
Fr=——7"7"78#¥+H7—¥-
Residual M S

to use in F tests with m — 1, and (m — 1) (m — 2) degrees of freedom. Note that SIMF[T data files for Latin
square designs with m treatment levels have 2m rows and m columns, where the first m by m block identifies
the treatments, and the next m by m block of data are the observations. When designing such experiments,
the particular Latin square used should be chosen randomly if possible as described later. For instance, study
the test file anova3.tfl, which should be consulted for details, noting that integers (1, 2, 3, 4, 5) are used
instead of the usual letters (A, B, C, D, E) in the data file header to indicate the position of the treatments.

Note that in the Latin square results table there are now three p values for significance testing between rows,
columns, and treatments.

Generating random Latin squares

This section describes how to generate a data file so that SI(MF[T can perform Latin square analysis. This
involves three procedures.

1. Generate a random Latin square
2. Organize the observations according to the design
3. Fuse the Latin square and Observations to make a data matrix

From the SIMFIT main menu choose [A/Z], open rannum, choose random permutations, then generate a Latin
square like this next one.
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Random k by k Latin square: k =5

5 2 4 1 3
3 5 2 4 1
4 1 3 5 2
2 4 1 38 5
1 3 5 2 4
Equivalent alphabetical representation
E B D A C
C E B D A
D A C E B
B D A C E
A C E B D

Now proceed as follows.

» Save the k by k data from rannum to a file in integer format, not alphabetical format.
* Create a k by k data-only file with the observations arranged according to the saved Latin square

* Fuse the two files to make a 2k by k data file where the upper matrix contains the Latin square integers.

In order to fuse the two files you can use editmt to combine the two files but it is very easy to proceed as
follows.

* Open the Latin square matrix in a text editor such as Notepad

 Select the k by k Latin square integer matrix and copy to the clipboard
* Open the k by k data matrix in a text editor

* Paste the k by k Latin square integer matrix before the data section
 Edit the edited data matrix at line 1 to indicate the changes

e Change the matrix dimension on line 2 from & k& into 2k &

¢ Save the edited data file.

Alternatively, as data files copied from the clipboard into SIMF]T do not require titles and array dimensions,

you

BN U R W N v

can easily paste the following data matrix directly into SIMF[T from the clipboard.

4 1 3 2

5 4 1 3

2 5 4 1

3 2 5 4

1 3 2 5
.67 7.15 8.29 8.95 9.62
.40 4.77 5.40 7.54 6.93
.32 8.53 8.50 9.99 9.68
.92 5.00 7.29 7.85 7.08
.88 6.16 7.83 5.38 8.51
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4.4.9 Groups and subgroups ANOVA

In order to appreciate what is involved in groups and subgroups ANOVA, consider the following data set
contained in the SIMF]T test file anova4.tfl and made available after opening the main SIMF[T menu,
followed by choosing [Statistics], [ANOVA], then the groups and subgroups option.

Groups Subgroups Observations
2.1
24
2.0
2.0
2.0
2.4
2.1
2.2
24
2.2
2.6
24
24
25
1.9
1.7
2.1
1.5
2.0
1.9
1.7
1.9
1.9
1.9
2.0
2.1
2.3

WWWMNDMNMDMNODNON =222 0000 PR PRPOOWONDNODN = =2 2 2

MDD MNODMNDMNDMNDMNDMNDMNRN 2 b b b d el 1l 4 d

The first column is the group number (in nondecreasing order), the second column is the subgroup within the
group (in nondecreasing order), and the third column holds the corresponding observations. Note that there
are no limits to the number of groups, nor to the sizes of the subgroups, but any data file supplied for groups
and subgroups ANOVA must be arranged exactly as above.

These data were obtained as follows.

* The two groups represent data obtained in two consecutive years.

* The subgroups of size five and three are consignments of materials in those two years.

» The observations are replicates for percentages of stretch of the material within the groups and sub-
groups.

It is wished to test if there are significant differences between the properties of material delivered in the two
years, and also between the samples drawn, and analysis then leads to the following results table.
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Results for Groups/Subgroups 2-Way ANOVA
Transformation = x (i.e. untransformed data)

Source SSQ NDOF F p
Between Groups 0.4748 1 16.15 0.0007
Subgroups 0.8162 6 4.626 0.0047
Residual 0.5587 19

Total 1.850 26

Group Subgroup Mean

1 1 2.100
2.233
2.400
2.433
1.800
1.867
1.860
2.133

NDMNDN = = a4
WN =0~ wN

Description Mean Sample size

Group 1 2.206 16
Group 2 1.936 11
Grand 2.096 27

These results could be interpreted to suggest a between groups effect (p = 0.0007) and also a subgroup effect
(p = 0.0047) and the requisite theory will be presented next.

Theory

The linear models for ANOVA are easy to manipulate mathematically and trivial to implement in computer
programs, and this has lead to a vast number of possible designs for ANOVA procedures. This situation is
likely to bewilder users, and may easily mislead the unwary, as it stretches credulity to the limit to believe
that experiments, which almost invariably reflect nonlinear non-normal phenomena, can be analyzed in a
meaningful way by such elementary models. Nevertheless, ANOVA remains valuable for preliminary data
exploration, or in situations like clinical or agricultural trials, where only gross effects are of interest and
precise modelling is out of the question. So groups and subgroups ANOVA is a versatile and flexible technique
provided by SIMF[T for two-way hierarchical classification with subgroups of possibly unequal size, assuming
a fixed effects model.

Suppose, for instance, that there are k > 2 treatment groups, with group i subdivided into /; treatment
subgroups, where subgroup j contains n;; observations. That is, observation y,,;; is observation m in
subgroup j of group i where

1SiSk,1SjSli,1SmSnij.

The between groups, between subgroups within groups, and residual sums of squares are

k
Group S0 = Y ni (3. - 3..)°

i=1

koL

Subgroup SSQ = Z Z nij (3. —5.)>
=1 j=1
i loni

Residual SSQ = Z Z(ymij -5.)?

i=1 j=1 m=1
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which, using / = Y%  I; and n = 3% | n; , and normalizing give the variance ratios

_ Group SSQ/(k - 1)
¢~ Residual SSQ/(n 1)
Fe o Subgroup SSQ/(1 — k)
$ ~ Residual SSQ/(n - 1)

to test for between groups and between subgroups effects.

Of course, there are now two p values for significance testing and, also note that, because this technique
allows for many designs that cannot be represented by rectangular matrices. However, the data files must have
three columns and n rows: column one containing the group numbers, column two containing the subgroup
numbers, and column three containing the n observations as a sample vector in the order of groups, and
subgroups within groups.

Note that, by defining groups and subgroups correctly in this way, a large number of ANOVA techniques can
be performed using this groups and subgroups ANOVA procedure.
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4.4.10 Factorial ANOVA

Factorial ANOVA is designed to analyze the effects of categorical or quantitative variables, called factors, on
observed quantities in order to detect the influence of these factors both separately and jointly.

Example 1

Open the SIMFTT main menu, select[Statistics], [ANOVA], then [Factorial ANOVA], and analyze the data set
below for no blocks but two factors, A and B, contained in the default SIMF]T test file anova5.tfl.

Block

Factor A Factor B Observation

1

U GG U U G GG G G T T QT QT U G QT G Q'Y

PNDMNODMNDMNDMNDODMNDMNDMNODMNDN L 4 a4 a4

—_

ST O R O R O R S R e \C I \O I\ I \G I\ R

16.5
18.4
12.7
14.0
12.8
14.5
11.0
10.8
14.3
10.0
39.1
26.2
21.3
35.8
40.2
32.0
23.8
28.8
25.0
29.3

In order to perform factorial ANOVA using SIMF]T the data matrix must have a very precise structure which,

in the case of the two factors above, is in standard order as follows.
1.

2.

Column 1 contains block numbers (in this case all 1 as there are no blocks)

Column 2 contains levels of factor A (in this case Level 1 = no hormone, Level 2 = hormone)

Block numbers must be in nondecreasing order

. Column 3 contains levels of factor B (in this case Level 1 = female, level 2 = male)

Levels of A must be in nondecreasing order within each block

Levels of B must be in nondecreasing order within each level of A

. There must be the same number of replicates in each group

Block numbers and factor levels must be consecutive integers > 1

. Column 4 contains observed values (in this case of blood calcium in mg/100ml with 5 replicates)

After analyzing the data in test file anova5.tf1 SiMF[T displays the following results table.



Factorial ANOVA 173

Table 1: Results for Factorial ANOVA with test file anova5.tfl
Transformation: x (untransformed data)

Source SSQO NDOF MS F p
Blocks 0.000 0 0.000 0.000 0.0000
Effect 1 (A) 1386 1 1386  60.53  0.0000
Effect 2 (B) 70.31 1 70.31  3.071  0.0989
Effect 3 (A = B) 4.900 1 4900 0.2140 0.6499
Residual 366.4 16 22.90

Total 1828 19

Treatment Means and Standard Errors

Overall mean 21.82

Treatment means

Effect 1 13.50 30.15

Standard Error of difference in means: 2.140

Effect 2 23.70 19.95

Standard Error of difference in means: 2.14

Effect 3 14.88 1212 3252 27.78
Standard Error of difference in means: 3.026

Note that in factorial ANOVA tables the treatment effects are always output in standard order as follows.
Effect 1: Ay, Ay

Effect 2: By, B>

Effect3: A1B|,A1B>,A>2B1,A2B»

Also, after analyzing the data, a plot like the next one can be useful to illustrate the effects of the factors.

Means for Two-Factor ANOVA

35 4
%)
@ 25 1 Effect
('_DU of A
>
c
3]
(O]
S 15
5 J

Levels of Factor A

Example 2

To further emphasize the format required for factorial ANOVA, consider the following data set contained in
SimFqTtest file anova5. t£2.
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Factor A Factor B Observation

Block

361
253
325
317

339
326
402
336
379
345
361

352
334
318

339
393

358
350
340
203
397
356
298
382
376
355
418

387
379
432
339
293
322
417

342
82

297

133
306
352
361
220
333
270
388
379
274
336
307
266
389
333
353
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This data set is for the yields of turnips in an agricultural experiment with 3 blocks, 6 levels of A (phosphate),
and 3 levels of B (lime).

Table 2: Results for Factorial ANOVA with test5 file anova5. tf2
Transformation: x (untransformed data)

Source SSQ NDOF MS F p
Blocks 30120 2 15060 7.685 0.0018
Effect 1 (A) 73010 5 14600 7.451 0.0001
Effect 2 (B) 21600 2 10800 5.510 0.0085
Effect 3 (A« B) 31190 10 3119 1592 0.1513
Residual 66630 34 1960

Total 222500 53

Treatment Means and Standard Errors
Overall mean 331.1

Block means 339.6 354.8 298.8
Treatment means

Effect 1 254.8 339.0 333.3 367.8 330.8
360.7

Standard Error of difference in means: 20.87

Effect 2 334.3 353.8 305.1

Standard Error of difference in means: 14.76

Effect 3 235.3 332.7 196.3 342.7 3417

332.7 309.3 370.3 320.3 395.0
370.3 338.0 373.3 326.7 292.3
350.0 381.0 351.0

Standard Error of difference in means: 36.14

Theory

The appropriate linear model for factorial ANOVA is
Vijk = L+ i+ Bj+Yij +eijk

where there are a levels of factor A, b levels of factor B and n replicates per group, that is, n observations at
each fixed pair of 7 and j values.

As usual, u is the mean, a; is the effect of A at level i, ; is the effect of B at level j, y;; is the effect of the
interaction between A and B at levels i and j, and e; j is the random error component at replicate .

Also there are the necessary constraints on the parameters estimated, that is

0

M=

a;

Nl
=

I

o

~.
I

vij = 0, for each j, and

M

¥ij = 0 for eachi.

M=

~.
Il
—_
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The null hypotheses would be
Hy:a;=0,fori=1,2,...,a

to test for the effects of factor A,
Hy:B;=0, forj=1,2,....b

to test for the effects of factor B, and
Hy :v;j =0, foralli,j

to test for possible AB interactions.

The analysis of variance table is based upon calculating F statistics as ratios of sums of squares that arise
from the partitioning of the total corrected sum of squares as follows

n a b n
DOk =50 =D > DG =)+ (-5

a b
=1 j=1 k=1 i=1 j=1 k=1

2

L

+ (Fip. = Vi =V +5.) + ik = Vi )]

a b
=bn Y (i =5 ) +an ) (5, -5.)
i=1 =
a b a b n
+n Z Z(yij. — Vi =V 4V )+ Z Z Z(yijk ~5i.)?
i1 =1 i1 j=1 k=l

It is clear from the F statistics and significance levels p in Table 1 table for anova5.tf1 that, with these data,
A has a large effect, B has a small effect, and there is no significant interaction. From table 2 for anova5.tf2
the effects of blocking as well as A and B are significant, but the interaction between A and B is small.

Note that the factorial ANOVA table always outputs results in standard order, e.g. A1B1, A1B2, A2B1, A2B>
and so on, while the actual coeflicients a;, 8;,y;; in the model can be estimated by subtracting the grand
mean from the corresponding treatment means. In the previous marginals plot, the line connecting the circles
is for observations with B at level 1 and the line connecting the triangles is for observations with B at level 2.
The squares are the overall means of observations with factor A at level 1 (13.5) and level 2 (30.15), while
the diamonds are the overall means of observations with factor B (i.e. 23.7 and 19.95) from the results table.
Parallel lines indicate the lack of interaction between factors A and B while the larger shift for variation in
A as opposed to the much smaller effect of changes in levels of B merely reinforces the conclusions reached
previously from the p values in the results table.

If the data set contains blocking, as with test files anova5.tf2 and anova5.tf4, then there will be extra
information in the ANOVA table corresponding to the blocks, e.g., to replace the values shown as zero in the
results table for anova5. tf1, as there is no blocking with the data in anova5.tfl.

The StMFIT factorial ANOVA test files illustrate the following examples of data formatting, and these can be
consulted and subsequently analyzed if further clarification is required.

anova5.tfl: 0 blocks and 2 factors
anova5.tf2: 3 blocks and 2 factors
anova5.tf3: 0 blocks and 3 factors
anovab.tf4: 3 blocks and 3 factors
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4.5 Analysis of frequencies and proportions
- Tutorials and worked examples for simulation,
o~ curve fitting, statistical analysis, and plotting.
S https://simfit.uk

https://simfit.org.uk
https://simfit.silverfrost.com

4.5.1 Introduction

Many experiments record frequencies with which events occur, and then these frequencies are used to calculate
proportions to be used as estimates for population probabilities.

As a simple example, consider tossing a coin N times resulting in 4 heads and N — A tails. Then the frequency
of heads would be the integer &, while the proportion of heads would be the floating point number /N, which
would converge to the true probability of a head occurring for large values of N. In this case of dichotomous
data we could define a variable x; to have a value of 1 for a success (e.g. heads) and O for failure (e.g. tails) at
the i’th trial, leading to a random variable X as the sum of the x; values as follows

X=x1 +xp 4+ +XN.
Then the appropriate statistical model would be the binomial distribution with parameters N and p, so that

the probability of observing 4 successes in N independent trials would be

N h
P(X=h)= (h)ph(l — p)N" where }\}im — =p.
More generally, suppose that a total of N observations can be classified into k categories with frequencies
consisting of y; observations in category i, so that 0 < y; < N and Zl’.;l y; = N, then there are k proportions,
that is ratios r; of frequencies to sample size, defined as

ri =yi/N,

of which only k — 1 are independent since r| +rp + - - - + rr = 1. If these proportions are then interpreted as
estimates of the multinomial probabilities and it is wished to make inferences about these probabilities, then
we are in a situation that can be described as the analysis of proportions, or the analysis of categorical data.

Since the observations are integer frequencies and not measurements, they are not normally distributed, so
techniques like ANOVA should not be used, instead specialized methods to analyze frequencies must be
employed. In particular, exact estimates for variances and confidence limits are not always available, and
approximate confidence range estimates often exceed the theoretically possible limits since, for an estimate,
say p, with lower 95% confidence limit Cy,, and upper 95% confidence limit Cyy we must have

0<CL<p<Cy<l.

Furthermore, although exact confidence limits will not be symmetrical, approximate confidence limits will
be. For example, with 2 successes in 10 trials the estimate for the binomial parameter would be

p=02,
but the exact 95% confidence range calculated by SIMF[T was found to be
0.0252 < 0.2 < 0.5561

so that Cy, = 0.2 — 0.1748 while Cy = 0.2 + 0.3561. This illustrates a typical result that, for probability
estimates less than 0.5 confidence ranges are skewed to the right, while for estimates greater than 0.5 confidence
ranges are skewed to the left. So it is not accurate to report estimates as, e.g. p = (h/N) + « for some «.
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4.5.2 Binomial proportions (dichotomous data)

If there only two categories, such as success or failure, male or female, dead or alive, etc., the data are referred
to as dichotomous, and there is only one parameter to consider. So the analysis of two—category data is
based on the binomial distribution which is required when y events (e.g., successes) have been recorded in
N independent trials with constant probability of success (i.e., Bernoulli trials) and it is wished to explore
possible variations in the binomial parameter estimate

p=y/N,

and its unsymmetrical confidence limits, possibly as ordered by an indexing parameter x.
Analyzing binomial proportions

From the main StMF]T menu choose [Statistics], [Analysis of proportions], then [Binomial proportions], and
examine the default test file binomial.tf3 which has the following format.

y N x
23 84 1
12 78 2
31 111 3
65 92 4
71 983 5

The columns in this data format must be as follows.
e Column 1: The number of successes 0 < y < N
e Column 2: The number of Bernoulli trials N > 0
e Column 3: An optional indexing parameter x

Note that the indexing parameter x is not used for any calculations, it is only required in order to identify,
label, and space the data for subsequent plotting. If this third column is missing, as in binomial.tf2, S(MF|T
simply appends a third column of successive integers 1,2,...,N. Typically x could be sample identifiers,
concentrations of chemical, time from start of treatment, etc.

The SiMF]T analysis of proportions procedure accepts a matrix of such y, N data then calculates the binomial
parameters and derived parameters such as the Odds

Odds = p/(1—p), where0 < p < 1,

and log(Odds), along with standard errors and confidence limits. It also performs a chi-square contingency
table test and a likelihood ratio test for common binomial parameters as in the next table.

To test Hy : equal binomial p-values for data in test file binomial. tf3
Sample-size i.e. number of pairs 5

Overall sum of y 202

Overall sum of N 458

Overall estimate of p 0.4410

Lower 95% confidence limit 0.3950

Upper 95% confidence limit 0.4879

—2logd (-2LL) 1183 NDOF =4

p=P(x*>>-2LL) 0.0000 Reject Hy at 1% significance level
Chi-square test statistic (C) 112.9 NDOF =4

p=P(/\,/2 >C) 0.0000 Reject Hp at 1% significance level

After choosing to analyze the parameter estimates, the next table with the data, p estimates, and exact 95%
confidence limits is displayed.
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y N  lower-95% p upper-95%
23 84 0.18214 0.27381 0.38201
12 78 0.08210  0.15385  0.25332
31 111 0.19829  0.27928  0.37241
65 92 0.60242  0.70652  0.79688
71 93 0.66404 0.76344 0.84542

Plotting binomial proportions

These results can then be plotted as individual sample estimates with 95% confidence limits, as in this graph
where the overall estimate with overall confidence limits is also displayed.

p-estimated as a function of x

1.0 F -
The overall estimate
)
£
c
(@]
© o5t WY .
<
= | I
X
o
0.0 F _

0 1 2 3 4 5
X (control variable)

A useful rule of thumb is to analyze such plots for the position of confidence limits for the individual estimates
with respect to the other individual confidence limits and the overall confidence limits shown as dotted lines.
It is clear that samples 1, 2, and 3 lie below the overall confidence limits, while samples 4 and 5 lie above the
overall confidence limits, confirming the previous conclusions from the y? test.

Plotting log odds

It should be emphasized that everything that can be done with binomial proportions can be done by calculating
and plotting parameter estimates p and confidence limits as just discussed. However, many experimentalists
prefer to work with log odds in order to emphasize differences in order of magnitudes. For instance, the data
can be plotted as log odds as in this next figure. However, to perform advanced graphics editing SIMF] T always
transfers raw data not transformed data into the advanced editing, so it is necessary to transfer x, y/(N —y) into
the advanced editing option first of all, followed by choosing a reverse y-semilog interactive transformation
using logs to base ten. In addition, for finishing touches, the legends were edited and the y-axis moved to the
central position indicated.
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Log Odds Plot
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Binomial parameter confidence limits
It is obvious that a binomial parameter estimate p = y/N for the true population parameter p must satisfy
0<p<l

and so the confidence limits should also be constrained to this range. Hence any accurate confidence limits
cannot be symmetrical but must be skewed and so, when a binomial parameter is estimated, it is not possible
to report the result in the usual way as p + §, or as p(p — §, p + §), where § is estimated from the sample
and percentiles of a standard normal distribution. Nevertheless, many users of computer packages do not
understand this and prefer an approximate expression using the normal distribution because, as long as the
sample is large and p =~ 0.5, a binomial distribution can be approximated by a normal distribution. For that
reason a large sample 95% approximate central confidence range for the true population parameter p is often

constructed using
p—5<p<p+5, where§=Zyn+\p(l-p)/N

with N =N +4,and p = (y +2)/N.

It is clear that for large samples with y ~ N /2 the normal approximation will be adequate but, in order to
check the closeness of the approximate limits to the exact ones in any given case, SIMF[T provides tables to
check the values. For instance, analysis of the test file binomial.tf4 yields the following comparison.
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p = (y/N) with exact unsymmetrical small sample limits
y N Lower-95% p Upper-95%

23 84 0.182144 0.273810 0.382008

12 78 0.082102 0.153846 0.253321

31 111 0.198289 0.279279 0.372414

91 92 0.940922 0.989130 0.999725
1 93 0.000272 0.010753 0.058458

STl

= (y +2)/(N + 4) with approximate central limits [/ + §]

y N Lower-95% p Upper-95% §

23 84 0.189866 0.284091 0.378316 0.094225

12 78 0.089290 0.170732 0.252173 0.081442

31 111 0.204283 0.286957 0.369630 0.082673

91 92 0.933945 0.968750 1.003555 0.034805 ***
1 93  -0.003524 0.030928 0.065380 0.034452 ***

*** Indicates parameter limits outside range (0,1)

The column § indicates the amount § added to and subtracted from p to derive the limits so that the results
can be reported as p + §. It will be seen that modifying the data in test file binomial.tf3 to make test
file binomial. tf4 by editing in a couple of extreme values causes the approximate method to overflow or
underflow as indicated by ***. Actually the numerical calculation to estimate the exact confidence takes
much longer than estimation of the normal approximation, so SIMF[T allows users to choose the method to
use when analyzing large samples.

Differences between probability estimates

For cases where the number of samples is relatively small, it is also sometimes helpful to examine tables that
highlight significant differences between estimates as follows, using the test file binomial. tf4.

d(i,j)=pi—pj, NNT=1/ld(i, )|

i J Lower95%  d(i,})) Upper-95% Result _sig.  Var(d(i,j)) NNT (95%cl)
1 2 -0.00455 0.11996 0.24448 Not significant  0.0590 0.00404 8 (**) NS
1 3 -0.13219 -0.00547 0.12125 Not significant  0.9326 0.00418 183 (**) NS
1 4 -0.81300 -0.71532 -0.61764 (1) < (4) 0.0000  0.00248 1 (**) NC
1 5 0.16542 0.26306 0.36069 (1) > (5) 0.0000 0.00248 4 (3,6)
2 3 -0.24109 -0.12543  -0.00977 ) < (3) 0.0355  0.00348 8 (4,102) NNH
2 4 -091811 -0.83528  -0.75246 (2) < (4) 0.0000  0.00179 1 (**)NC
2 5 006033 0.14309  0.22586 ) > (5) 0.0007  0.00178 7 (4,17) NC
3 4 -0.79596 -0.70985 -0.62374 (3) < (4) 0.0000 0.00193 1 (**) NC
3 5 0.18247 0.26853 0.35458 (3)> (5) 0.0000 0.00193 4 (3,5)
4 5 0.94857 0.97838 1.00818 4)> (5) 0.0000 0.00023 1 (**)yNC

p_sig. = significance, NNH = No. needed to harm, NS = Not significant, NC = Not calculated

Note that when the lower limit is negative and the upper limit is positive the confidence range includes zero so
that the difference between estimates is not significantly different from zero. When the parameters are listed
as different, the result can be interpreted as stricter (since @ /2 is used) than a one—sided lower tail or upper
tail test (where o would normally be used). A purist would argue that, as three tests are being done on the
same data, the Bonferroni principle would require that significance levels should be divided by three anyway.

It should be noted that the number needed to treat (NNT) is simply the reciprocal of the absolute difference
d(i,j) = pi — pj, except that, to avoid overflow, this is constrained to the range 1 < NNT < 10°. Where
confidence limits for NNT cannot be estimated, this is indicated by NC, and when the probability difference
is negative the number needed to harm is indicated by NN H instead of the confidence range, as will be seen
in the above table.
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Often it is required to calculate pairwise differences between adjacent lines of the data file, this will happen
automatically if the sample size exceeds a certain limiting size. For instance a sample size of size N requires
(’;’ ) lines of table to output the results from all pairwise comparisons whereas restricting analysis to adjacent
pairs only requires N /2. Here, for instance, is the result from analyzing the test file binomial.tf5 where
there are twenty lines of data requiring a table with only ten rows.

d(i,j)=pi—pj, NNT=1/ld(i, )|

i j  Lower-95%  d(i, ) Upper-95% Result p_sig. Var(d(i,j)) NNT (95%:cl)
1 2 006707 020000  0.33293 (1)>(2) 0.0032  0.00460 5 (3,15)
3 4 001315 0.15000  0.28685 (3)>(4) 0.0317  0.00488 7 (3,76)
5 6  0.06707  0.20000  0.33293 (5) > (6) 0.0032  0.00460 5 (3,15)
7 8 0.07604 0.20000 0.32396 (7) > (8) 0.0016 0.00400 5 (3,13)
9 10  0.08322 0.20000 0.31678 (9) » (10)  0.0008 0.00355 5 (3,12)
11 12 0.11684 0.21000 0.30316 (11) > (12)  0.0000 0.00226 5 (3,9)
13 14  -0.23118  -0.14000 -0.04882  (13)< (14) 0.0026  0.00216 7 (4,20) NNH
15 16 -0.46386 -0.35000 -0.23614 (15) < (16)  0.0000 0.00338 3 (2,4) NNH
17 18 -0.15509 -0.05000 0.05509 Not sig. 0.3511 0.00288 20 (**) NS
19 20 -0.12002 0.00000 0.12002 Not sig. 1.0000 0.00375 >999999 (**) NS

p_sig. = significance, NNH = No. needed to harm, NS = Not significant, NC = Not calculated

Confidence limits for analysis of two proportions

Given two proportions p; and p; estimated as

Pi =Yi/Ni

pj=yj/N;
it is often wished to estimate confidence limits for the relative risk RR;;, the difference between proportions
DP;;, and the odds ratio OR;;, defined as

RRij=pi/P;
DPij = pi—pj

5 /(1= 5.
OR; = L0 =Pi)

pil(1=pj)

First of all note that, for small proportions, the odds ratios and relative risks are similar in magnitude. Further,
unlike the case of single proportions, exact confidence limits for these derived parameters can not be calculated.
However, approximate central 100(1 — )% confidence limits can be obtained using the large sample normal
approximations

BNET
Nipi ~ Njpj

log(RR,j) + Za/2

5:(1 = 55 51— 7
DPyj + Zq pi( P;)+P/( p/)
N; N;

1 1 1

1
10g(OR;j) £ Zyja|— + +—+
B PNy T Ni-vi v Ni-y;
provided p; and jp; are not too close to O or 1. Here Z,, is the upper 100a//2 percentage point, i.e., the lower
100(1 — a//2) percentage point for the standard normal distribution, and confidence limits for RR;; and OR;;
can be obtained using the exponential function.
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If the confidence regions estimated by this procedure include zero the significance is reported in the table of
differences as not significant. Otherwise only the relative magnitudes of the pair in question are indicated.

When the difference between two probabilities is positive, a very approximate estimate for the confidence
limits for NNT can be obtained using the values for DP;;.

As elsewhere in SIMF[T the significance level can be set by the user, and either natural or base ten logarithms
can be plotted.
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4.5.3 Trinomial proportions (trichotomous data)

The trinomial distribution is encountered in the analysis of trichotomous data, where N observations are made
in a situation where there are only three possible disjoint categories, say x, y, or z. Data triples of counts in
categories x, y, z can be any partitions, such as the number of male, female or dead hatchlings from a batch of
eggs where it is hoped to determine a shift from equi-probable sexes.

From the main SIMF|T menu select [A/Z], open program binomial, choose to plot trinomial confidence limits,
then analyze the default data set trinom.tf1l which has the following format.

N, N, N
2 2 6

20 20 60
200 200 600
2000 2000 6000

The format for trinomial analysis must be as in this data set as now summarized.
e Column 1: Ny > 0...The number of times category x was observed
e Column 2: Ny > 0 ... The number of times category y was observed
e Column 3: N = Ny + Ny + N ... The total number of observations

Clearly, the values in such a data matrix must all be non-negative integers subject to the constraint that column
1 plus column 2 cannot exceed column 3 in any row. After performing a chi-square test the following plot
is displayed which powerfully demonstrates the contraction of the confidence regions as the sample size
increases

95% Trinomial Confidence Contours
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The main value of this graphical technique is to examine confidence regions for overlap in order to better
interpret the results from the chi-square test that SIMF]T always performs on such data matrices. Also, the
plot can provide insight into the comparison of several different experiments using the following argument.



Trinomial proportions (trichotomous data) 185

A useful rule of thumb to see if parameter estimates differ significantly is to check their approximate central
95% confidence regions. If the regions are disjoint it indicates that the parameters differ significantly and, in
fact, parameters can differ significantly even with limited overlap. If two or more parameters are estimated, it
is valuable to inspect the joint confidence regions defined by the estimated covariance matrix and appropriate
chi-square critical value. Consider, for example, this figure generated by the contour plotting function of
program binomial.

Trinomial Parameter 95% Confidence Contours
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The contours are defined by

px(1=px)/N _pxpy/N }_] ( Px — Px

A N -2
((px Px),(l’y Py)) —Px]?y/N Py(l _ Py)/N pAy - Py ) X2:0.05

where
N=Ny+Ny+N,

Px =Nx/N
and p, = N, /N

When N = 20 the triples 9,9,2 and 7,11,2 cannot be distinguished, but when N = 200 the orbits are becoming
elliptical and converging to asymptotic values. By the time N = 600 the triples 210,330,60 and 270,270,60
can be seen to differ significantly.
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Theory
If, in a trinomial distribution, the probability of category i is p; for i = 1,2, 3, then the probability P of
observing n; in category i in a sample of size N = n; + ny + n3 from a homogeneous population is given by

N!
B nl!nzln3!

ny nz n3

Py Py P3
and the maximum likelihood estimates, of which only two are independent, are

p1=n1/N,
P2 =m/N,
al‘ld[f3= 1 —[fl —pAz.

The bivariate estimator is approximately normally distributed, when N is large, so that

FR (!
P2 P2

where M N, signifies the bivariate normal distribution. Consequently

pi(l=p1)/N  —-pip2/N D
-pip2/N  p2(1 = p2)/N

pi(l=p))/N  -pip2/N ]_l(ﬁl_Pl)N >

((ﬁl_pl)v(ﬁZ_pZ))[ —p1p2/N pa(1=p2)/N Pr—pa X2

and hence, with probability 95%,

(1 — p1)? N (P2 — p2)? N 201 —p)(Pa—p2) _ (A =p1=p2) 2
pi(l=p1) pa(l=p2) (A=p)(1=p2) ~ N(1=p1)(1—py) 300

Such inequalities define regions in the (p;, p2) parameter space which can be examined for statistically
significant differences between p; ;) in samples from populations subjected to treatment ;.

Hence, where regions are clearly disjoint for groups treated differently or for different samples, it can be
concluded that parameters have been significantly affected by the treatments, as illustrated previously.
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4.5.4 Cochran-Mantel-Haenszel meta analyis

Meta analysis is widely used in areas such as evidence based medicine in order to examine several studies of
the same problem by different analysts, then extract the most plausible and objective overall conclusions. One
common situation is where there are k alternative 2 by 2 contingency tables available, and worked examples
to demonstrate the options available in SIMF]T to analyze this type of data set will now be presented.

Open the SIMF[T main menu, choose [Statistics], [Analysis of proportions], then [Meta Analysis] and examine
the default test file meta. tf1l which is formatted as follows.

y N X
126 226 1
35 9% 1
908 1596 2
497 1304 2
913 1660 3
336 934 3
235 407 4
58 179 4
402 710 5
121 336 5
182 338 6
72 170 6
60 159 7
11 54 7
104 193 8
21 57 8

The format for SIMF|T meta analysis data files must be exactly as now summarized.

¢ The number of rows in the data matrix must be an even number.

Distinct 2 by 2 contingency tables are included as sequential pairs of adjacent rows.
e Column 1 at row i must contain the number of critical outcomes y; > 0, e.g. successful recovery.

e Column 2 at row { must contain the total number of observations N; > y;, and not N; — y; which would
be the complement of y;, i.e. the number of failures to respond to treatment.

e Column 3 at row i must contain the control variable x for use in plotting.

Note that control variable x is not used in subsequent calculations, and it is only used for identifying the
adjacent 2 by 2 contingency tables, and as a coordinate for plotting, which will be explained subsequently.
Obviously, the value of x in rows j and j + 1 must be the same for j = 1,3,...,k — 1.

For instance, the first 2 by 2 contingency table that can be constructed from the data set is

126 100 andnot 126 226
35 61 35 96

so we would have the probability estimates p; = 126/226 and p, = 35/96 and the odds ratio for this 2 by 2
contingency table would then be

p1/(1—=py)
p2/(1=p2)’

Reading in this data set produces the following summary table.

2.196 =
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Statistical analysis

To test Hy: equal binomial p-values

Number of 2 by 2 tables 8

Overall sum of Y 4081

Overall sum of N 8419

Overall estimate of p 0.4847 95% confidence limits = (0.4740,0.4955)
—2logd (-2LL) 310.9 NDOF =15

P(x? > -2LL) 0.0000 Reject Hy at 1% significance level
Chi-square test statistic (C) 306.9 NDOF =15

P( )(2 >C) 0.0000 Reject Hy at 1% significance level

Subsequent analysis leads to these results

Cochran-Mantel-Haenszel 2 by 2 by k Meta Analysis

y N Odds Ratio  E[n(1,1)] Var[n(1,1)]
126 226 2.19600 113.00000 16.89720
35 96
908 1596 2.14296 773.23448 179.30144
497 1304
913 1660 2.17526 799.28296 149.27849
336 934
235 407 2.85034 203.50000 31.13376
58 179
402 710 2.31915 355.00000 57.07177
121 336
182 338 1.58796 169.00000 28.33333
72 170
60 159 2.36915 53.00000 9.00000
11 54
104 193 2.00321 96.50000 11.04518
21 57

Hy: conditional independence (all odds ratios = 1)

CM H Test Statistic = 279.4

P(x* > CMH) = 0.0000 Reject Hy at 1% significance level
Common Odds Ratio = 2.174, 95% confidence limits = (1.914,2.471)

Overall 2 by 2 contingency table

y N-y
2930 2359
1151 1979

Overall Odds Ratio = 2.1360, 95% confidence limits = (1.950, 2.338)

The default log-odds plot for these 2 by 2 contingency tables can be easily viewed but to perform the editing
necessary to create the next plot the following procedure has to be used.

1.

2.

Read in data and perform the meta analysis.

Display the default log odds plot using logarithms to base e or 10 as required.

. Choose the [Advanced] option.
. Select the [Avanced editing] option to transfer the data into the simplot procedure.
. Note: this always transfers data into simplot in original not transformed coordinates.

. Select the [Tansform] option, then the reverse y-semilog transformation.

The [Titles], [Labels], and [Legends] options can then be used for fine tuning as required.
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Note that the sold circle represents the overall log odds ratio, while the dotted vertical line represents the
reference position corresponding to the special case p; = p, which serves to indicate orders of magnitude
deviation of the odds from the ideal case where the Odds = 1.

As the Odds are all greater than 1 with these data, the points displayed all lie to the right of this reference line.

Log Odds Plot for Data in Test File meta.tfl1
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Various other tables can be displayed, such as the next one which summarizes the differences and calculate
NNT, the approximate number needed to treat.

dij=pi—pj, NNT=1/|d;;l

Row(i) Row()) d; lower-95% upper-95% Conclusion Var(d; ;) NNT (95%c.l.)
1 2 0.19294 0.07691 0.30897 p1 > p2 0.00350 6 (3,14)
3 4 0.18779 0.15194 0.22364 pP3 > pa 0.00033 6 (4,7)
5 6 0.19026 0.15127 0.22924 Ps5 > Do 0.00040 6 (4,7)
7 8 0.25337 0.16969 0.33706 P7 > D8 0.00182 4 (2,6)
9 10 0.20608  0.14312 0.26903  p9 > pio  0.00103 5 (3,7)
11 12 0.11493 0.02360 0.20626 P11 > P12 0.00217 9 (4,43)
13 14 0.17365 0.04245 0.30486 P13 > P14 0.00448 6 (3,24)
15 16 0.17044 0.02682 0.31406 P15 > Pi6 0.00537 6 (3,38)
Zero cells

Contingency table analysis is compromised when cells have zero frequencies, as many of the usual summary
statistics become undefined. Structural zeros can be handled by applying loglinear GLM analysis but sampling
zeros presumably arise from small samples with extreme probabilities. Such tables can be analyzed by exact
methods, but usually a positive constant is added to all the frequencies to avoid the problems.
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The next table illustrates how this problem is handled in Ss(MF[T when analyzing data in the test file meta. tf4;
the correction of adding 0.01 to all contingency tables frequencies being indicated.

Values ranging from 0.00000001 to 0.5 have been suggested elsewhere for this purpose, but all such choices
are a compromise and, if possible, sampling should be continued until all frequencies are nonzero.

Cochran-Mantel-Haenszel 2 x 2 x k Meta Analysis

y N Odds Ratio  E[n(1,1)] Var[n(1,1)]
***0.01 added to all cells for next calculation

0 6 0.83361 0.01091 0.00544
0 5

***0.01 added to all cells for next calculation

3 6 601.00000 1.51000 0.61686
0 6

***0.01 added to all cells for next calculation

6 6 1199.00995  4.01000 0.73008
2 6

***0.01 added to all cells for next calculation

5 6 0.00825 5.51000 0.25454
6 6

***0.01 added to all cells for next calculation

2 2 0.40120 2.01426 0.00476
5 5

Hy: conditional independence (all odds ratios = 1)

CM H Test Statistic = 386.2

P( )(2 > CMH) = 0.0494, Reject Hy at 5% significance level
Common Odds Ratio = 6.749, 95% confidence limits = (1.144, 39.81)

Overall 2 by 2 table

y N-y
16 10
13 15

Overall Odds Ratio = 1.842, 95% confidence limits = (0.6241,5.435)

Creating composite log odds plots

It is often necessary to create extensive log odds plots for three main reasons.

1. A single large data set is presented for analysis.
This presents no problems if the control variables have been set correctly. However, if the graph
becomes crowded it will need to be stretched.

2. Several data sets are available.
These can be combined into a single data set by copying and pasting, or by using the SIMF[T program
editmt. However the control variables must already be consistent for this purpose or can be made so by
editing at the same time.

3. Several individual log odds plots are available.
In this case individual coordinate files can be saved then combined as a library file for SIMF[T program
simplot to make a composite plot. For this purpose the control variables on the individual data sets
must be consistent to control spacing.

To illustrate these issues of spacing and stretching a worked example follows.
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meta.tf3

meta.tf2

%

-
T+

;

meta.tfl

=0
H

-1.00

-0.50 0.00

0.50

1.00

log4o[Odds Ratios]

1.50

(1) The data

Test files meta.tfl, meta.tf2, and meta.tf3
were analyzed in sequence using the SiMF[T
Meta Analysis procedure. Note that, in these
files, column 3 contains spacing coordinates so
that data will be plotted consecutively.

(2) The ASCII coordinate files

During Meta Analysis, 100(1 —a)% confidence
limits on the Log-Odds-Ratio resulting from a
2 by 2 contingency tables with cell frequencies
n;;j can be constructed from the approximation
€ where

1 1 1 1
— t—+— +—

6=Zup .
ni nip2 Ny n

When Log-Odds-Ratios with error bars are dis-
played, the overall values (shown as filled sym-
bols) with error bars are also plotted with a x
coordinate one less than smallest x value on the
input file. For this figure, error bar coordinates
were transferred into the project archive using
the [Advanced] option to save ASCII coordinate
files.

(3) Creating the composite plot

Program simplot was opened and the six er-
ror bar coordinate files were retrieved from the
project archive. Experienced users would do
this more easily using a library file of course.
Reverse y-semilog transformation was selected,
symbols were chosen, axes, title, and legends
were edited, then half bracket hooks identifying
the data were added as arrows and extra text.

(4) Creating the PostScript file
Vertical format was chosen then, using the op-
tion to stretch PostScript files, the y coordinate
was stretched by a factor of two.

(5) Editing the PostScript file

To create the final PostScript file for I&TEX
a tighter bounding box was calculated using
gsview then, using notepad, clipping coordi-
nates at the top of the file were set equal to the
BoundingBox coordinates, to suppress excess
white space. This can also be done using the
[Style] option to omit painting a white back-
ground, so that PostScript files are created with
transparent backgrounds, i.e. no white space,
and clipping is irrelevant.
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Theory

A pair of success/failure classifications with y successes in N trials, i.e. with frequencies n;; = yq, n;p =
Ni — y1, na1 = y2, and nypp = N» — y», results in a 2 by 2 contingency table, and meta analysis is used for
exploring k sets of such 2 by 2 contingency tables. That is, each row of each table is a pair of numbers of
successes and number of failures, so that the Odds ratio in contingency table k can be defined as

N —
Odds ratioy, = 2/ Wik = y10)
Yyar/ (Nak = yax)
_ nuknae
nk21k

Typically, the individual contingency tables would be for partitioning of groups before and after treatment,
and a common situation would be where the aim of the meta analysis would be to assess differences between
the results summarized in the individual contingency tables, or to construct a best possible Odds ratio taking

into account the sample sizes for appropriate weighting. Suppose, for instance, that contingency table number
k is

niik n12k Nl+k
M1k N2k N2tk
Nilk  N42k | N4tk

where the marginals are indicated by plus signs in the usual way. Then, assuming conditional independence
and a hypergeometric distribution, the mean and variance of n;; are given by

E(ni1k) = nigxnatk [Ratk

N+ N2+ kN4 1k 142k
Vine) = —F——————,
”l++k(”l++k -1

and, to test for significant differences between m contingency tables, the Cochran-Mantel-Haenszel test statistic
CMH, given by

2

Z(”l]]k - E(nik))| - %

=l
m
Zv(nllk)
=)

can be regarded as an approximately chi-square variable with one degree of freedom. Some authors omit the
continuity correction and sometimes the variance estimate is taken to be

CMH =

V(ni1k) = nivknocknakiaok /15,

The estimated common odds ratio 8,7 presented in the previous tables is calculated allowing for random
effects using

m
Z(”l]]knzzk/”++k)
=

~

Omu

m 9’
Z(n12kn21k/n++k)

k=1
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while the variance is used to construct the confidence limits from

m
2
Z(nnk + n02u ) N1k N22k [ g

2 [log(Bpr)] = = .
2 (Z nuknzzk/n++k)

k=1

Z[(”l]]k + ook makn2nk + (iak + npai ) menook ] /n,,

m
=1
m m
2 Z N11kN22k [Ntk Z N12kN21k [Ntk

k=1 k=1

+

m

(12 + nank)nioknate /m

=1
. 2
2 Z”l]anzlk/”l++k

k=1

+

Also, in these tables, the overall 2 by 2 contingency table using the pooled sample assuming a fixed effects
model is listed for reference, along with the overall odds ratio and estimated confidence limits calculated using
the expressions presented elsewhere for an arbitrary log odds ratio.

The table of differences illustrates another technique to study sets of 2 by 2 contingency tables. SiMF[T
can calculate all the standard probability statistics for sets of paired experiments. In this case the pairwise
differences are illustrated along with the number needed to treati.e. NNT = 1/|d|, butit should be remembered
that such estimates have to be interpreted with care. For instance, the differences and log ratios change sign
when the rows are interchanged.

Again, it should be emphasized that SIMF[T outputs values and confidence limits both for the differences
di = p1 — p2 and the calculated NNT = 1/d;» values, but the choice between these quantities for data
interpretation is controversial. To appreciate the reason why a value of NNT calculated from a sample is just
a coarse estimate of the size of a sample needed to treat in order to obtain one additional cure, and could be
very misleading, consider the situation of binomial trials with exactly known probabilities p; and p,, and
p1 > p2. The condition that the expectation of a binomial variable X; with probability p; should be one
greater than than a binomial variable X, with probability p, given a sample size N is

E(X)) =E(X>) +1
Np1 = Nps + 1, so that
1

N=—.
P1—D2

Of course NNT calculated from data is not the exact N as just derived but is given by the random function

NNT = %
P1— P2
where there is experimental uncertainty in the parameter estimates. This is one reason why many experts
recommend relying on conclusions based directly on the difference d 2, because this quantity is more robust
for the purpose of hypothesis testing than NNT where reciprocation exaggerates random effects. Another
reason is that it is possible to calculate accurate confidence limits for the difference d; >, but confidence limits
calculated for NNT are unsymmetrical and much less intuitive. It just seems more informative to say, for
instance, that with a possible error of up to 5%, a treatment improves the chance of cure from approximately
10 to 20%, or say from 60 to 70%, than to simply report NNT = 10 to cover all possible 10% improvements
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4.5.5 Bioassay, dose response curves and LD50

It is often of interest to fit a model to data in order to estimate parameters such as the 50% point from
dose-response curves, and SIMF[T provides several dedicated programs for this purpose such as the following.

« exfit: fits one or sums of exponentials and calculates the area under the curve (AUC).
o mmfit: fits one or sums of Michaelis-Menten models and calculates the apparent K,,,.
* hlfit: fits one or sums of binding models and calculates the apparent K.

* sffit: fits cooperative binding models and calculates half saturation points.

* gcfit: fits nonlinear growth models and calculates maximal growth rates.

* inrate: fits several models and calculates initial rates.

* polnom: fits polynomials and calculates y given x.

* calcurve: fits cubic splines and calculates y given x.

* gnfit: fits user defined models and calculates y given x.

These programs all assume uncorrelated normally distributed errors, but there are many procedures, such
as bioassay, dose-response curves, determination of LD50, or EC50 etc. where binomially distributed errors
would be more appropriate, and so it would be better to fit general linear models (GLM)

This would be a situation such as the following dose-response data set contained in the default test file
1d50.tf1 which can be inspected after opening the main StMF]T menus, followed by selecting [Statistics],
[Analysis of proportions], then [Bioassay, dose response curves and LD50].

y N x
1 10 1
4 20 2
4 10 8
5 10 4
15 30 5
7 10 6
9 10 7
12 15 8
9 10 9
8 10 10

Data for determination of LD50 by GLM requires the above format as follows for k groupsandi = 1,2,..., k.
e Column 1: y; > 0, the number of animals dying in group i
e Column 2: N; > y;, the number of animals tested in group i
e Column 3: x; > 0, the amount of poison being tested on group i

If the k groups are all independent and each group is homogeneous, i.e., each animal in the group has exactly
the same probability p of dying given the same time of exposure to poison at amount x for the same period of
time, then y is binomially distributed and p; can be estimated as p; = y;/N;, together with exact confidence
limits.
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It is usual to investigate a data set to choose a model with the lowest deviance and the next table shows the
results from analysis of the data in the default test file using the three GLM link functions indicated.

Method: GLM with binomial errors, Link: Logistic
Number of groups = 10, Deviance = 4.246

Parameter Value Standard error  Lower 95%cl  Upper 95%cl p

Constant -2.0986 0.4733 -3.190 -1.007 0.0022
Slope 0.45070 0.08725 0.2495 0.6519 0.0009
50% point  4.6564 0.4441 3.632 5.681 0.0000

Method: GLM with binomial errors, Link: Probit
Number of groups = 10, Deviance = 4.564

Parameter  Value Standard error  Lower 95%cl  Upper 95%cl p

Constant -1.2513 0.2708 -1.876 -0.6269 0.0017
Slope 0.26678 0.04855 0.1548 0.3787 0.0006
50% point  4.6902 0.4463 3.661 5.719 0.0000

Method: GLM with binomial errors, Link: Complementary log-log
Number of groups = 10, Deviance = 6.600

Parameter Value Standard error  Lower 95%cl  Upper 95%cl p

Constant -1.6696 0.3295 -2.429 -0.9097 0.0010
Slope 0.26635 0.05079 0.1492 0.3835 0.0008
50% point  4.89220 0.5182 3.697 6.087 0.0000

In this case the logistic and probit models give a similar fit, which is somewhat better than the complementary
log-log, and so the standard probit graph is shown next.

Data, best-fit Probit, and 50% point (LD50).
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Various options are available for testing the goodness of fit by plotting residuals or inspecting tables of
residuals as shown next.

Number Y-value Theory Deviance Leverages

1 1 1.624 -0.5692 0.2308
2 4 4.729 -0.3912 0.3731

3 4 3.260 0.4907 0.1391

4 5 4.270 0.4645 0.1030
5 15 15.99 -0.3612 0.2652
6 7 6.366 0.4227 0.09853
7 9 7.311 1.328 0.1282
8 12 12.17 -0.1118 0.2492
9 9 8.749 0.2476 0.1985
10 8 9.217 -1.219 0.2143

Note that exact 95% confidence limits can also be plotted but, as these can be large and very distracting with
small samples, they can be switched off.

A further point can be made about this GLM procedure. Suppose that, instead of a file with y, N, x for the

proportion failing, we input a file with N — y, N,x. This would then be the proportion surviving as plotted
below.

(N -y), N, X Values from LD50.TF1
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Note that this change from proportion failing to the complement, that is the proportion surviving, leads to
exactly the same estimate for LD50.

Another variant of the this technique is that a parameter can be changed in order to estimate other percentiles
than the 50% point, e.g., LD25, LD75, EC25, ID25, ED75, etc.
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Theory 1: GLM

Itis important to understand that fitting dose-response curves in the manner just described does not correspond
to the usually understood technique of adjusting the parameters of a deterministic mathematical model by
optimization to obtain a best-fit curve that minimizes the sum of squared residuals. For this reason a brief
overview of generalized linear modeling (GLM) is now presented.

To understand the motivation for this technique, it is usual to refer to a typical doubling dilution experiment
in which diluted solutions from a stock containing infected organisms are plated onto agar in order to count
infected plates, and hence estimate the number of organisms in the stock. Suppose that before dilution the
stock had N organisms per unit volume, then the number per unit volume after x = 0, 1, . .., m dilutions will
follow a Poisson dilution with p, = N/2*. Now the chance of a plate receiving no organisms at dilution x
is the first term in the Poisson distribution , that is exp(—p), so if py is the probability of a plate becoming
infected at dilution x, then

px=1—-exp(—uy), x=1,2,...,m.

Evidently, where the p have been estimated as proportions from y, infected plates out of n plated at dilution
x, then N can be estimated using

log[—1log(1 — py)] =logN — xlog?2
considered as a maximum likelihood fitting problem of the type
log[—log(1 = px)] = o+ Bix

where the errors in estimated proportions py = y./n, are binomially distributed. So, to fit a generalized
linear model, you must have independent evidence to support your choice for an assumed error distribution for
the dependent variable Y from the normal, binomial, Poisson, or gamma distributions, in which it is supposed
that the expectation of Y is to be estimated, i.e.,

E(Y)=p.

The associated pdfs are parameterized as follows.

normal : fy =

Lo (_(y—#)z)
Voo P\ 202

N
binomial: fy = ( )ny(l - m)N=y
y

y _
Poisson: fy = Lp'(,u)
y:
gamma: f; 1 (Vy)” Xp( yy)l
Dy = —_— - =
I(v) \ u H)y

It is a mistake to make the usual unwarranted assumption that measurements imply a normal distribution,
while proportions imply a binomial distribution, and counting processes imply a Poisson distribution, unless
the error distribution assumed has been verified for your data. Another very questionable assumption that has
to made is that a predictor function 7 exists, which is a linear function of the m covariates, i.e., independent

explanatory variables, as in
m
1= e
=1

Finally, yet another dubious assumption must be made, that a link function g(u) exists between the expected
value of Y and the linear predictor. The choice for

g(u)=n
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depends on the assumed distribution as follows. For the binomial distribution, where y successes have been
observed in N trials, the link options are the logistic, probit or complementary log-log

. M
logistic: n =1 —_—
ogistic: n og(N_ )

. 1 (M
bit: =d>l(—)
probit: i N

complementary log-log: n = log (— log (1 - %)) .

Where observed values can have only one of two values, as with binary or quantal data, it may be wished
to perform binary logistic regression. This is just the binomial situation where y takes values of O or 1,
N is always set equal to 1, and the logistic link is selected. However, for the normal, Poisson and gamma
distributions the link options are

exponent: 7 = u“
identity: n = u
log: n =log(u)
square root: 7 = \/u

1
reciprocal: n = —.
u

In addition to these possibilities, you can supply weights and install an offset vector along with the data set,
the regression can include a constant term if requested, the constant exponent a in the exponent link can be
altered, and variables can be selected for inclusion or suppression in an interactive manner. However, note
that the same strictures apply as for all regressions: you will be warned if the SVD has to be used due to
rank deficiency and you should redesign the experiment until all parameters are estimable and the covariance
matrix has full rank, rather than carry on with parameters and standard errors of limited value.

Theory 2: 95% confidence range in inverse prediction

The calculation of confidence limits for derived values, such as LD50 in the present case, that are obtained
from the parameter estimates from fitting along with the estimated parameter covariance matrix should be
noted.

polnom estimates non-symmetrical confidence limits assuming that the N values of y for inverse prediction
and weights supplied for weighting are exact, and that the model fitted has n parameters that are justified
statistically. calcurve uses the weights supplied, or the estimated coefficient of variation, to fit confidence
envelope splines either side of the best fit spline, by employing an empirical technique developed by simulation
studies. Root finding is employed to locate the intersection of the y; supplied with the envelopes. The AUC,
LD50, half-saturation, asymptote and other inverse predictions in SIMF[T use a ¢ distribution with N — n
degrees of freedom, and the variance-covariance matrix estimated from the regression. That is, assuming a
prediction parameter defined by p = f(61, 6, ...,0,), a central 95% confidence region is constructed using
the prediction parameter variance estimated by the propagation of errors formula

n i-1
1

. SNETARH af of
V(p) = Z: (%) V(Gi)+222:za—ia%jcv(9i,9j).
1= =2 j=

Note that this formula for the propagation of errors can be used to calculate parameter standard errors for
parameters that are calculated as functions of parameters that have been estimated by fitting, such as apparent
maximal velocity when fitting sums of Michaelis-Menten functions. However, such estimated standard errors
will only be very approximate.
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5 Statistical calculations
Tutorials and worked examples for simulation,
g*‘\' curve fitting, statistical anal;F/)sis, and plotting.
N

https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

5.1 Power and sample size

Hypothesis testing is based upon specifying a null hypothesis Hy then testing to see if a statistic calculated
from the data is sufficiently extreme to justify rejecting the null hypothesis. There are two possible errors.

e Type |l error
The null hypothesis is rejected when it is true and the probability of this happening is a.

* Type Il error
The null hypothesis is accepted when it is false and the probability of this happening is 3.

The significance level is @ while the power is 1 — 8, often expressed as a percentage. The situation can be
summarized in the following table.

Decision Hy is true Hy is false
Reject Hy | Type | error | Correct

a 1-8
Accept Hy | Correct Type Il error
1-«a B

Calculations related to power as a function of sample size can be performed as long as the statistical dis-
tributions and parameters required for the null hypothesis are correct and specified. Unfortunately, while
calculation of « is straightforward, calculation of S requires that an alternative hypothesis H4 be specified
and can be much more difficult.

In any given situation it may be necessary to estimate the sample size n required given @ and f3, or to estimate
B given @ and n, as it is not possible to simultaneously minimize @ and g. If n is fixed, then increasing «
decreases 3, while decreasing « increases 8. The following cases are discussed here.

1. One binomial sample

2. Two binomial samples

3. One normal sample

4. Two normal samples

5. Multiple normal samples
6. One and two variances
7. One and two correlations
8. The chi-squared test

For each of these cases, the minimum essential theoretical details are given followed by typical examples.
Plots of power as a function of sample size can also be created. Finally, a more comprehensive description of
the underlying theory is given.
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1. Power calculations for 1 binomial sample

The calculations are based on the binomial test, the binomial distribution, and the normal approximation to it
for large samples and p not close to O or 1.

If the theoretical binomial parameters po and gg = 1 — pg are not too close to 0 or 1 and it is wished to estimate
this with an error of at most ¢, then the sample size required is

Z(zl/poCIO
= T
where P(Z > Z,2) = /2,
or @(Z(,/z) =1- a/2,

>

which, for many purposes, can be approximated by n ~ 1/62. The power in a binomial or sign test can be
approximated, again if the sample estimates p; and g; = 1 — p; are not too close to 0 or 1, by

1-B=P Z<u_za/2 piqr
n

poqo/ Poqo

+PZ >

P1=Po Piq1
4+ Zup | —|.
VPogo/n Poqo
Example 1

This demonstrates calculations that are possible when, in a sample of size n, x successes are used to estimate
the binomial parameter p = x/n. Given a binomial distribution with Hy : parameter p = po, H4 : parameter
p = p1, and « specified, then three calculations are possible, namely

1. Calculate n(6), i.e. n giving an error at most §
2. Calculate n(p), i.e. n given
3. Calculate B(n), i.e. B given n

as summarized in the next table.

Example 1: Power analysis for 1 binomial sample

Forn(é) | «=0.05| p=05 | 6§ =0.1 n =96
Forn(B) | «=0.05| 8=02 | pp=05| p; =0.6 n=192
ForB(n) | «=0.05| pp=0.5 | p; =0.6 | power=80% | n=192

The conclusion is that a sample size of 96 is required to ensure that the parameter estimated is within 0.1 of
the true parameter p = 0.5 for 95% of the results from repeated samples, while to confirm that the parameter
is distinct from p = 0.6 with 80% power requires a sample size of 192.

2. Power calculations for 2 binomial samples
For two sample proportions p; and p, that are similar and not too close to O or 1, as in a 2 by 2 contingency

table, the sample size n and power 1 — 8 associated with a binomial test for Hy : po1 = po2 can be estimated
using one of numerous methods based upon normal approximations. For example

. (P1q1 + p292) (Zapp + Zp)°

(p1 — p2)? '
_ 2
Zp = n(pi - p2) ~Zap,
P1q1 + p2q2
B=P(Z=>1Zp),

1-8=0(Zp).



Power and sample size 201

Example 2a

This deals with the situation where two samples of size n are analyzed to determine if the estimates p; = x;/n
and p, = xp/n differ significantly. Parameters can also be input as log odds ratios.

Example 2a. Power analysis for 2 binomial samples

B(n) | «=0.05| p; =06 | pp=0.7 | power=32% | n=100
B(n) | «=0.05 | p;=0.6 | pp=0.7 | power =56% | n=200
B(n) | «=0.05| p;=0.6 | pp=0.7 | power=73% | n=300
n(B) | «=0.05| =02 | p;=06| pp=0.7 n =353

Note that, for p; = 0.6 and p,= 0.7 the power increases from 32%, to 56%, to 73% as n increases from 100,
to 200, to 300, while a sample of size n = 353 is required to achieve 80% power.

Example 2b

Power for the Fisher exact test with sample size n used to estimate both p; and p,, as for the binomial test,
can be calculated using

RN

r=0 C,
where r = total successes,
x = number of successes in the group,

and C, = the critical region.

This can be inverted by SIMF[T to estimate n, but unfortunately the sample sizes required may be too large
to implement by the normal procedure of enumerating probabilities for all 2 by 2 contingency tables with
consistent marginals.

Example 2b. Power analysis for the Fisher Exact Test

B(n) | «=0.05| p; =06 | pp=0.7 | power=237% | n=100
B(n) | «=0.05| p; =06 | pp=0.7 | power =64% | n =200
n(B) | «a=0.05 | =02 | p;=06| p, =07 n =304

For sample sizes of 100 and 200 the power is 37% and 64% but sample sizes of 304 are required for 80%
power.

3. Power calculations for 1 normal sample

The calculations for a 1 sample ¢ test are based upon the confidence limit formula for the population mean u
from a sample of size n, using the sample mean X, sample variance s> and the 7 distribution, as follows

_ S _ S
Plx- taj2,n-1—"= Susx+ Ta/2,n-1 _) =1-a,

Vn \n
where X = in/n,

i=1
=) (=9 (n=1),
i=1

P(t < t(t/2,v) =1- a//2,

andv=n-1.
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You input the sample variance, which should be calculated using a sample size comparable to those predicted
above. Power calculations can be done using the half width & = ¢,5 ,,_1 5/+/n, or using the absolute difference
¢ between the population mean and the null hypothesis mean as argument. The following options are available:
O n(h),i.e. to calculate the sample size necessary to estimate the true mean within a half width &
2,2
_ § ta//Z,n—] .
nE
O n(9), i.e. to calculate the sample size necessary for an absolute difference &

2
s 2
n= ﬁ(ta/Z,n—l +l’3,n_]) , or

O B(n), i.e. to estimate the power
)

?/

1g.n-1= —ta/2,n-1-

se/n

It should be noted that the sample size occurs in the degrees of freedom for the ¢ distribution, necessitating an
iterative solution to estimate 7.

Example 3

Example 3. Power analysis for 1 sample ¢ test

n(h) h=1 | @=0.05 s2=1|n=7
n(s) =1 | a=005]8=02 |s°=1|n=10
5(n,B) | n=10 [ @=0.05 | p=02 | s2=1 | 6 =0.9947
B(n) n=10 | 6 =1 @=005]s>=1] B=0.1958

4. Power calculations for 2 normal samples

These calculations are based upon the same type of ¢ test approach as just described for 1 normal sample,
except that the pooled variance sf, should be input as the estimate for the common variance o2, i.e.,

i(xi -7+ Zy:(yj -5)?
= =

Ny +ny, —2

2
Sp

where X has sample size n, and Y has sample size n,. The following options are available:

U To calculate the sample size necessary to estimate the difference between the two population means
within a half width h
2s?,t2
@/2,2n-2

h? ’
O To calculate the sample size necessary to detect an absolute difference 6 between population means

Zsfzn 2
n= ?(IQ/Z,Zn—Z +1g2n-2)"; or

[J To estimate the power
0

1gom-—2 = —/——
A /2s%, /n

—la/2,2n-2-
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The ¢ test has maximum power when n, = n, but, if the two sample sizes are unequal, calculations based on
the the harmonic mean n;, should be used, i.e.,

2nyn
y
nh = —9
Ny + 1y
npn
so that ny = ———.
2n, —ny,

Example 4

In order to perform calculations it is necessary to assume that both samples are from normal distributions
with the same variance and then input those of the following parameters as required.

* The significance level «

* An accurate estimate for the common variance s>

* Choice of a 2-tail test or 1-tail test

* The half width & to determine a 95% confidence range 24 for the difference between the sample means
* The minimum absolute difference ¢ between the sample means that can be detected

* The power 100(1 — 8)%

* The sample size n

The following table was created using the analysis of power and sample size option from the statistical
calculations procedure available from the [Statistics] menu on the St(MF[T main menu, or by using the [A/Z]
option to open program simstat.

Example 4. Power analysis for the 7 test

n(h) | h=1 a =0.05 s2=1 n=9
n(d) | 6=1 @=005|p8=02 | s>=1 n=17
6(n) | n=17 | @=005| =02 | s>=1 5 =0.9912
Bn) | n=17 | 6=1 =005 | s2=1 B =0.1931
n(h) | h=05| @=0.05 s2=05193 | n=18
n() | 6=05| @=005| B=01 | s2=0.5193 | n=45
Bn) [ n=15 [ 6=1 @ =005 | s>=0.5193 | B =0.0454

The last three entries in the above table would be typical. They are for two samples of size n = 15 with pooled
variance s2 = 0.5193, and the results would be interpreted as follows.

* n(h) shows that a sample size of n = 18 would be required to have a 95% confidence interval for the
difference between the true means no larger than 1, that is with 2 = 0.5.

* n(0) illustrates that a sample size of n = 45 is necessary in order for a 90% chance of detecting a
difference ¢ between the true means as small as 0.5.

* B(n) demonstrate that the power for detecting a difference of § = 1 between the true means has a power
of 95.46%.

5. Power calculations for k£ normal samples

The calculations are based on the 1-way analysis of variance technique, i.e. ANOVA. Note that the SIMF[T
power as a function of sample size procedure also allows you to plot power as a function of sample size, which
is particularly useful with ANOVA designs where the number of columns k can be of interest, in addition
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to the number per sample n. The power calculation involves the F' and non-central F distributions and you
calculate the required n values by using graphical estimation to obtain starting estimates for the iteration. If
you choose a n value that is sufficient to make the power as a function on n plot cross the critical power, the
program then calculates the power for sample sizes adjacent to the intersection, which is of use when studying
k and n for ANOVA.

Example 5

All the power procedures available in SIMF[T provide the ability to plot power as a function of sample size
but this particularly useful with ANOVA, as will now be explained.

It is important in the design of experiments to be able to estimate the sample size needed to detect a significant
effect. For such calculations you must specify all the parameters of interest except one, then calculate
the unknown parameter using numerical techniques. For example, the problem of deciding whether one
or more samples differ significantly is a problem in the Analysis of Variance, as long as the samples are
all normally distributed and with the same variance. You specify the known variance, o2, the minimum
detectable difference between means, A, the number of groups, k, the significance level, @, and the sample
size per group, n. Then, using nonlinear equations involving the F' and noncentral F' distributions, the power,
100(1 — B) can be calculated. It can be very confusing trying to understand the relationship between all
of these parameters so, in order to obtain an impression of how these factors alter the power, a graphical
technique is very useful, as in this figure.

ANOVA (k =no. groups, n = no. per group)
100 . :

BOF === mmm e o e e e
S 6o -
2

o L -
2 40

6’=1 (variance)
A =1 (difference)

O 1 1 1
0 20 40 60 80

Sample Size (n)

simstat was used to create this graph. The variance, significance level, minimum detectable difference and
number of groups were fixed, then power was plotted as a function of sample size. The ASCII text coordinate
files from several such plots were collected together into a library file to compose the joint plot using simplot.
Note that, if a power plot reaches the current power level of interest, the critical power level is plotted (80%
in the above plot) and the n values either side of the intersection point are displayed.
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6. Power calculations for 1 and 2 variances

The calculations depend on the fact that, for a sample of size n from a normal distribution with true variance
0'5, the function y? defined as
) (n— 1)s?
=
0

is distributed as a chi-square variable with n — 1 degrees of freedom. Also, given variance estimates s and
si obtained with sample sizes n, and n, from the same normal distribution, the variance ratio F defined as

2 2

Sk y

F =max|—=, =
527 52

y X

is distributed as an F' variable with either ny, n, or n,, n, degrees of freedom. If possible n, should equal n,,,
of course. The 1-tailed options available are:

O Hy:0?2< O'g against H; : o? > 0'5
1-B=P(x* 2 xi,100/5%);

O Ho:o? > o} against H, : 0 < 0

1-8= P()(2 < )(lz_a’n_loﬁ/sz); or

O Rearranging the samples, if necessary, so that si > si then

c g2 — 2 aoai . g2 2
Hy : oy = oy against Hy : oy # 07

2m(ny - 2) 52
Z = 71 = _Z(l
B m+ 1 08 s2
y
1
where m = .
y—1

Example 6a

This example shows the results from performing a one-tail test on a variance estimate s% of 2.6898 obtained
with a sample size of 8 compared to a theoretical value of sé of 1.5. A confidence interval for the sample

variance is calculated as well as the actual power, followed by the sample size needed for 90% power.

Example 6a: Testfor Hy : 0> < 1.5,H; : 0% > 1.5
Sample variance s7 2.6898
Sample size used to calculate s% 8

95% confidence interval for s~ 1.1758, 11.142

Test statistic (C) 12.552
P(x*>0C) 0.0838
Power of this test 34.6486% (for @ = 0.05)
Minimal sample size 51 (for @ = 0.05, 5 = 0.1)

Example 6b

This example explores the power as a function of sample size for a two-tail variance ratio test using samples
with variances 52 = 21.87(n; = 11) and 53 = 15.36(n, = 8), i.e. for the null hypothesis Ho : o> = 0. Details
for two-tail tests are also given for the additional hypothetical cases with the same variances but estimated
with sample sizes n; = np = 60 and n; = 20, ny = 30.
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Example 6b. Two-tailed variance ratio (F’) test

2

)

2

Sample variance s
Sample variance s
Sample size n;
Sample size n;
Variance ratio (VR)
P(F > VR)

Power of this actual test
Minimal sample size

Hypothetical sample size n
Hypothetical sample size n»
Variance ratio (VR)

P(F > VR)

Power of this hypothetical test

Hypothetical sample size n;
Hypothetical sample size n,
Variance ratio (VR)

P(F > VR)

Power of this hypothetical test

21.87
15.36

11

8

1.4238

0.3284

15.359% (for @ = 0.05)
86 (for a = 0.05, 8 = 0.1)

60

60

1.4238

0.0889

76.763% (for @ = 0.05)

20

30

1.4238

0.1908

38.348% (for a = 0.05)

7. Power calculations for 1 and 2 correlations

The correlation coefficient r calculated from a normally distributed sample of size n has a standard error

1-r2
s,=\/—
n—2

and is an estimator of the population correlation p. A test for zero correlation, i.e., Hy : p = 0, can be based
on the statistics

t=—

sy

1+|r|
or F = s

1—|r|

where ¢ has a ¢ distribution with n — 2 degrees of freedom, and F has an F distribution withn —2 and n — 2
degrees of freedom. The Fisher z transform and standard error s, defined as

z:tanh_]r,
1] 1+r
= =10 .
2 B\T=,
1
Sy =+ ——,
N n-3

are also used to test Hy : p = po, by calculating the unit normal deviate

_2=4o
Sz

z

where ¢y = tanh™! py. The power is calculated using the critical value
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which leads to the transform z. = tanh™! re and
Zg=(z-2)Vn-3
then the sample size required to reject Hy : p = 0, when actually p is nonzero, can be calculated using
Zg+Zap |\
n= (—B 0/2) + 3.
o

For two samples, X of size ny and Y of size ny, where it is desired to test Hy : px = py, the appropriate Z
statistic is

Z =

where sy, =

and the power and sample size are calculated from

Zg = —Za,
B Sxy a/2
Zan +2Zg\>
andn:Z( /2 B) 3
Zx_Zy

Example 7a

A sample correlation coefficient Ry = 0.87 was calculated from a sample of size 12 and a population
correlation Rp = 0.5 was assumed, resulting in the following calculations.

Example 7a. Hy : p=0,H; : |p| > 0( or > Rp)
Current @ 0.05

Current g8 0.01

Correlation coefficient Ry  0.87

Correlation coefficient Ry 0.5

Sample size 12

95% confidence limits 0.5893, 0.9633
Two tailed z-test, p 0.0002

Power of this test 97.882%
NforH; : |p| >0 14 (R, given)

N for H; : |p| > Ro 64 (R arbitrary)

These results indicate that a 95% confidence interval for R; is (0.5893, 0.9633) and that the power for this
test was 97.882%. The sample size would have to be increased to 14 to obtain 99% power with the current
sample correlation coefficient Ry, while a sample size of 64 would be required to ensure 99% power in a test
for |p| > 0.5 before a sample is taken in order to calculate R;.

Example 7b
Two samples were analyzed to investigate equality of correlation coefficients and estimate the power and

sample size needed for specified power for hypothetical samples with the same correlation coefficients but
with equal hypothetical sample sizes.
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Example 7b. Hy : p1 = p2,H : |p1 —p2] > 0

Current a 0.05

Current g8 0.2

R, Ny, Z; 0.78, 98, 1.045
Ry, N>, 7> 0.84, 95, 1.221
Two-tailed Z-test, p 0.2294

Power of this test 22.42%
For a Z-diff |71 — 22| 0.1758

sample size N required 511

These results show that, for samples with R; estimated from a sample of size 98, and R, estimated from a
sample of size 95 the power was 22.42%. For a hypothetical sample with the same correlation coefficients
but estimated from samples with size N then, for 80% power, N would have to be at least 511.

8. Power calculations for a chi-square test

The calculations are based on the chi-square test for either a contingency table, or sets of observed and
expected frequencies. However, irrespective of whether the test is to be performed on a contingency table or
on samples of observed and expected frequencies, the null hypotheses can be stated in terms of k probabilities
as

Hy : the probabilities are po(i) , fori =1,2,...,k,

H, : the probabilities are p, (i) , fori = 1,2,..., k.

The power can then be estimated using the non-central chi-square distribution with non-centrality parameter
A and v degrees of freedom given by

/lan

Z (po(i) = p1(i))?
po(i) '

where Q

n = total sample size,

and v = k — 1 — no. of parameters estimated.

You can either input the Q values directly, or read in vectors of observed and expected frequencies. If you do
input frequencies f; > 0 they will be transformed internally into probabilities, i.e., the frequencies only have
to be positive integers as they are normalized to sum unity using

k
pi=fi] )t
i=1

In the case of contingency table data with r rows and ¢ columns, the probabilities are calculated from the
marginals p;; = p(i) p(j) in the usual way, so you must input k = rc, and the number of parameters estimated
asr+c—2,sothatv=(r—1)(c-1).

Example 8

We demonstrate this procedure using the example of a weighted die discussed by William C Guenther in The
American Statistician 31 (1977) pp 83-85 using table look-up. Here the sum of squares was Q = 0.05 with a
sample size of n = 120 so that the degrees of freedom were A = 6 and 8 was calculated to be approximately
0.5671. Further calculations showed that a sample size of n > 330 was required to achieve g = 0.1, while the
results calculated by SIMF[T were as follows.

Example 8. Power analysis for a chi-square test Hy : po(i) = p1(i)
@=005 B=05761 Q=005 1=6 x2=1259 N =128
=005 B=01000 Q=005 A=6 x>=1259 N =352
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Theory

Experiments often generate random samples from a population so that parameters estimated from the samples
can be use to test hypotheses about the population parameters. So it is natural to investigate the relationship
between sample size and the absolute precision of the estimates, given the expectation E(X) and variance
o-z(X ) of the random variable. For a single observation, i.e., n = 1, the Chebyshev inequality

o (X)
62

P(X-EX)| <€) >1-

with € > 0, indicates that, for an unspecified distribution,

P(X - E(X)| < 4.50(X)) > 0.95,
and P (|X — E(X)| < 105(X)) > 0.99,

but, for an assumed normal distribution,

P (X - E(X)| < 1.960(X)) > 0.95,
and P (|X — E(X)| < 2.58¢(X)) > 0.99.

However, provided that E(X) # 0, it is more useful to formulate the Chebyshev inequality in terms of the
relative precision, that is, for § > 0

P(‘X—E(X) <6) . 1 %(X)

E(X) CS2EX(X)

Now, for an unspecified distribution,

(‘X—E(X) B o(X)
E(X) TIEMX)|
X - E(X) 0 o(X) )

) > 0.95,

> 0.99,

a"dp(‘ x|~ )]

but, for an assumed normal distribution,

X - E(X) o (X)
X - E(X) o (X)

So, for high precision, the coefficient of variation cv%

o(X)

cv% =100
[E(X)]

must be as small as possible, while the signal-to-noise ratio SN (X)

|E(X)]
o(X)

SN(X) =

must be as large as possible. For instance, for the single measurement to be within 10% of the mean 95% of
the time requires SN > 45 for an arbitrary distribution, or SN > 20 for a normal distribution. A particularly
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valuable application of these results concerns the way that the signal-to-noise ratio of sample means depends
on the sample size n. From

Var(X) = % Z Var(X)
i=1
- 202(x),
n

it follows that, for arbitrary distributions, the signal-to-noise ratio of the sample mean SN(X) is given by
SN(X) = \nSN(X), that is

E(X)

o(X)

This result, known as the law of /i, implies that the signal-to-noise ratio of the sample mean as an estimate
of the population mean increases as v/, so that the the relative error in estimating the mean decreases like

1/,

SN(X)=+n

If f(x) is the density function for a random variable X, then the null and alternative hypotheses can sometimes
be expressed as

Ho : f(x) = fo(x)
Hy: f(x) = fi(x)
while the error sizes, given a critical region C, are

a = Py, (reject Hy) (i.e., the Type I error)

= / Jo(x) dx
c
B = P, (accept Hy) (i.e., the Type II error)

=1 —‘/Cfl(x)dx.

Usually « is referred to as the significance level, § is the operating characteristic, while 1 — 3 is the power,
frequently expressed as a percentage, i.e., 100(1 — 8)%, and these will both alter as the critical region is
changed.

Distribution of the mean as a function of sample size Significance Level and Power

2.25 - n=s2

1.50 4

pdf
pdf

0.75 4

0.00 7 T T ]
-2.00 -1.00 0.00 1.00 2.00

This figure illustrates the concepts of signal-to-noise ratio, significance level, and power. The family of curves
on the left are the probability density functions for the distribution of the sample mean X from a normal
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distribution with mean u = 0 and variance o> = 1. The curves on the right illustrate the significance level «,
and operating characteristic S for the null and alternative hypotheses

Ho:,u=0,0'2=4
Hl:,u=1,0'2=4

for a test using the sample mean from a sample of size n = 25 from a normal distribution, with a critical point
C = 0.4. The significance level is the area under the curve for Hy to the right of the critical point, while the
operating characteristic is the area under the curve for H; to the left of the critical point. Clearly, increasing
the critical value C will decrease @ and increase 3, while increasing the sample size n will decrease both &
and S.

Often it is wished to predict power as a function of sample size, which can sometimes be done if distributions
fo(x) and fi(x) are assumed, necessary parameters are provided, the critical level is specified, and the test
procedure is defined. Essentially, given an implicit expression in k unknowns, this option solves for one given
the other k — 1, using iterative techniques. For instance, you might set & and 3, then calculate the sample size
n required, or you could input @ and n and estimate the power. Note that 1-tail tests can sometimes be selected
instead of 2-tail tests (e.g., by replacing Z,/» by Z, in the appropriate formula) and also be very careful to
make the correct choice for supplying proportions, half-widths, absolute differences, theoretical parameters
or sample estimates, etc.

A word of warning is required on the subject of calculating n required for a given power. The values of n
will usually prove to be very large, probably much larger than can be used. So, for pilot studies and typical
probing investigations, the sample sizes should be chosen according to cost, time, availability of materials,
past experience, and so on. Sample size calculations are only called for when Type II errors may have serious
consequences, as in clinical trials, so that large samples are justified.

Of course, the temptation to choose 1-tail instead of 2-tail tests, or use variance estimates that are too small,
in order to decrease the n values should be avoided, but it happens.
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5.2 Parameter confidence limits

Given a sample from a known distribution it is generally easy to estimate the population parameters using the
sample estimates, but it is not always so easy to determine the confidence limits, such as a 95% confidence
interval. From the main SiMF[T menu you can select [Statistics] then the option to perform statistical
calculations. Here you can choose the distribution required and the significance level of interest, then input
the estimates and sample sizes required. Note that the well-known case of a normal distribution leads many
to believe that a confidence interval is always symmetrical about a parameter estimate, but many confidence
intervals will be asymmetric for those distributions (Poisson, binomial) where exact methods are used, not
calculations based on the normal approximation.

Confidence limits for a Poisson parameter

Given a sample x1,x2,...,x, of n non-negative integers from a Poisson distribution with parameter A, the
parameter estimate A, i.e., the sample mean, and confidence limits 1, A, are calculated as follows

n
K = in,
i=1
A=K/n,

1 2
A = E/\/ZK,(Z/Z’

|
Az = X2k +2,1-a/2>
(o) /l X
so that exp(—nd;) Z (n :) = %,
=K X!
K
(np)* _«a
exp(-ndy) ) == 5.
x=0 :

and P(; <A< ) =1-a,
using the lower tail critical points of the chi-square distribution. The following very approximate rule-of-

thumb can be used to get a quick idea of the range of a Poisson mean A given a single count x and exploiting
the fact that the Poisson variance equals the mean

P(x —2vx <A < x+2vx) ~ 0.95.

Example

The number of weed seeds in 98 samples of meadow grass yielded these counts with a mean of 3.0204.

Number 0 1 2 3 4|5(6|7|8]9]|10
Frequency | 3 |17 | 26 | 16 | 18 |9 |3 | 5|0 | 1 0

The 95% and 99% noncentral confidence intervals from the estimate were found to be as follows.

Sample size | Mean | Level Interval
98 3.0204 | 95% | 2.68608 < 1 < 3.38483
98 3.0204 | 99% | 2.58737 < A < 3.50272
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Confidence limits for a binomial parameter

For k successes in n trials, the binomial parameter estimate p is k/n and three methods are used to calculate
confidence limits p; and p; so that

n

> (Z)pf(l -p)" = a2,

x=k
k n
d E (1 - = a/f2.
an Z (x)pz( p2) a/

O If max(k,n — k) < 10°, the lower tail probabilities of the beta distribution are used as follows

P1 = Bion—k+1,a/25
and p2 = Britn—k,1-a/2-

O If max(k,n — k) > 10° and min(k,n — k) < 1000, the Poisson approximation with A = np and the
chi-square distribution are used, leading to

15
p1= %){2k,a/2’
1

2
and py = X2k 1- a2

O If max(k,n—k) > 10°and min(k, n—k) > 1000, the normal approximation with mean np and variance
np(1 — p) is used, along with the lower tail normal deviates Z;_,/> and Z, >, to obtain approximate
confidence limits by solving

k —npi
——— =Zi_q/2,
ynpi(1-=p1)

k_

and 1'p2 =Zq)2-

Vinp2(1=p2)

The following very approximate rule-of-thumb can be used to get a quick idea of the range of a binomial mean
np given x and exploiting the fact that the binomial variance variance equals np(1 — p)

P(x —2vx < np < x+2vx) ~ 0.95.

Example

In a study the number of deaths among pensioners in a six year period were as follows.

Sample size | Deaths | Probability 95% confidence interval
Non-smokers 1067 117 | 0.109653 | 0.091533 < p < 0.129957
Smokers 402 54 | 0.134328 | 0.102548 < p < 0.171609

Again, note the noncentral 95% confidence intervals for the probability estimates p as summarized below.

Deaths/Subjects p 95% Confidence Interval Group
117/1067 0.1097 | 0.1097 - 0.0182,0.1097 + 0.0203 | Non-smokers
54/402 0.1343 | 0.1343-0.0318,0.1343 + 0.0373 | Smokers
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Confidence limits for a normal mean and variance

If the sample mean is ¥, and the sample variance is s>, with a sample of size n from a normal distribution
having mean y and variance o2, the confidence limits are defined by
P(x - ta//Z,n—]s/\/ﬁ Spusi+ ta/Z,n—ls/\/ﬁ) =1-a,
and P((n = 1)s*/x} )0y S0 < (n= 15[ X1-ajpn1) = 1 — @

where the upper tail probabilities of the # and chi-square distribution are used.
Example

The body temperature of 25 intertidal crabs was recorded in °C as follows: 24.3, 25.8, 24.6, 26.1, 22.9,
25.1,27.3, 24.0, 24.5, 23.9, 26.2, 24.3, 24.6, 23.3, 25.5, 28.1, 24.8, 23.5, 26.3, 25.4, 25.5, 23.9, 27.0, 24.8,
22.9, 25.4. The sample mean, variance and standard deviation were X = 25.03, s2 =1.8,and s = 1.3416408
leading to the following central confidence intervals for the mean and unsymmetrical confidence limits for the
variance.

Sample size | Level | Parameter | Estimate Interval
25 95% Mean 25.03 24.4762 < u < 25.5838
25 99% Mean 25.03 24.2795 < pu < 25.7805
25 95% | Variance 1.8 | 1.09745 < 0 < 3.48355
25 99% | Variance 1.8 [ 0.948231 < 0 < 4.36971

Confidence limits for a correlation coefficient

If a Pearson product-moment correlation coefficient r is calculated from two samples of size n that are jointly
distributed as a bivariate normal distribution, the confidence limits for the population parameter p are given
by

r—re r+re
<ps—|=

1-rr. 1+rre
where r. =

Example

The wing and tail lengths in cm for 12 birds were as in this next table.

Wing | 104 | 10.8 | 11.1 | 10.2 | 10.3 | 10.2 | 10.7 | 10.5 | 10.8 | 11.2 | 106 | 11.4
Tail 7.4 7.6 7.9 7.2 7.4 7.1 7.4 7.2 7.8 7.7 7.8 8.3

This gives a correlation coefficient of r = 0.87 with a sample size of n = 12, leading to the nonsymmetrical

95% confidence interval.
0.589337 < p < 0.963279

Confidence limits for trinomial parameters

If, in a trinomial distribution, the probability of category i is p; for i = 1,2, 3, then the probability P of
observing n; in category i in a sample of size N = n; + ny + n3 from a homogeneous population is given by
N! nny n

p= n1!n2!n3!p1 P2 P3
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and the maximum likelihood estimates, of which only two are independent, are

p1=n1/N,
p2=m/N,
and p3 =1 - pi — p».

The bivariate estimator is approximately normally distributed, when N is large, so that

p1 P1 pi(1=p1)/N  —pip2/N
[ 5 }NMNZ([ P2 ][ -p1p2/N  p2(1-p2)/N D

where M N, signifies the bivariate normal distribution. Consequently

. . p(A=p)/N  =pip2/N |7 p1-p 2
(7 —pl),(pz—pz))[ —pip2/N  p2(l = p2)/N ] ( P2—p2 )NX2

and hence, with probability 95%,

(P —p1)? L (P - p2)* L2 —p)(Pampy) (A =pi—pa) 5
pi=p)  pa(l-p2) " (=p)=p2) ~ N(I=pn)(1-pa)*200

Such inequalities define regions in the (p;, p2) parameter space which can be examined for statistically
significant differences between p;(;) in samples from populations subjected to treatment j. Where regions
are clearly disjoint, parameters have been significantly affected by the treatments, as illustrated next.

Plotting trinomial parameter joint confidence regions

A useful rule of thumb to see if parameter estimates differ significantly is to check their approximate central
95% confidence regions. If the regions are disjoint it indicates that the parameters differ significantly and, in
fact, parameters can differ significantly even with limited overlap. If two or more parameters are estimated, it
is valuable to inspect the joint confidence regions defined by the estimated covariance matrix and appropriate
chi-square critical value. Consider, for example, this figure generated by the contour plotting function of
binomial. Data triples x, y, z can be any partitions, such as number of male, female or dead hatchlings from
a batch of eggs where it is hoped to determine a shift from equi-probable sexes. The contours are defined by

px(1=px)/N _Pxpy/N ]_l ( DPx — Dx

. . _ 2
((Px Px)»(Py Py)) —PxPy/N py(l —py)/N PAy—Py ) X2:0.05

where N = x +y +z, p = x/N and p), = y/N as discussed in connection with the trinomial distribution.
When N = 20 the triples 9,9,2 and 7,11,2 cannot be distinguished, but when N = 200 the orbits are becoming
elliptical and converging to asymptotic values. By the time N = 600 the triples 210,330,60 and 270,270,60
can be seen to differ significantly.
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Trinomial Parameter 95% Confidence Contours
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5.3 Robust analysis of 1 sample

It is obvious that outliers in a sample lead to biased parameters estimates. In some instances an experimenter
is able to examine the data and make a decision to eliminate certain observations, usually extremely low or
high values, that indicate a systematic source of variation beyond the usual spread of observational errors.
Alternatively, to avoid subjective doctoring of data, a robust method can be used which generally involves
discarding extreme values and using more appropriate numerical methods that do not assume that the sample
is normally distributed.

As an example, choose statistics from the main StMFJT menu, navigate to [Data exploration] and open the
option for [Robust analysis of one sample]. The results from examining the test file robust.tfl after
trimming 10% off the extreme values are shown below, followed by the results from handling the full data set
without any trimming in the exhaustive analysis procedure.

Robust analysis
Data: 50 N(0,1) random numbers with 5 outliers

Total sample size 50
Median value 0.2019
Median absolute deviation 1.0311
Robust standard deviation 1.5288
Trimmed mean (TM) 0.2227
Variance estimate for TM 0.0192
Winsorized mean (WM) 0.2326
Variance estimate for WM 0.0192
Number of discarded values 10
Number of included values 40
Percentage of sample used 80% (for TM and WM)
Hodges-Lehmann estimate (HL) 0.2586

Exhaustive analysis

Minimum, Maximum values -2.208, 7.000
Lower and Upper Hinges -0.829, 1.307
Coefficient of skewness 1.690
Coefficient of kurtosis 3.566
Median value 0.202
Sample mean 0.512
Sample standard deviation 1.853: CV% = 361.736%
Standard error of the mean 0.262

Upper 2.5% t-value 2.010

Lower 95% confidence limit for mean -0.014

Upper 95% confidence limit for mean 1.039
Variance of the sample 3.435

Lower 95% confidence limit for variance  2.397
Upper 95% confidence limit for variance  5.335
Shapiro-Wilks W statistic 0.851
Significance level for W 0.000 Reject normality at 1% sig.level

Clearly the exhaustive analysis indicates that the presence of outliers has created a sample that is not normally
distributed and the results from robust analysis yield better estimates for the population mean and variance
which, before adding outliers, were u = 0, o2 = 1. An outline of the theory and definitions used in this robust
analysis follows.
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Theory

If the sample vector is x1, x7, . . ., x,, the following calculations are done.

1. Using the whole sample and the inverse normal function d>‘1(.), the median M, median absolute
deviation D and a robust estimate of the standard deviation S are calculated as

M = median(x;)
D = median(|x; — M|)
S =D/®(0.75).
2. The percentage of the sample chosen by users to be eliminated from each of the tails is 100a%, then

the trimmed mean 7'M, and Winsorized mean WM, together with variance estimates VT and VW, are
calculated as follows, using k = [an] as the integer part of an.

1 n—k
™ =% Z i
i=k+1
1 n—k
WM = - { Z X+ kxpq + kxn—k}
n|.
i=k+1
1 n—k 5 ) 2
VT = — Z (xi =TM)* + k(xp1 = TM)* + k(xp— — TM)
n
i=k+1
1 n—k 5 ) 2
VW= =83 (i = WM) 4+ k(i = WM)? + k(i — WM)?
i=k+1

3. If the assumed sample density is symmetrical, the Hodges-Lehman location estimator HL can be used
to estimate the center of symmetry. This is

X;+Xx

> j,1sisj3n},

HL = median {

and it is calculated along with 95% confidence limit. This would be useful if the sample was a vector
of differences between two samples X and Y for a Wilcoxon signed rank test that X is distributed F(x)
and Y is distributed F(x — 0).
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5.4 Robust analysis of 2 samples

Sometimes a robust estimate is required for the difference in location (with corresponding confidence limits)
for two samples, not necessarily of the same size, but without assuming normality or any other distribution.

From the main SIMF[T menu choose [Statistics], navigate to [Data exploration] and open the option for [Robust
analysis of two samples]. The two default test files are ttest.tf4 and ttest.tf5 with these values

ttest.tf4 | ttest.tfs
134 70
146 118
104 101
119 85
124 107
161 132
107 94
83
113
129
97
123

while analysis produces the following results.

Robust analysis of two samples

X-sample size 12
Y-sample size 7
Difference in location -18.501
Lower confidence limit -40.009
Upper confidence limit 2.997

Percentage confidence limit 95.30%
Lower Mann-whitney U-value 19.000
Upper Mann-Whitney U-value  66.000

The procedure is based on the assumption that X of size n, is distributed as F(x) and Y of size n, as F(x —6),
so an estimate 6 for the difference in location is calculated as

6 = median(y; —x;,i = 1,2,...,nc,j = 1,2,...,ny).
100a% confidence limits Uy, and Uy are then estimated by inverting the Mann-Whitney U statistic so that

PU<UL) <a/2
P(U<UL+1)>a/2
P(U=>Upg) <a/2
PU=>Uyx-1)>a/2.
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5.5 Shannon-Brillouin-Simpson indices of diversity

It is often required to define functions that estimate or merely summarize the entropy or degree of randomness
in the distribution of observations into categories.

Typically there would be n observations in total divided into k categories with nonnegative frequencies
fi, fori =1,2,...,k,sothatn = 2[]'(:1 fi, as for example with this extreme sample where there is clearly no
evidence of differences between the groups

Group Frequency

1 5
2 5
3 5
4 5

or this equally extreme example where the non-homogeneity is obvious.

Group  Frequency
1 1

2 1
3 1
4 17

To analyze such data choose [Statistics] from the main StMF[T menu then [Statistical calculations] followed
by selecting [Shannon/Brilllouin indices of diversity]. Note that data sets must be supplied as samples of
frequencies and these can be as vector files, or columns of frequencies pasted in from the clipboard. However,
it is often the case when repetitive analysis of small data sets is required, that it is useful to temporarily switch
off the speed-up option that suppresses input from the terminal and simply enter the frequencies manually.

Of course such problems arise constantly in data analysis but especially in ecology where several well known
indices of diversity are used, as illustrated in the next table for these two extreme cases.

Data: 5,5,5,5
Number of groups 4
Total sample size 20

Pielou J’ evenness  1.0000 [complement = 0.0000]
Brillouin J evenness  1.0000 [complement = 0.0000]

Shannon H’ 0.6021(log;) 1.386(log,) 2.000(log,)
Brillouin H 0.5035(log;) 1.159(log,) 1.672(log,)
Simpson 4 0.2500 [complement = 0.7500]
Simpson A’ 0.2105 [complement = 0.7895]

Data: 1,1,1,17

Number of groups 4

Total sample size 20

Pielou J’ evenness  0.4238 [complement = 0.5762]
Brillouin J evenness  0.3809 [complement = 0.6191]

Shannon H’ 0.2551 (log,,) 0.5875(log,) 0.8476(log,)
Brillouin H 0.1918 (log;,) 0.4415(log,) 0.6370(log,)
Simpson 4 0.7300 [complement = 0.2700]

Simpson A’ 0.7158 [complement = 0.2842]
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Definitions

Given positive integer frequencies f; > 0 in k& > 1 groups with n observations in total, then proportions
pi = fi/n can be defined, leading to the Shannon H’, Brillouin H, and Simpson A and A’ indices, and the
evennness parameters J and J’ defined as follows.

k
Shannon diversity H' = — Z pilog p;
i=1

k
= [nlogn - Zfilogfi]/n
i=1
Pielou evenness J' = H' /log k

k
Brilloin diversity H = [logn! — log l_[ fill/n
i=1

Brilloin evenness J = nH/[logn! — (k — d) log c! — dlog(c + 1)!]

k
Simpson lambda A = Z p%

i=1

k
Simpson lambda prime A" = Z fi(fi = 1)/[n(n=1)]
i=1

where ¢ = [n/k] and d = n — ck. Note that H and H’ are given using logarithms to bases ten, e, and two,
while the forms J and J’ have been normalized by dividing by the corresponding maximum diversity and so
are independent of the base. The complements 1 —J, 1 —J’, 1 — A, and 1 — A’ are also tabulated within the
square brackets.

In the above tables we see that evenness is maximized when all categories are equally occupied, so that
fi = 1/k and H' = log k, and is minimized when one category dominates.

Of course SIMF[T provides numerous techniques to test hypotheses about the distribution of frequencies into
groups, e.g. a y? test on observed and expected frequencies.
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5.6 Non-central statistical distributions

Non-central distributions are frequently used in statistical analysis, especially for studies to estimate the power
of hypothesis tests as functions of sample size.

SiMF[T uses many discrete and continuous central and non-central distributions for modelling and hypothesis
tests, and provides numerous options as well as dedicated programs such as binomial, chisqd, F, and normal
to plot or obtain percentage points to replace table look-up. However, you can also obtain values and plots for
the following special distributions, given the appropriate arguments.

* non-central 8
* non-central y?
* non-central F
* non-central ¢

To obtain percentage points and create plots for non-central distributions choose [Statistics] followed by
[Statistical calculations] from the main SIMF[T menu.

For instance, this figure illustrates the chi-square distribution with 10 degrees of freedom for non-centrality
parameter A at values of 4 = 0,5, 10, 15, and 20.

Noncentral chi-square Distribution
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5.7 Ligand-binding cooperativity analysis

Cooperative ligand binding models are used in the situation where a protein or receptor has more than one type
of binding site and these are linked in such a way as to display deviations from normal hyperbolic binding. If
areceptor has n > 1 binding sites that differ in binding constants but are independent this can only give rise to
apparent negative cooperativity. If the sites are linked in that the binding to one site influences the subsequent
binding of further ligands then positive or mixed cooperativity can be exhibited.

Ligand binding theory will be presented under the following headings.

—_—

. Historical introduction

N

Binding polynomials

The Hessian of a binding polynomial
Definition of cooperativity

Zeros of the binding polynomial

Statistical interpretation of saturation functions

N kW

Cooperativity analysis

Historical Introduction

In 1910 Hill [1] proposed that the sigmoid binding curve for oxygen binding to haemoglobin Hb could be
analyzed in terms of the binding of n ligands X in one step with no appreciable intermediates, i.e. the mass
action description

Hb+nX = HbX,.

This leads to the Hill equation describing the fractional saturation y as a function of concentration x, and the
Hill plot of log[y/(1 — y)] as a function of log x as follows

Kx"
1+ Kx"

y =
log [——| =
og|—— | =nlogx +logk.
I-y
It is now realized that the Hill equation is simply an empirical equation that is at best a poor approximation to
any real binding situation since:
1. itis only an appropriate representation for a one-site binding process, i.e. forn =1

when n < 1 it has an infinite slope at the origin and cannot model any realistic binding situation;

when n > 1 it has zero slope at the origin and cannot model any realistic binding situation;

S

when 7 is not a positive integer it is pure nonsense; and

5. using it to discuss the effect of cooperativity on graphical features such as sigmoidicity in the y(x)
curve, or convexity in Lineweaver-Burke or Scatchard space, has resulted in considerable confusion.

Of course, before the days of computers and nonlinear regression, fitting a straight line to a Hill plot to get a
non-integer value for the estimated slope was all that could be done, and this non-integer value was correctly
taken to mean that this was a result of a cooperative binding model.

Nowadays no one would dream of discussing cooperative binding in terms of the Hill equation or fitting a
straight line to a Hill plot but, by a serendipitous coincidence, it turns out that the variable slope of the curve
obtained by transforming a saturation curve into Hill space still provides an unambiguous definition of the
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sign and magnitude of cooperativity that has got nothing at all to do with the Hill equation. That is because,

to use receptor terminology,
y [Bound]

1-y  [Free]

Binding polynomials and their Hessians

In 1925 Adair [2] improved the description of binding isotherms by defining binding constants for the
individual binding events, and later it came to be appreciated that these have to be normalized by statistical
factors in order to discuss the affinity of receptor for ligand in adjacent binding events. In 1967 Wyman [3]
rationalized the situation by pointing out that, for a non-aggregating macromolecule with n binding sites and
only one ligand x varied, there would be binding polynomial which would act like a partition function in that
successive terms of degree i in the polynomial are proportional to the amount of macromolecule with i ligands
attached.

So now the binding of ligands to receptors can be defined for all possible cooperative binding schemes in
terms of a binding polynomial p(x) in the free ligand activity x, as follows

p(x) =1 +Kix + Kox? + - + K x"
n

=1+ A+ AA +ooo | [ A"
i=1

_ n n 2 n 1 on
—1+(1)B]x+(2)B]Bzx + +(H)BB,x,

where the only difference between these alternative expressions concerns the meaning and interpretation of the
binding constants. The fractional saturation y(x) is just the scaled derivative of the log of the polynomial with
respect to log(x), and an important auxiliary function is A (x), the scaled Hessian of the binding polynomial
and these are defined as follows

_ (1) dlogp)
y(x)—(n) dlogx

i (1)xp'<x>
\n) p)”’
h(x) =npp” = (n—1)p”.

and

Definition of the Hessian of a binding polynomial

To investigate the algebraic properties of arbitrary polynomials f(x) of degree n it is useful to consider the
homogeneous form U(x, y) as in

f(x) = po+ pix+ pax* +...+ pux", in the equivalent form

U(x,y) = (g)on" + (Y)Alx"_ly + (;)Az)cn_zy2 +.o.+ (Z)Any”

where y is a dummy variable. Then the Hessian of the polynomial H( f) can be derived from the symmetrical
formula for H(U) leading to the expression for /(x) in the Hill plot slope as follows

1
H(U) = m[Uxnyy - Uyl

h(x)

H(f)=m
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using Euler’s theorem on homogeneous functions and setting y = 1 after differentiating.
Definition of cooperativity

Given a binding polynomial of degree n there are n — 1 cooperativity coefficients ¢; defined as
Ci =B,‘+1 —Bi fori = 1,2,...,]1— 1,

or alternatively as log(B;+1/B;), and the interpretation of these is perfectly clear: in a situation where ¢; > 0
the macromolecule has greater affinity for binding the 7 + 1th ligand after the ith ligand has been bound and it
is perfectly reasonable to describe this as mechanistic positive cooperativity. Hence every binding situation
for n ligands can be summarized by a succession of n — 1 signs and it might be thought that during the
actual saturation of macromolecule with ligand there would be a succession of phases with possibly differing
cooperativity. For instance, the sequence + — + might be supposed to give a saturation curve with positive,
then negative, then positive cooperativity. Unfortunately the cooperativity coefficients cannot be interpreted
in this way and they are not a unique indicator of the sign and magnitude of the type of cooperativity exhibited
during the saturation process. The reason for this is simply that binding does not occur in a succession of
isolated steps and at every stage for 0 < x < oo every species that is possible is present, that is no ligands
bound, one ligand bound, two ligands bound, etc. up to n ligands bound.

At every point in the range 0 < x < oo there is a one site binding curve y,,, with a uniquely defined apparent
binding constant K, according to the scheme

[Free sites] + X = [Occupied sites]

that is K
_ appX
Yapp (¥) = 1+ Kappx

Surely all would agree that the sign and magnitude of cooperativity at that point in the saturation curve would
depend on whether K, , is increasing or decreasing as a function of x. It turns out that

()
Koypp = ——ttl

) o M
dKapp _ h(x)

dx  (np(x) —xp’(x))?

so that increasing affinity (i.e. positive cooperativity) requires that the Hessian of the binding polynomial
h(x) has h(x) > 0, decreasing affinity (i.e. negative cooperativity) requires 2(x) < 0 while at a point where
h(x) = 0 cooperativity changes sign. Bardsley and Wyman [4] emphasized that the magnitude of the Hill
slope with respect to 1 is the unambiguous indicator of cooperativity which also depends on the sign of the

Hessian A(x) as follows
dlogly/(1-y)] _ xh(x)

dlogx p’(x)(np(x) = xp’(x))’
and Wood and Bardsley [5] proved that the Hessian can have at most n — 2 positive zeros.
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Zeros of the binding polynomial

If the n zeros of the binding polynomial are @; then the fractional saturation y can be expressed as

e = 1
y_(;)zx—a/i’

i=

but further discussion depends on the nature of the zeros.

First observe that, for a set of m groups of receptors, each with n; independent binding sites and binding
constant k;, then the zeros are all real and

p(o) =[]0+ kix)™,
i=1

1 - n[k,-x
m b
Zi:] n; P 1 +k,~x

andy =

so y is just the sum of simple binding curves, giving concave down double reciprocal plots, etc.

Actually Bardsley et al [6] and [7] proved that, if a binding polynomial factorizes into m polynomials p; with
positive coefficients according to

p(x) = p1(x)pa(x) ... pm(x)

then the Hill plot slope cannot exceed that of the Hill plot slope for any of the individual factors. As a binding
polynomial can always be factorized into a product of linear factors with real negative zeros and complex
conjugate pairs forming quadratic factors it might be supposed that the Hill slope can never exceed two.
However, if a binding polynomial of degree > 2 has complex conjugate zeros, the Hill slope may exceed two
and there may be evidence of strong positive cooperativity. That is why Hill plot slopes up to a maximum of
the degree of the binding polynomial can be achieved if there are quadratic factors with negative coefficients,
corresponding to a group of at least three linked binding sites.

For instance, the binding polynomial for a four site Monod-Wyman-Changeux model is

p(@) = —— ((1+ @)+ L( + ca)")

and this can factorize into the form
g(x) = +ax+ b1x2)(1 —arx + bzxz)

with a; > 0,a2 > 0,b; > 0, b2 > 0 under certain constraints so that the meaningless quadratic factor with a
negative term allows Hill slopes greater than two.

Edelstein and Bardsley [8] subsequently explored the relationship between the Hill slope at half-saturation
and the Hessian of the binding polynomial.

Statistical interpretation of saturation functions

The species fractional populations s; which are defined fori =0, 1,...,n as

Kixi
Ko+ Kix+ Kox?2 +-- 4+ Kyx"

Si

with Ko = 1, are interpreted as the proportions of the receptors in the various states of ligation as a function
of ligand activity. The species fractions defined as y; = is;/n fori = 1,2,...,n are the contributions of the
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species to the overall saturation. Note that

n

Zs,-z 1,, while

i=0

n
Zyi = (1/n)dlog p/d logx.
i=1

Such expressions are very useful when analyzing cooperative ligand binding data and they can be generated
from the best fit binding polynomial after fitting binding curves with program sffit, or by interactive input of
binding constants into program simstat. At the same time other important analytical results like factors of
the Hessian and minimax Hill slope are also calculated.

The species fractional populations can be also used in a probability model to interpret ligand binding in several
interesting ways. For this purpose, consider a random variable U representing the probability of a receptor
existing in a state with i ligands bound. Then the the probability mass function, expected values and variance
are

PU=i)=s;(i=0,1,2,...,n),

n

E(W)= ) isi
i=0

EWU?) = Zizsi,

i=0
V(U) = E(U» - [E(U))?
=x(p’(x>+xp"<x))__(xp'(x))2
p(x) p(x)

dy
=n s
dlogx

as fractional saturation y is E(U)/n. In other words, the slope of a semi-log plot of fractional saturation data
indicates the variance of the number of occupied sites, namely; all unoccupied when x = 0, distribution with
variance increasing as a function of x up to the maximum semi-log plot slope, then finally approaching all
sites occupied as x tends to infinity. You can input binding constants into the statistical calculations procedure
to see how they are mapped into all spaces, cooperativity coefficients are calculated, zeros of the binding
polynomial and Hessian are estimated, Hill slope is reported, and species fractions and binding isotherms are
displayed, as is done automatically after every n > 1 fit by program sffit.

Cooperativity analysis

After fitting a model, program sffit outputs the binding constant estimates in all the conventions and, when
n > 2 it also outputs the zeros of the best fit binding polynomial and those of the Hessian of the binding
polynomial A (x).

The positive zeros of i(x) indicate points where the theoretical one-site binding curve coinciding with the
actual saturation curve at that x value has the same slope as the higher order saturation curve, which are
therefore points of cooperativity change. The SIMF[T cooperativity procedure allows users to input binding
constant estimates retrospectively to calculate zeros of the binding polynomial and Hessian, and also to plot
species population fractions.
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For instance, for 4 sites with
K; =100,K, =10,K3 = 1,and K4 = 0.1,

the Hessian has these characteristic features
positive zero at x = 5.86139
minimum Hill slope in the range plotted is 0.0842, at x = 0.28607

maximum Hill slope is 1.44479, at x = 17.059, and
the slope at half saturation is 1.0847,at x = 6.5808.

The next graph shows the plot of the Hill slope and illustrates how it varies for these K; values leading to the
maximum and minimum slopes indicated along with the point where the positive zero of the Hessian occurs.

Hill Plot Slope with Maximum and Minimum Points
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The next graph is the actual Hill plot obtained using these K; values which shows the sort of complicated Hill
plots that can be obtained when there are more than two cooperatively linked sites, that is, where up to n — 2
zeros of the Hessian of the binding polynomial can occur.

The asymptotes are for the equation
kx

- 1+kx

y

with k = Kj/nasx — Oand k = nK,,/K,_| as x — oo, and the zero of the Hessian is where the slope changes
from less than 1 to greater than one,
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Hill Plot for K;=100, K,=10, K3=1, K, =0.1
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5.8 Gaussian kernel density estimation using FFT

Kernel density estimation is a technique used to create a numerical approximation to a density function given
a random sample of observations for which there is no known density.

To use this method choose [Statistics] from the main SiMF]T menu then [Statistical calculations] and select
[Kernel density estimation].

At this stage it is necessary to input a sample of observations and the following figure illustrates the results
when this was done with a data set simulated from a normal distribution with 4 = 0 and o> = 1, using 5 bins
for the histogram in the top row of figures, but using 10 bins for the histogram in the bottom row.

0.35 -
0.30 -
0.25 - R
0.20 - N
, .
. .
0.15 - / N
.
0.10 A
0.05 - <
000 4 === IR
-4 -2 0 2 4 -4 2 0 2 4
0.60 - 1.0 4
08 1
040 1 06 - 10 Bins
0.4 1
0.20 -
0.2 1
0.00 - 0.0 4
4 2 0 2 4 -4 2 0 2 4

The parameters used for the method are adjusted until a satisfactory fit has been obtained when it is then
possible to save the best-fit kernel to be used retrospectively as a representation of the data set. However it
should be noted that users have to exert considerable control over the parameters chosen as these will greatly
affect the kernel estimated. Understanding of the meaning of the parameters selected helps, but naturally a
visual display of the fit of the kernel estimate using a reasonable number of bins is recommended.

For instance, in this example changing the number of bins k alters the density estimate since, given a sample
of n observations xp, x2, ..., x, with A < x; < B, the Gaussian kernel density estimate f(x) is defined as

~ 1 & X — X;
ﬂx)zEZ;K( n )
where K(t) = \/% exp(—12/2)

and in this case h = (B — A)/(k — 2).

Clearly, a window width A similar to the bin width, as in the top row, can generate an unrealistic over-smoothed
density estimate, while using narrower many bins, as in the second row, can lead to over-fitting.



Gaussian kernel density estimation using FFT 231

Details are as follows.
* The calculation involves four steps.

1. From the n data points x; choose a lower limit a, an upper limit b, and m equally spaced points ¢;
where
a=A-3h<t; <B+3h=0b,

and m is power of 2. The value of m can be altered interactively from the default value of 128 if
necessary for better representation of multi-modal profiles. Data are discretized by binning the x;
at points #; to generate weights &;.

2. Compute FFT of the weights, &; to give Y.
3. Compute & = Y, exp (h*s?/2) where s; = 2l /(b — a)
4. Find the inverse FFT of & to give f(x).

* The histograms shown on the left use k bins to contain the sample, and the height of each bin is the
fraction of sample values in the bin. The value of k£ can be changed interactively, and the dotted curves
are the density estimates for the m values of . The program generates additional empty bins for the
FFT outside the range set by the data to allow for tails. However, the total area under the histogram is
one, and the density estimate integrates to one between —co and oo.

* In addition to the definition of the smoothing parameter 4 depending on the number of bins chosen for
display in the above figure the default setting, which is

h=1.060n""7,

uses the sample standard deviation and sample size, as recommended for a normal distribution. Users
can also set arbitrary smoothing parameters and, with these two options, the histograms plotted simply
illustrate the fit of the kernel density estimate to the data and do not alter the smoothing parameter 4.

* The sample cumulative distributions shown on the right have a vertical step of 1/n at each sample value,
and so they increase stepwise from zero to one. The density estimates are integrated numerically to
generate the theoretical cdf functions, which are shown as dashed curves. They will attain an asymptote
of one if the number of points m is sufficiently large to allow accurate integration, say > 100.

* The density estimates are unique given the data, # and m, but they will only be meaningful if the
sample size is fairly large, say > 50 and preferably much more. Further, the histogram bins will only
be representative of the data if they have a reasonable content, say n/k > 10.

* The histogram, sample distribution, pdf estimate and cdf estimate can be saved to file by selecting the
[Advanced] option then creating ASCII text coordinate files.
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5.9 False discovery rates FDR(BH)

Multiple testing is when several statistical tests are performed on the same data so it is necessary to control
false results. One procedure is the Bonferroni correction where, for m tests and p values, results are considered
significant at level @ if p < a/m, rather than p < « for single tests.

If at least one of the p values satisfies the Bonferroni restriction, the FDR(BH) false discovery rate technique
(Benjamini and Hochberg J.R.satist.Soc. B (1995) 57,1, 289-300, and Benjamini et al Behavioural Brain
Research 125 (2001) 279-284) is available to see if there other p values, not necessarily satisfying the
Bonferroni restriction, that could also be regarded as possibly significant.

Example 1: FDR(BH) for a vector of p values

From the main SiMF]T menu choose [Statistics] then [Statistical calculations] and then [False discovery rates
from a vector p(i)] and scrutinize the default test file fdr_bh.tfl provided. After selecting to calculate the
false discovery rates, view the table of results for all the data arranged into order of rank which is displayed
next. Here m is the number of tests and i is the rank of the sample in terms of the ordered p values.

False discovery rates for a vector of p(i) values: 1
Title: Data for BH False Discovery rate calculation
Sample size = 17

Number rejected = 0

Number analysed = 17

Significance level, @ = 0.05

p m#*pli axi/m
Rank | Sample p-value p-adjusted | BH-level | Result
1 12 0.000001 | 0.000017 | 0.002941 1
2 1 0.000013 | 0.000110 | 0.005882 1
3 3 0.000065 | 0.000368 | 0.008824 1
4 6 0.000630 | 0.002678 | 0.011765 1
5 5 0.000800 | 0.002720 | 0.014706 1
6 16 0.001700 | 0.004817 | 0.017647 1
7 2 0.003200 | 0.007771 | 0.020588 1
8 7 0.006500 | 0.013813 | 0.023529 1
9 11 0.014800 | 0.027956 | 0.026471 1
10 13 0.049000 | 0.083300 | 0.029412 0
11 14 0.094000 | 0.145273 | 0.032353 0
12 17 0.110000 | 0.155833 | 0.035294 0
13 9 0.150000 | 0.196154 | 0.038235 0
14 8 0.240000 | 0.291429 | 0.041176 0
15 15 0.450000 | 0.510000 | 0.044118 0
16 10 0.560000 | 0.595000 | 0.047059 0
17 4 0.870000 | 0.870000 | 0.050000 0

There are other options to view the results in sample order or to just show significant results, but the above
table is the easiest to understand and follows the example given by Benjamini et al on this same data set.

In order to understand the FDR(BH) technique we shall explain the meanings of the above columns and, in
particular, the interpretation of the colors and meaning of the 1’s and 0’s in the last column.
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1. Column 1
This is the rank i of the sample with respect to the p values. That is, the rows of the table are arranged
so that the samples in row 7 are arranged in order of increasing p values.

2. Column 2

This registers the actual number of the sample in the original order.

3. Column 3
Here are the p values corresponding to the rank recorded in column 1 for the sample identified in
column 2.

4. Column 4

If this is table line for rank i then this is the p value adjusted by the rank and the sample size m. In
other words, the adjusted p value is mp/i. Note that this column only depends on p,i and m, and the
last adjusted p value is always the same as the uncorrected p value since i = m.

5. Column5

Here are listed the BH-levels, i.e., the BH threshold values ai/m. Note that these only depend on «,
and m, and they have the following sequence. The value at row 1 is the Bonferroni corrected level for
significance testing, and the value at line m is the significance level @, while between these extremes
the values slowly increase as a function of the rank.

6. Column 6
This column has a 1 if the sample is in the FDR(BH) set and a 0 otherwise

The systematic FDR(BH) procedure

The technique starts at row m and advances up the table until the first rank is encountered, say k, where the
p value is less than or equal to the BH threshold. We then conclude that all samples from line 1 up to line k&
must be considered as possibly significant. So the set of possibly significant samples contains those where

p < ai/m,

or equivalently mp/i < a.

So now the importance of the color change will be clear and the interpretation of the table is obvious.

All samples numbered in column 2 up to level k with a 1 in column 6 are colored blue, which makes
identification of the set of possibly significant samples easy to recognize.

The table can also be rearranged into sample order and can be displayed in such a way as to only identify the
set of possibly significant samples. Also, for very large samples it is possible to scroll through the table to
select sections or even to write the whole table to file.

Example 2: FDR(BH) for a matrix of p values

Some procedures result in matrices of p values, and this requires a more complicated approach because we
have to keep track of the row and column indices. As a typical example, select the option for false discovery
rate for a matrix and read in the default test file matrix_p.tf1 which is as follows

0.00023 0.00060 0.40906 0.41318
0.00050 0.00005 0.32055 0.23282
0.00560 0.01362 0.43751 0.06327

This results from the directed correlation procedure in the multivariate statistics options using the default test
files matrix_a.tfl for the A matrix which has dimensions 30 by 3, and matrix_b.tf1 for the B matrix
which has dimensions 30 by 4.
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Proceeding with the false discovery option we obtain the following table in rank order.

False discovery rates for a matrix of p(i,j) values: 1
Title: Data from directed correlation
Number of columns = 4

Number of rows = 3

Number out of range = 0
Significance level, @ = 0.05

A(i) | B(j) | p-value | p-adjusted | BH-level | Result
2 2 0.000053 | 0.000632 | 0.004167 1
1 1 0.000231 | 0.001387 | 0.008333 1
2 1 0.000500 | 0.002000 | 0.012500 1
1 2 0.000598 | 0.001793 | 0.016667 1
3 1 0.005602 | 0.013446 | 0.020833 1
3 2 0.013624 | 0.027247 | 0.025000 1
3 4 0.063269 | 0.108461 | 0.029167 0
2 4 0.232822 | 0.349234 | 0.033333 0
2 3 0.320548 | 0.427398 | 0.037500 0
1 3 0.409063 | 0.490875 | 0.041667 0
1 4 0.413176 | 0.450738 | 0.045833 0
3 3 0.437508 | 0.437508 | 0.050000 0

As before the set of possibly significant samples is easy to identify by the 1 in the last column or blue color,
but columns 1 and 2 need some explanation.

In this example column 1 indicates what the row indices of p values are, because the matrix of p values had
3 rows which originated from the 3 columns of the A matrix in the directed correlation. The second column
identifies column indices for the 4 columns corresponding to the 4 columns of the B matrix. This situation
is valid only for this particular matrix, and results from the convention dictating the way that the matrix of p

values was constructed.
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6 Multivariate analysis

Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.

https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

(N
~

6.1 Introduction

Multivariate analysis is used to study n by m data matrices where the n rows represent subjects while the m
columns are values for variables observed for the n subjects.

To be precise, consider the possible outcome from testing eight people exposed to mosquito attacks with five
different types of clothing as follows, where a 1 indicates attacked by mosquitos and a 0 indicates freedom
from attack.

Blocks Groups (Clothing Type)
(Subjects) | Light-loose Light-tight Dark-long Dark-short None
1 0 0 0 1 0
2 1 1 1 1 1
3 0 0 0 1 1
4 1 1 0 1 0
5 0 1 1 1 1
6 0 1 0 0 1
7 0 0 1 1 1
8 0 0 1 1 0

Here there are 8 subjects and 5 variables, but in addition there is a first column identifying the subjects. So
the actual data matrix used for analysis would have dimensions n = 8 and m = 5, whereas the above table has
n = 8 and m = 6 because, with some multivariate techniques provided by SIMF|T, the additional first column
can be used to identify subjects if the data are rearranged into groups, or if some subjects are excluded from
analysis. Note also that it is often useful to exclude selected variables from an analysis and so, if this is done,
the remaining columns will be re-numbered.

So, from now on, we shall consider a matrix X with elements x;; as follows

X1 X120 Xim
X = X211 X22 ct X2m
Xnl Xn2  ° Xpm

where all the values are to be used in a current analysis.

Almost all multivariate techniques require that the vector of column means and the covariance matrix should
be estimated from X and, in addition, subsequent analysis will usually require a singular value decomposition
(SVD) because it is the most reliable method for determining the rank of a matrix. SiMF[T provides the
ability to check the rank of any matrix in this way, and this should be done with any data matrices that prove
problematical to analyze.

It should be obvious that the units of measurements for the variables should lead to similar values for the
x;j so that all m variables have comparable means and variances, otherwise columns with large values will
dominate columns with small values. This can be achieved by centralizing the matrix by subtracting the
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column means, and then normalizing by dividing by the column standard deviation. If this is required then
the SIMF]T program editmt can be used to pre-process data matrices, or it can be done interactively before the
data are submitted for analysis, or performed automatically by the routine. However, care must be exercised
when centralizing and normalizing because some techniques can give biased results if this is done uncritically.
For instance, partial least squares will give biased predictions if data sets for calibration and prediction are
pre-processed uncritically before analysis.
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6.2 Correlation
- Tutorials and worked examples for simulation,
? curve fitting, statistical analysis, and plotting.
A

https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

6.2.1 introduction

Correlation analysis is used to study the possible dependence of two or more columns in a n by m data matrix.
For instance, consider any two columns in a n by m data matrix such as

ar a2 -t Aaim
azy daxp -t Azm
anl A4n2 " dnm

where we can select column j where 1 < j < m, and refer to it as X, and column k where 1 < k < m, and
refer to it as Y, as long as j # k. As the data matrix will consist of observations subject to random variation
and experimental error the following situations are possible.

1. X and Y are completely independent and there is no relationship whatsoever between them.

2. X and Y are linearly dependent, that is, components x; and y; are related in that y; ~ ax; for some
parameter .

3. X and Y are monotonically dependent, that is, components x; and y; are related in that, roughly speaking,
y; tend to be large when x; are large, or some similar nonlinear tendency exists.

4. X and Y are nonlinearly dependent, that is, components x; and y; are related in that f(x;,y;) ~ O for
some nonlinear implicit function f(x,y) = 0.

5. X and Y are dependent because they are separately dependent on another column or columns in the data
matrix, or else some other factor not represented in the data matrix.

Actually, given any set of n nonsingular (x;, y;) pairs, a correlation coefficient r can always be calculated as

Z(xi -X)(yi—¥)
o1

J zn:(xi -x)? Zn:(yi -3)?
im1

i=1

r =

where —1 < r < 1 and, using b, for the slope of the regression of X on Y, and b, for the slope of the

regression of ¥ on X

2
r°=byxbyy.

However, only when X is normally distributed given Y, and Y is normally distributed given X can simple
statistical tests be used for significant linear correlation. The most well known facts about r are as follows.

* When X and Y are linearly related with y; ~ ax; and @ > O thenr — 1.
* When X and Y are linearly related with y; ~ ax; and @ < O thenr — —1.

* When X and Y are not linearly related then r — 0.
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* When the (x;, y;) pairs are from a bivariate normal distribution with population correlation coefficient
po equal to zero, then the statistic

n—2
1-r2
has a Student’s ¢-distribution with n — 2 degrees of freedom.

t=r

Example 1: Uncorrelated data

Consider this data set

X y
2.3556 9.9096
0.0165 3.1851
0.3103 7.2811
3.9954 9.3582
7.9854 2.7311
4.3243 7.0423
4.6832 9.7970
7.2031 8.4710
7.5664 7.1706
3.9607 6.4083

which can be displayed as the following scattergram.

Uncorrelated Data: r=-0.0111, p=0.9757
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Note that, in a correlation scattergram, it is arbitrary which column of the data matrix is chosen for X, and
which is chosen for Y. Hence, as it makes no sense to just show the regression line for ¥ as a function of
X, or X as a function of Y, SIMF[T allows you to plot both regression lines. If these regression lines are
approximately at right angles it indicates that X and Y are not linearly correlated. Of course the visual check

for perpendicularity is best when the same range and scale is used for the coordinates axes, and when a square
aspect ratio is employed.
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The conclusion is obvious from the scattergram, » value, p value, and almost perpendicular regression lines
that these two data columns are not linearly correlated. Note that the usual type of regression line is based on
the supposition that the X values are known exactly, but SIMF[T also provides other techniques for plotting a
best-fit single regression line when there is variation in both X and Y.

Example 2: Linearly correlated data

Consider this data set

X y
17215 0.3048
0.6453  1.5455
3.8647  2.6689
3.9793  4.1100
3.0151  5.5931
52616  7.5528
9.1775  7.7276
6.6972  7.0932
9.8648  8.8121
11.8088  10.0993

which can be displayed as the following scattergram.

Linearly Correlated Data: r=0.9043, p=0.0003

The conclusion is obvious from the scattergram, r value, p value, and almost parallel regression lines that
these two data columns are linearly correlated.

Note however, that such strong evidence for linear correlation does not imply that Y is really a linear function
of X in the sense that X causes Y or vice versa. Often a strong correlation will be due to the dependence of
both variables on some other factor such as time, population size, or age. For instance, one study examined
that incidence of crime in several cities along with other variables such as the number of churches and reported
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a strong positive correlation between the incidence of crime and the number of churches. This does not, of
course, mean that churches cause crime, but merely reflects the fact that large cities will tend to have more
crimes but also more churches. SIMF[T provides techniques for studying these sorts of induced correlations.

Example 3: non-linearly correlated data

Consider this data set

X y
1.0000  0.0000
0.8090 0.5878
0.3090 0.9511
-0.3090 0.9511
-0.8090 0.5878
-1.0000 0.0000
-0.8090 -0.5878
-0.3090 -0.9511
0.3090 -0.9511
0.8090 -0.5878

which can be displayed as the following scattergram.

Nonlinear Correlation Data: r= 0.0000, p=1.0000
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The conclusion is obvious from the scattergram, r value, p value, and perpendicular regression lines that
these two data columns are not linearly correlated.

This example emphasizes an extremely widespread misunderstanding in the application of correlation analysis.
It would be harder to find a more obvious example of a data set displaying such extreme nonlinear correlation
as this one. Yet the standard technique of relying on 7 and p values would only conclude an absence of linear
correlation, and would not exclude nonlinear correlation. Scatter diagrams showing both regression lines, as
in these examples, should always be inspected before making conclusions about possible correlations.
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6.2.2 Pearson product-moment correlation

The Pearson product-moment method is used to estimate the amount of linear correlation between paired
columns, say X and Y, of a n by m data matrix where it is assumed that the values are of the continuous type
from a normal bivariate distribution, and not integers such as frequencies or categorical variables. The null
hypothesis is that X and Y are independent, i.e. have zero covariance, that is

Hy : X and Y are from a bivariate normal distribution with p = 0.
Example 1
From the SIMF]T main menu choose [Statistics], [Multivariate], [Correlation], then analyze g02baf. tf1, the

test file provided, using the Pearson product-moment technique. This file contains the following 5 by 3 data
matrix

2.0 3.0 3.0
4.0 6.0 4.0
9.0 9.0 0.0
0.0 120 20

120 -1.0 5.0
and analysis leads first to the correlation coefficients and corresponding p values

Matrix A, Pearson correlation results

Upper triangle = r

Lower triangle = corresponding two-tail p values
..... -0.5704 0.1670

0.3153 ... -0.7486

0.7883 0.1455 ..

which is in the following simplified but comprehensive format

r2 ris
A=|pi2 -+ 13
P13 P23

where the values a;; for matrix A in the table are interpreted as now described. For j > i in the strict upper
triangle, then a;; = r;; = rj; are the correlation coefficients, while for i > j in the strict lower triangle
a;j = pij = pj; are the corresponding two-tail probabilities. In other words, since r;; = rj;, p;j = p i, while
ri; = 1, there will only be m(m — 1)/2 independent correlations coefficients, and so the diagonal r;; = 1
are shown as dots. For instance r12 = —0.5704 is the correlation coefficient for columns 1 and 2, while
p12 = 0.3153 is the two-tail p value for this correlation coefficient. The table indicates that none of the
correlations are significant in this case, that is, the probability of obtaining such pairwise linearity in a random
swarm of points from a multivariate normal distribution is not low.

This is then followed by a likelihood ratio test that the full correlation matrix R = r;; for the data matrix is the
identity matrix with the following results.

Test for absence of any significant correlations
Hy: correlation matrix is the identity matrix
Determinant 0.2290

Test statistic (T'S) 3.194

Degrees of freedom 3

P(x*=>TS) 0.3627

To test the hypothesis of no significant correlations, i.e.
Hy: the covariance matrix is diagonal, or equivalently
Hy: the correlation matrix R is the identity matrix, the likelihood ratio test statistic 7'S, i.e.

—2logd=-(n—-(2m+11)/6)log|R|
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is used, where |R| is the determinant of the full correlation matrix (not the previous A matrix) which has the
asymptotic chi-square distribution with m(m — 1) /2 degrees of freedom.

Example 2

This example illustrates the analysis of SIMF]T test file cluster.tfl which contains the following data set

1.0 40 20 11.0 6.0 40 3.0 9.0
8.0 5.0 1.0 140 190 7.0 13.0 21.0
3.0 1.0 3.0 1.0 3.0 6.0 23.0 37.0
9.0 0.0 7.0 7.0 1.0 20 210 20
70 120 9.0 50 14.0 9.0 120 14.0
20 130 150 20 230 6.0 340 8.0
110 7.0 20 1.0 4.0 170 11.0 4.0
6.0 3.0 70 120 11.0 80 8.0 0.0
8.0 21.0 10 100 310 90 3.0 180
19.0 140 120 9.0 16.0 10.0 0.0 27.0
170 18.0 100 6.0 19.0 14.0 1.0 24.0
15.0 21.0 8.0 70 17.0 120 40 22.0
leading to this correlation and probability matrix
Upper triangle = r, Lower = corresponding two-tail p values
..... 0.5295 0.2874 0.0662 0.1941 0.6255 -0.5876 0.3010
0.0766 ... 0.3285 -0.0219 0.7930 0.5338 -0.4230 0.3006
0.3650 0.2971 ... -0.2833 0.2165 0.0264 0.2314 -0.0304
0.8381 0.9460 0.3723 ... 0.2787 -0.2837 -0.5238 -0.1166
0.5455 0.0021 0.4992 0.3804 ... 0.2029 -0.1949 0.2144
0.0296 0.0738 0.9351 0.3715 0.5271 .. -0.4532  0.1360
0.0445 0.1706 0.4694 0.0805 0.5439 0.1390 ... -0.1696
0.3418 0.3424 0.9253 0.7181 0.5035 0.6735 0.5983 ...

followed by the results displayed next for a likelihood ratio test.

Test for absence of any significant correlations

Hy: correlation matrix is the identity matrix

Determinant

Test statistic (T'S)
Degrees of freedom 28

P(x*>TS)

0.002476
45.01

0.0220

Reject Hy at 5% significance level

From the r values in the strict upper triangle, the p values in the strict lower triangle, and the chi-square test
there are linear correlations, and in such cases it would be usual to select pairs of columns for closer analysis.

Analyzing selected pairs of columns

For example, the results for analyzing columns 1 and 2 will be considered.

For the next analysis: X is column 1, Y is column 2

Linear regression: y(x) = A+ B*x,x(y) =C+D xy

Sample
For X
ForY

size =12

mean = 8.8333
mean = 9.9167

std. dev. = 5.7814
std. dev. = 7.5973

var. = 33.424
var. = 57.720

First the parameter estimates for linear regression are calculated, where Estimate/Standard Error are ¢ values
to test for parameters significantly different from zero, Ppmcc is the Pearson product-moment correlation
coefficient, and the Fisher z value is used to estimate a 95% confidence region for p. In this type of table
p < 0.05 would be required to suggest a nonzero parameter at the 5% significance level.
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Parameter Estimate Standard Error  Estimate/Standard Error )4

B (slope) 0.69583 0.35252 1.9739 0.0766
A (const) 3.7702 3.6748 1.0260 0.3291
r (Ppmcc)  0.52951 0.26826 1.9739 0.0766
r? 0.28038

y-variation due to x = 28.04%

z(Fisher) 0.58946

Note: z = (1/2)log[(1 +r)/(1 = r)]

r’=Bx«D,andt=rx \/[(n —2)/(1 - r?)] = Estimate/Standard Error for B and D
The Pearson product-moment correlation coefficient r estimates p and

95% confidence limits using z are —0.0771 < p < 0.8500

Then this analysis of variance (ANOVA) table is displayed, where the F value is used to test for a significant
regression slope. In this type of table p < 0.05 would be required to suggest a nonzero regression slope at
the 5% significance level.

Source Sum of squares ndof Meansquare F-value p
due to regression 178.02 1 178.02 3.8962 0.0766
about regression 456.90 10 45.690

total 634.92 11

Conclusions:

B is not significantly different from zero (p > 0.05)
A is not significantly different from zero (p > 0.05)

The two best-fit unweighted regression lines are:
y(x) =3.7702 + 0.69583x, and x(y) = 4.8375 + 0.40294y

Various options for plotting follow, and the theory necessary to interpret such correlation tests and visual
displays will be presented next.

Theory

Given any set of n nonsingular (x;, y;) pairs, a correlation coefficient r can be calculated as

> i =D (i - 3)
i=1

J Zn:(xi - x)? zn:(yi -7)?
i=1 o1

where —1 < r < 1 and, using b, for the slope of the regression of X on Y, and b, for the slope of the

regression of ¥ on X

r =

2
r°=byxbyy.

However, only when X is normally distributed given Y, and Y is normally distributed given X can simple
statistical tests be used for significant linear correlation. For instance, when the (x;, y;) pairs are from such a
bivariate normal distribution, the statistic

n—-2

1-72
has a Student’s #-distribution with n — 2 degrees of freedom. It is also the ¢ value required to test for nonzero
slope in the regression of ¥ on X, and X on Y, for which a p value can be calculated.
The next figure illustrates how the elliptical contours of constant probability for a bivariate normal distribution
are aligned with the X and Y axes when X and Y are uncorrelated, i.e., p = 0 but are inclined otherwise. In
this example ux = uy =0 and o = oy = 1, but in the upper figure p = 0, while in the lower figure p = 0.9.
The Pearson product-moment correlation coefficient 7 is an estimator of p, and it can can be used to test for
independence of X and Y.
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Bivariate Normal Distribution: p=0
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Bivariate Normal Distribution: p =0.9
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Bivariate Normal: p=0

Key Contour
3 17 1.440x102
2 2.878x102
3 4.316x107
4 5.755x102
5  7.193x10%
6  8.631x102
7 0101
8 0115
9 0129
10 0.144
>
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Bivariate Normal: p=0.9
Key Contour
3 1 3.309x10%
2 6.618x107
3 9.927x102
4 0132
5 0.165
6 0199
7 0.232
8  0.265
9 0208
10
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The StMF[T product-moment correlation procedure can be used when you have a data matrix X consisting of
m > 1 columns of n > 1 measurements (not counts or categorical data) and wish to test for pairwise linear
correlations, i.e., where pairs of columns can be regarded as consistent with a bivariate normal distribution.
In matrix notation, the relationships between such a n by m data matrix X, the same matrix Y after centering
by subtracting each column mean from the corresponding column, the sum of squares and products matrix C,
the covariance matrix S, the correlation matrix R, and the diagonal matrix D of standard deviations are

c=v"y
1
S:n_lc
D = diag(\/s11, V$22, - - - » VSmm)
R=D7'sD™!
S=DRD.

So, for all pairs of columns, the sample correlation coeflicients r ;. are given by

Sjk
r]k = >
VSjjSkk
1 n
where s = m— § (xij — X)) (xik — Xi),
-1

and the corresponding 7 values and significance levels p j; are calculated then output in matrix format with
the correlations as a strict upper triangular matrix, and the significance levels as a strict lower triangular

matrix.
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6.2.3 Plotting lines on correlation diagrams

You can plot either both unweighted regression lines, the unweighted reduced major axis line, or the unweighted
major axis line on such scattergrams and the difference between these types will now be outlined.

For n pairs (x;, y;) with mean x = ¥ and mean y = y, the variances and covariance required are

o5}
=
=

|

1 n
= (xi —%)2
n-1 ;

1 n
Syy = —— E =)
T Z (i —79)

Sxy: ! Z(xi_i)(yi_)_])-
i=1

n-1

Also, for an arbitrary point (x;,y;) and a straight line defined by y = a + bx the squares of the vertical,
horizontal, and orthogonal (i.e. perpendicular) distances, vl.z, h%, and 0% between the point and the line are

vi=[yi - (a+bx)]?

Ordinary least squares

If x is regarded as an exact variable free from random variation or measurement error while y has random
variation, then the best fit line from minimizing the sum of vi2 is

yi(x) = Bix + [§ - fi%]

where ,3 1 = Sxy/Sxx. However, if y is regarded as an exact variable while x has random variation, then the
best fit line for x as a function of y from minimizing the sum of hl2 would be

x2(y) = (1/B2)y + [% = (1/B2)3]
where 3, = Syy/Sxy or, rearranging to express the line as y> (x),
y2(x) = Box + [ - Box],

emphasizing that the slope of the regression line for y,(x) is the reciprocal of the slope for x,(y). Since
neither of these two best fit lines can be regarded as satisfactory, SIMFIT plots both lines such that y; (x)
covers the range of x values while x;(y) covers the range of y values. However these two lines intersect at
(%, 7) and, from the fact that the ratio of slopes equals the square of the correlation coefficient, that is,

r* = pi/Ba.

then two best fit lines with similar slopes suggests strong linear correlation, whereas one line almost parallel to
the x axis and the other almost parallel to the y axis would indicate negligible linear correlation. For instance,
if there is no linear correlation between x and y, then the slope of the regression line for y(x) i.e. 8; would
be zero, as would be the slope of the regression line for x(y) i.e. 1/3, leading to r> = 0. Conversely strong
linear correlation would lead to 8; = 3> and r* = 1.
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The major axis and reduced major axis lines to be discussed next are attempts to get round the necessity to
plot two lines and just have one best fit line intermediate between these two lines to represent the correlation.

The major axis line

Here it is the sum of of, the squares of the orthogonal distances between the points and the best fit line, that
is minimized to yield the slope as

Br=3 (B2 180 eyl = 1802

where y = 1if S5y > 0,y =0if S, =0, and y = -1 if §,, < 0, so that the major axis line is
y3(x) = Bsx + [ — Baxl.

Actually 33 is the slope of the first principal component axis and so it points in the direction of maximum
variability.

The reduced major axis line

Instead of minimizing the sum of squares of the vertical distances vl.z, or horizontal distances hl.z, it is possible
to minimize the sum of the areas of the triangles formed by the v;, h; with the best fit line as hypotenuse, i.e.
v;h;/2, to obtain the reduced major axis line as

ya(x) = Bax + [§ — Pax].

Here

Ba = ¥+Syy/Sx

=Y 3132

so that the slope of the reduced major axis line is the geometric mean of the slopes of the regression of y on x
and x on y.

6.2.4 Recommendations for plotting lines on scattergrams

1. Plotting both both simple regression lines is the most useful and least controversial. Such lines tending
to coincidence indicate strong linear correlation, while lines approaching perpendicularity indicate
absence of significant linear correlation.

2. If a single line must be plotted to summarize the overall correlation it should be the reduced major axis
line, as this allows for uncertainty in both variables and is not so controversial as the major axis line,
which requires both axes to have similar units, as in allometry.

3. It should not be just one of the simple regression lines, since the line plotted must be independent of
which variable is regarded as x and which is regarded as y.
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6.2.5 Plotting bivariate confidence ellipses: basic theory

For a p-variate normal sample of size n with mean X and variance matrix estimate S, the region

P{()E—/J)TS_I()E—p) ”((Z ;iFPnP}Sl—a

can be regarded as a 100(1 — @)% confidence region for u. The next figure illustrates this for columns 1 and
2 of cluster. tfl discussed previously. Alternatively, the region satisfying

{(x DS (x-%) < MF“ }s]—a

nn—p) "

can be interpreted as a region that with probability 1 — @ would contain another independent observation x,
as shown for the swarm of points in the next figure.

99% Confidence Region for the Mean

25 A
20 A
15 4

10 A

Column 2

0 5 10 15 20
Column 1

95% Confidence Region for New Observation

20 A

10 A

-10 A

-20 4

The u confidence region contracts with increasing n, limiting application to small samples, but the new
observation ellipse does not, making it useful for visualizing if data do represent a bivariate normal distribution,
while inclination of the principal axes away from parallel with the plot axes demonstrates linear correlation.
This technique is only justified if the data are from a bivariate normal distribution and are independent of the
variables in the other columns, as indicated by the correlation matrix.
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Plotting bivariate confidence ellipses: regions

Often a two dimensional swarm of points results from projecting data that have been partitioned into groups
into a subspace of lower dimension in order to visualize the distances between putative groups, e.g., after
principal components analysis or similar. If the projections are approximately bivariate normal then confidence
ellipses can be added, as in the figure below.

95% Confidence Ellipses

16 A -
8 . -
> 0 - -
-8 - L
-16 - L
-16 -8 0 8 16
X

The following steps were used to create this figure and can be easily adapted for any number of sets of two
dimensional group coordinates.

1. For each group a file of values for x and y coordinates in the projected space was saved.
2. Each file was analyzed for correlation using the SIMF[T correlation analysis procedure.

3. After each correlation analysis, the option to create a 95% confidence ellipse for the data was selected,
and the ellipse coordinates were saved to file.

4. A library file was created with the ellipse coordinates as the first three files, and the groups data files as
the next three files.

5. The library file was read into simplot, then colors and symbols were chosen.

Note that, because the ellipse coordinates are read in as the first coordinates to be plotted, the option to plot
lines as closed polygons can be used to represent the confidence ellipses as colored background regions.
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6.2.6 Kendall tau and Spearman rank nonparameteric correlation

Nonparametric correlation is required when the data are not distributed according to a multivariate normal
distribution, so the Kendall-tau or else the Spearman-rank method is to be preferred. As with the Pearson
product-moment correlation technique a n by m data matrix (but now with ranked or ordinal scaled data)
is supplied, then SIMF]T calculates all possible pairwise correlation coeflicients, and all possible two tail
probabilities.

From the St(MF[T main menu choose [Statistics], [Multivariate], [Nonparametric correlation] then analyze the
test file npcorr.tf1 which contains the following data set withn =9 and m =3

1.70 1.00 0.50
2.80 4.00 3.00
0.60 6.00 2.50
1.80 9.00 6.00
0.99 4.00 2.0
140 2.00 5.50
1.80 9.00 7.50
250 7.00 0.00
0.99 5.00 3.00

to obtain these results.

Matrix A: Correlation coefficients
Upper triangle = Spearman’s rank
Lower triangle = Kendall’s tau

..... 0.2246 0.1186
0.0294 ... 0.3814
0.1176 0.2353 .....

Matrix B: Two tail p-values
..... 0.5613 0.7611
0.9121 ... 0.3112
0.6588 0.3772 ...

To be more precise, matrices A and B in this table are to be interpreted as follows. In the first matrix A, for
J > i in the strict upper triangle, then a;; = ¢;; = cj; are Spearman correlation coefficients (in black), while
fori > j in the strict lower triangle a;; = 7;; = 7j; are the corresponding Kendall coefficients (in red).

In the second matrix B, for j > i in the strict upper triangle, then b;; = p;; = pj; are two-tail probabilities
for the corresponding c;; coeflicients (in black), while for i > j in the strict lower triangle b;; = p;; = p;; (in
red) are the corresponding two-tail probabilities for the corresponding 7;;.

For instance, because of symmetry,

* ajpp =cyz2 = cz1 = 0.2246 with by = p—Spearman;, = p—Spearman,; = 0.5613 refer to the Spearman
rank correlation and two-tail p-values for analyzing columns 1 and 2, while

* ap =13 = 13 = 0.2353 with b3; = p — Kendallz, = p — Kendallyz = 0.3772 refer to the Kendall 7
correlation and two-tail p-values for analyzing columns 2 and 3.

Note that, from these matrices, 7, ¢ jx and p jx values are given for all possible correlations j, k. Also, note
that these nonparametric correlation tests are tests for monotonicity rather that linear correlation but, as with
the Pearson parametric test, the columns of data must be of the same length and the values must be ordered
according to some correlating influence such as multiple responses on the same animals. If the number of
categories is small or there are many ties, then Kendall’s Tau is to be preferred and conversely. Since you are
not testing for linear correlation you should not add regression lines when plotting such correlations.
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It should be obvious that SIMF[T displays both sets of results for convenience, and so there are just two
possible ways to proceed.

1. Decide in advance which correlation coefficients and corresponding p values to accept, or

2. Apply the Bonferroni or similar correction required for two tests on the same data.

Theory

These nonparametric procedures can be used when the data matrix does not consist of columns of normally
distributed measurements, but may contain counts or categorical variables, etc. so that the conditions for
Pearson product-moment correlation are not satisfied and ranks have to be used. Suppose, for instance, that
the data matrix, say X, has n rows (observations) and m columns (variables) with n > 1 and m > 1, then the
x;j are replaced by the corresponding column-wise ranks y; ;, where groups of tied values are replaced by the
average of the ranks that would have been assigned in the absence of ties. Kendall’s tau 7, for variables j
and k is then defined as

Z Z FOnj = i) f nie = yie)
g = L ’

Yl = 1) = T3 n(n = DTe]
where f(u) = 1ifu > 0,
=0ifu=0,
=-1ifu <0,

and Tj = th(lj -1).

Here ¢, is the number of ties at successive tied values of variable j, and the summation is over all tied values.
For large samples 7 is approximately normally distributed with

u=0
2 4n+ 10

7= 9n(n—-1)

which can be used as a test for the absence of correlation.

Another alternative is to calculate Spearman’s rank coefficient c j, defined as

n(n = 1) =6 (yij = yir)* = (Tj + T) )2
i=1

Cjk =

Jln(r2 = 1) = T} [n(n2 = 1)T]

th(tf— 1)

and a test can be based on the fact that, for large samples, the statistic

where now T

n—2

_ 2
1 Clik

Lik = Cjk

is approximately 7-distributed with n — 2 degrees of freedom.
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6.2.7 Partial correlation

Partial correlation analysis is used to evaluate the extent to which the correlations between two or more
columns (called Y-variables) of a n by m data matrix with m > 2 depend on correlations between these
columns and other columns in the matrix (called X-variables). Either a data set or a correlation matrix
together with sample size can be input, and it is most often used to study the way that the correlations between
two columns depend on a third column.

Example 1

From the main StMF]T menu select [Statistics], [Multivariate], [Partial correlation] and then read in the test file
g02byf. tfl provided. In the special case when n = m you have to specify whether a data file or correlation
matrix is being input, but this is a data matrix with fifteen rows and three columns as follows.

Column 1: number of deaths
Column 2: smoke(mg/m?>)
Column 3: sulphur dioxide(parts/million)

112 0.30 0.09
140 0.49 0.16
143 0.61 0.22
120 0.49 0.14
196 2.64 0.75
294 3.45 0.86
513 4.46 1.34
518 4.46 1.34
430 1.22 047
274 122 047
255 0.32 0.22
236 029 0.23
256 0.50 0.26
222 0.32 0.16
213 0.32 0.16

However the following important trailer section has been added to the data.

begin{indicators}
411
end{indicators}

Negative indicator values denote Y-variables, zero values indicate suppression, while positive indictor values
identify X variables. In other words, the default partial correlation between deaths and smoke is required
when sulphur dioxide is considered as fixed. However, it should be noted that the assigning of columns to ¥
or X groups can also be done interactively.

First the overall Pearson product-moment correlation matrix is calculated and displayed along with the two-tail
p-values.

Pearson product moment correlation results:

Strict upper triangle: r

Strict lower triangle: corresponding two-tail p values
..... 0.7560 0.8309

0.0011 ... 0.9876

0.0001 0.0000 .....

This is then followed by a likelihood ratio test
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Test for absence of any significant correlations

Hy: correlation matrix is the identity matrix

Determinant 0.003484

Test statistic (7'S) 68.86

Degrees of freedom 3

P(x*>TS) 0.0000 Reject Hy at 1% significance level

but, in addition, the partial correlation matrix is displayed as in the next table for variables indicated as YY X.
That is, correlation for columns 1 and 2, regarding column 3 as fixed.

Partial correlation results for variables: YY X

Strict upper triangle: partial r

Strict lower triangle: corresponding 2-tail p values
-0.7381

0.0026

Example 2

This is the test file pacorr.tfl which contains a correlation matrix.

Correlation matrix: sample size = 30
3 3

1.0000 0.6162 0.8267

0.6162 1.0000 0.7321

0.8267 0.7321 1.0000

3

variable 1: Intelligence

variable 2: Weight

variable 3: Age

By systematically altering the definition for Y variables and X variables SIMFT can calculate all the correla-
tions and partial correlations as follows.

r(1,2) = 0.6162
r(1,3) = 0.8267
r(2,3) =0.7321

r(1,2]3) = 0.0286 (95% confidence limits = —0.3422,0.3918)
t=0.1488,ndof =27, p = 0.8828

r(1,3]2) = 0.7001 (95% confidence limits = 0.4479,0.8490)
t=5.094,ndof =27,p =0.0000 Reject Hy at 1% significance level

r(2,3]1) = 0.5025 (95% confidence limits = 0.1659,0.7343)
t =3.020,ndof =27, p = 0.0055 Reject Hy at 1% significance level

From this table it is clear that when variable 3 is regarded as fixed, the correlation between variables 1 and 2 is
not significant but, when either variable 1 or variable 2 are regarded as fixed, there is evidence for significant
correlation between the other variables. Exactly what commonsense would predict.

Theory

Assuming a multivariate normal distribution and linear correlations, the partial correlations between any two
variables from the set i, j, k conditional upon the third can be calculated using the usual correlation coeflicients
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as
Tij = Tikl jk
Fijlk = :

\/(1 —l"l.zk)(l _,,.jZ_k)

If there are p variables in all but p — ¢ are fixed then the sample size n can be replaced by n — (p — ¢) in the
usual significance tests and estimation of confidence limits, e.g. n — (p — q) — 2 for a t test.

The situation is more involved when there are more than three variables, say n, X variables which can be
regarded as fixed, and the remaining n, Y variables for which partial correlations are required conditional on
the fixed variables.

Then the variance-covariance matrix X can be partitioned as in

Y=

Zxx ny
ny E)’y

when the variance-covariance of Y conditional upon X is given by
_ -1
Zylx = Zyy — ZyxZyyZxys
while the partial correlation matrix R is calculated by normalizing as

R = diag(Zy x) "7 Ty diag(Sy1) 2.

Exactly as for the full correlation matrix, the strict upper triangle of the output from the partial correlation
analysis contains the partial correlation coefficients r;;, while the strict lower triangle holds the corresponding
two tail probabilities p;; where

n—ny—2 n—ny—2
pij = P |th-n,—2 < =lrij|\[———=— | + P |tn-n,—2 > Irij|\ | ——F— |-
—re. 1 —rs
ij lJ
However, for convenience, the output table may display the subscripted partial correlation coeflicients with
indicated conditional variables together with confidence limits as in Example 2.
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6.2.8 Canonical correlation
Canonical correlation is used to explore the correlations between selected columns of a matrix by calculating

transformations into lower-dimensional subspaces where the transformed variables have maximum correlation,
and can thus be quantified and visualized

Consider a n by m matrix A with elements a;; as follows

ar aiz 0 Aaim

(25 75 N )
A= n

anl Aan2 *°° dpm

where a subset of n, columns (i.e. x-variables) will be defined as X, another disjoint subset of n, columns
(i.e. y-variables) will be defined as Y, while ng columns may be suppressed (i.e. not used in the analysis).
Clearly

m =ny +ny +ng whereny > 1,n, > 1 andn, > 0.

Example 1

From the main SIMF[T menu choose [Statistics], [Multivariate], then [Canonical correlation] and observe the
format for the test file g03adf.tf1l shown below.

80.0 584 14.0 21.0
75.0 59.2 15.0 27.0
78.0 603 15.0 27.0
75.0 574 13.0 22.0
79.0 59.5 14.0 26.0
78.0 581 145 26.0
75.0 58.0 125 23.0
64.0 555 11.0 22.0
80.0 59.2 125 22.0
begin{indicators}
N 1 1 -1

end{indicators}

The final section after the data matrix specifies the meaning of the above data as follows.
e Column 1: variable 1 (y(1) in this case as indicator(1) = -1)
¢ Column 2: variable 2 (x(1) in this case as indicator(2) = 1)
¢ Column 3: variable 3 (x(2) in this case as indicator(3) = 1)
* Column 4: variable 4 (y(2) in this case as indicator(4) = -1)

In other words, the red data values are Y variables while the blue values are X variables. Note that, in this
example, there are no variables to be suppressed by setting the corresponding indicator to zero, but in any
case the assignment of columns to types X or Y or suppressed can also be done interactively. Analysis leads
to the next table of results.
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Results from analysis of data in test file g03adf.tf1

Variables: yxxy

Number of X variables = 2, Number of Y variables = 2, Number unused = 0
Minimum of rank of X and rank of Y = 2

Correlations  Eigenvalues Proportions X2 NDOF p
0.9570 0.91591 0.8746 14.391 4 0.0061
0.3624 0.13133 0.1254 0.77438 1 0.3789

CVX: Canonical coefficients for centralized X
-0.4261 1.034
-0.3444 -1.114

CVY: Canonical coefficients for centralized Y
-0.1415 0.1504
-0.2384 -0.3424

In this table the eigenvalues are proportional to the correlation explained by the corresponding canonical
variable, while the y? values and corresponding p values indicate the significance of the successive canonical
variables. The results indicate that, with these data, the first canonical variate is sufficient to summarize the
correlations between the X and Y variables. Scree diagrams can also be plotted for this purpose.

Example 2

The figure below illustrates two possible graphical displays for the canonical

Canonical Correlation Canonical Correlation
2 2
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_3 1 1 1 _3 1 1 1
-3 -2 -1 0 1 2 -3 -2 -1 0 1 2
Canonical Variable v1 Canonical Variable v2

variates defined by the SIMF[T test file matrix.t£f5, where columns 1 and 2 are designated the ¥ sub-matrix,
while columns 3 and 4 hold the X matrix. Note that, as eigenvectors do not have unique signs, it is often
necessary to reverse the signs of canonical variates for plotting in order to agree with graphs calculated by
alternative software. This feature, and also the ability to label the components in such diagrams according to
labels added to the data file, is also supported.

Theory

This technique is employed when a n by m data matrix includes at least two groups of variables, say n
variables of type X, and n, variables of type Y, measured on the same n subjects, so that m > ny +n,. The
idea is to find two transformations, one for the X variables to generate new variables V, and one for the Y
variables to generate new variables U, with [ components each for / < min(n,, ny), such that the canonical
variates u1, v calculated from the data using these transformations have maximum correlation, then u3, vy,
and so on. Now the variance-covariance matrix of the X and Y data can be partitioned as
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and it is required to find transformations that maximize the correlations between the X and Y data sets.
Actually, the equations

(SxyS53Syx — R*Sxx)a =0
-1 2
(SyxSxxSxy = R*Syy)b =0

have the same nonzero eigenvalues as the matrices S;;SxyS;;Syx and S;;Sny;)lchy, and the square roots
of these eigenvalues are the canonical correlations, while the eigenvectors of the two above equations define
the canonical coefficients, i.e. loadings.

Note that the eigenvalues are proportional to the correlation explained by the corresponding canonical variates,
so a scree diagram can be plotted to determine the minimum number of canonical variates needed to adequately
represent the data. This diagram plots the eigenvalues together with the average eigenvalue, and the canonical
variates with eigenvalues above the average should be retained. Alternatively, assuming multivariate normality,
the likelihood ratio test statistics

1
~21log A = —(n — (ky +ky +3)/2) Z log(1 - R?)

j=itl

can be calculated fori = 0,1, ...,/ -1, where kx < ny and ky, < n, are the ranks of the X and Y data sets and
I = min(kx, k). These are asymptotically chi-square distributed with (k — i) (k, — i) degrees of freedom,
so that the case i = 0 tests that none of the / correlations are significant, the case i = 1 tests that none of the
remaining / — 1 correlations are significant, and so on. If any of these tests in sequence are not significant,
then the remaining tests should, of course, be ignored.

The previous figure illustrates two possible graphical displays for the canonical variates defined by matrix. t£5,
where columns 1 and 2 are designated the Y sub-matrix, while columns 3 and 4 hold the X matrix. The canon-
ical variates for X are constructed from the n, by n., loading or coefficient matrix CVX, where CVX (i, j)
contains the loading coefficient for the ith x variable on the jth canonical variate « ;. Similarly CVY) is the n,,
by 7., loading coeflicient matrix for the ith y variable on the jth canonical variate v;. More precisely, if cvx;
is column j of CVX, and cvy; is column j of CVY, while x(k) is the vector of centralized X observations for
case k, and y(k) is the vector of centralized Y observations for case k, then the components u(k); and v(k);
of the n vector canonical variates u; and v; are

v(k);
u(k);

cvx]Tx(k), k=1,2,....,n

cvy]T.y(k), k=1,2,...,n.

It is important to realize that the canonical variates for U and V do not represent any sort of regression of ¥
on X, or X onY, they are just new coordinates chosen to present the existing correlations between the original
X and Y in a new space where the correlations are then ordered for convenience as

R*(ui,v1) = R*(up,v2) > ... > R*(us,v;).

Clearly, the left hand plot shows the highest correlation, that is, between u; and v{, whereas the right hand plot
illustrates weaker correlation between u, and v,. Note that further linear regression and correlation analysis
can also be performed on the canonical variates if required, and also the loading matrices can be saved to
construct canonical variates using the SIMF[T matrix multiplication routines, and vectors of canonical variates
can be saved directly from plots like those displayed.
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6.3 Cluster analysis
- Tutorials and worked examples for simulation,
? curve fitting, statistical analysis, and plotting.
A

https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

6.3.1 Introduction

In order to separate a set of objects into categories according to some measure of similarity between individual
items there has to be some concept of the distance between them. For instance, for two sets of coordinates
a = (x1,y1) and B = (x2, y2) we could use the square of the Euclidean distance between them, that is

lla = Bl = (x1 —x2)* + (y1 — y2)?

as this is the squared length of the hypotenuse of a right angle triangle with coordinates (x1, y;) and (x2, y2).
We could then group items together depending on such a distance measure between them or according to
distances from some fixed points. Cluster analysis extends such a concept to situations involving more than
two dimensions, and using alternative measures of distance.

Calculating a distance matrix

The idea is, as in data mining, where you have a n by m matrix a;; of m variables (columns) for each
of n cases (rows) and wish to explore clustering, that is groupings together of like entities. To do this,
you choose an appropriate pre-analysis transformation of the data, a suitable distance measure, a meaningful
scaling procedure, and a sensible linkage function. SIMF[T will then calculate a distance matrix, or a similarity
matrix, and plot the clusters as a dendrogram. As an example, from the main SIMF[T menu choose [Statistics],
[Multivariate], then [Distance matrix] and analyze the test file cluster.tf1 giving the results displayed in
this table.

Variables included:

12345678

Transformation: Untransformed
Distance: Euclidean distance

Scaling: Unscaled

Linkage: Group average

Weighting: [weights r not used]
Distance matrix (strict lower triangle) is:

2) 220

3) 362 288

4) 229 297 366

5 195 16.6 311 245

6) 398 327 406 318 26.1

7) 217 283 382 213 193 362

8) 141 241 426 188 189 342 185

9) 327 23.0 454 449 236 387 36.6 334

) 316 239 372 410 222 439 335 339 (+)
) 247

) 322 244 391 418 202 414 313 334 (+)
) 19.9 825

) 299 227 377 390 172 384 292 314 (+)
) 184 11.4 6.24
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Note that, as a distance matrix is symmetrical with diagonals = 0, only the strict lower triangle is displayed.
The header to this table indicates that all eight variables were included in the analysis using untransformed
data, the Euclidean distance, no data scaling, group average linkage, and no weights. The symbol (+) merely
indicates wrap round due to long lines. The meaning of the parameter settings in the table header will now be
explained.

Distance matrix norms

The distance d j; between objects j and k for variable i is just a chosen variant of the weighted L, norm
m
djx = {Z wijkD(aji/si,ari/si)}7.
i=1

for some D and weighting factors w; .

For example, for two vectors « and S there would be one of three possibilities.

(a) The Euclidean distance D(«a, 8) = ||a — B|| with p =1/2

(b) The Euclidean squared difference D(a, B) = ||a — B|| with p =1

(¢) The absolute distance D = |@ — S| with p = 1, otherwise known as the Manhattan or city block metric.

However, as the values of the variables may differ greatly in size, so that large values would dominate the
analysis, it is usual to subject the data to a preliminary transformation or to apply a suitable weighting s; for
variablei. Often it is best to transform the data to standardized (0, 1) form before constructing the dendrogram,
or at least to use some sort of scaling procedure such as:

(i) use the sample standard deviation as s;,
(ii) use the sample range as s;, or

(iii) supply precalculated values of s;.

Usually the weighting factor w;jx would have the default value 1 but there are exceptions as follows. Bray-
Curtis dissimilarity uses the absolute distance except that the weighting factor is given by

1
Yimi(aji/si +ai/si)
which is independent of the variables i and only depends on the cases j and k, and distances are usually

multiplied by 100 to represent percentage differences. Bray-Curtis similarity is the complement, i.e., 100
minus the dissimilarity.

Wijk =

The Canberra distance measure, like the Bray-Curtis one, also derives from the absolute distance except that

the weighting factor is now
1

Alaji/si +axi/si)
There are various conventions for defining A and deciding what to do when values or denominators are zero
with the Bray-Curtis and Canberra distance measures, and the scheme used by SIMF]T is as follows.

Wijk =

* If any values are negative the calculation is terminated.
* If any Bray-Curtis denominator is zero the calculation is terminated.

« If there are no zero values, then A is equal to the number of variables in the Canberra measure.
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* If both members of a pair are zero, then A is decreased by one for each occurrence of such a pair, and
the pairs are ignored.

* If one member of a pair is zero, then it is replaced by the smallest non-zero value in the data set divided
by five, then scaled if required.

Distance matrix linkage

The values in a distance matrix will affect subsequent analysis. For instance, the shape of a dendrogram
depends on the choice of analytical techniques and the order of objects plotted is arbitrary: groups at a
given fixed distance can be rotated and displayed in either orientation. Another choice which will affect the
dendrogram shape is the method used to recalculate distances after each merge has occurred. Suppose there
are three clusters 7, j, k with n;, n;, n; objects in each cluster and let clusters j and k be merged to give cluster
Jk. Then the distance from cluster i to cluster jk can be calculated in several ways.

[1] Single link: d; jx = min(d;;, dix)

[2] Complete link: d; jx = max(d,;, dix)

[3] Group average: d; jx = (n;d;j +nidix)/(nj +ng)

[4] Centroid: d; jx = (n;di; + nidix —njngdji/(nj +ng))/(nj +ng)
[5] Median: d; jx = (dij + dix — djx/2)/2

[6] Minimum variance: d; jx = {(n; + n;)d;j + (n; + ng)dix —nidji}/(ni +nj +ny)

Distance matrix nearest neighbors

Once a distance matrix has been calculated, it is sometimes useful to calculate the nearest neighbors, as
illustrated in the next table for the previous data.

Object Nearest Distance

1 8 14.1067
2 5 16.5529
3 2 28.7576
4 8 18.7617
5 2 16.5529
6 5 26.0960
7 8 18.4932
8 1 14.1067
9 12 18.1384
10 11 8.24621
11 12 6.24500
12 11 6.24500

In this table, column 1 refers to the objects in logical order, column 2 indicates the object that is closest, i.e.,
the nearest neighbor, while column 3 records these minimum distances. Clearly, the nearest neighbors will
depend upon the parameters used to configure the calculation of the distance matrix.
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6.3.2 Dendrograms

Dendrograms can be plotted after a distance matrix has been calculated and a linkage technique has been
selected in order to build up a picture as to how merging can be used to partition samples into subgroups as
defined by distance thresholds.

For example, open the main SIMF[T menu choose [Statistics], [Multivariate], then [Dendrograms] and read

in the test file cluster.tf1, which should also be examined to see how to provide labels, as illustrated when
this figure is displayed.

Cluster Analysis Dendrogram
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L-12
F-6
C-3

Of course the precise shape of such a figure depends on the metric and weights, etc. used to calculate the
distance matrix and the linkage assumed when building up the groups. Further details about using SIMFJT to
construct dendrograms will now be discussed.

Partial clustering

An important application of distance matrices and dendrograms is in partial clustering. Unlike the situation
with full clustering where we start with n groups, each containing a single case, and finish with just one group
containing all the cases, in partial clustering the clustering process is not allowed to be completed. There are
two distinct ways to arrest the clustering procedure.

1. A number, K, between 1 and n— 1 is chosen, and clustering is allowed to proceed until just K subgroups
have been formed. It may not always be possible to satisfy this requirement, e.g. if there are ties in the
data.

2. A threshold, D, is set somewhere between the first clustering distance and the last clustering distance,
and clustering terminates when this threshold is reached. The position of such clustering thresholds
will be plotted on the dendrogram, unless D is set equal to zero.
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As an example of this technique consider the results in this table

Group assignments for Fisher Iris data
Data file: iris.tf1, 3 groups, variables included: 12 3 4
Transformation: Untransformed, Distance: Euclidean, Scaling: Unscaled,
Linkage: Group average, [weights not used], sub-clusters for K = 3
Odd rows: data ... Even rows: corresponding group number
1 2 3 4 5 6 7 8 9 10 11 12
1 1 1 1 1 1 1 1 1 1 1 1
13 14 15 16 17 18 19 20 21 22 23 24
1 1 1 1 1 1 1 1 1 1 1 1
25 26 27 28 29 30 31 32 33 34 35 36
1 1 1 1 1 1 1 1 1 1 1 1
37 38 39 40 4# 42 43 44 45 46 47 48
1 1 1 1 1 1 1 1 1 1 1 1
49 50 51 52 53 54 55 56 57 58 59 60
1 1 2 2 2 2 2 2 2 2 2 2
61 62 63 64 65 66 67 68 69 70 71 72
2 2 2 2 2 2 2 2 2 2 2 2
73 74 75 76 77 78 79 80 81 82 83 84
2 2 2 2 2 2 2 2 2 2 2 2
865 86 87 88 89 90 9 92 93 94 95 96
2 2 2 2 2 2 2 2 2 2 2 2
97 98 99 100 101 102 103 104 105 106 107 108
2 2 2 2 2 2F 3 2F 2" 3 2" 3
109 110 111 112 113 114 115 116 117 118 119 120
2" 3 2 2 2 2" 2" 2" 2" 3 3 2
121 122 123 124 125 126 127 128 129 130 131 132
2" 2 3 2 2 3 2" 2" 2* 3 3 3
133 134 135 136 137 138 139 140 141 142 143 144
2" 2 2 3 2 2" 2" 2" 2F 2 2 2
145 146 147 148 149 150
2" 2 2 2 2 2"

This resulted from analysis of the famous Fisher iris data set in iris.tfl when K = 3 subgroups were
requested.

We note that groups 1 (setosa) and 2 (versicolor) contained the all the cases from the known classification,
but most of the known group 3 (virginica) cases (those identified by asterisks) were also assigned to subgroup
2. This table should also be compared to a table resulting from K-means clustering analysis of the same data
set.

From the SIMF[T dendrogram partial clustering procedure it is also possible to create a SIMF[T MANOVA
type file for any type of subsequent MANOVA analysis and, to aid in the use of dendrogram clusters as
training sets for allocating new observations to groups, the subgroup centroids are also appended to such files.
Alternatively a file ready for K-means cluster analysis can be saved, with group centroids appended to serve
as starting estimates.

Finally, attention should be drawn to the advanced techniques provided by SIMF[T for plotting dendrogram
thresholds and subgroups illustrated next.
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Plotting dendrograms: standard format

Dendrogram shape is arbitrary in two ways; the x axis order is arbitrary as clusters can be rotated around any
clustering distance leading to 2"~! different orders, and the distance matrix depends on the settings used. For
instance, a square root transformation, Bray-Curtis similarity, and a group average link generates the second
dendrogram in this figure from the first. The data were contained in test file cluster.tf2, y plotted are
dissimilarities, while labels are 100 — y, which should be remembered when changing the y axis range.

Users should not manipulate dendrogram parameters to create a dendrogram supporting some preconceived
clustering scheme. You can set a label threshold and translation distance from the [X-axis] menu so that, if
the number of labels exceeds the threshold, even numbered labels are translated, and font size is decreased.
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Plotting dendrograms: stretched format

Sometimes dendrograms are more readable if the white space is stretched without distorting the labels.
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So SiMF[T PostScript graphs have a very useful fea-
ture: you can stretch or compress the white space
between plotted lines and symbols without changing
the line thickness, symbol size, or font size and aspect
ratio. For instance, stretching, clipping and sliding
procedures are valuable in graphs which are crowded
due to overlapping symbols or labels, as in previous
figures. If such dendrograms are stretched retrospec-
tively using editps, the labels will not separate as the
fonts will also be stretched so letters become ugly due
to altered aspect ratios. SIMF[T can increase white
space between symbols and labels while maintaining
correct aspect ratios for the fonts in PostScript hard-
copy and, to explain this, the creation of this figure
using the data in cluster. t£2 will be described.

The title, legend and double x labeling were sup-
pressed, and landscape mode with stretching, clipping
and sliding was selected from the PostScript control
using the [Shape] then [Landscape +] options, with
an x stretching factor of two. Stretching increases
the space between each symbol, or the start of each
character string, arrow or other graphical object, but
does not turn circles into ellipses or distort letters. As
graphs are often stretched to print on several sheets of
paper, sub-sections of the graph can be clipped out,
then the clipped sub-sections can be slid to the start of
the original coordinate system to facilitate printing.

If stretch factors greater than two are used, legends
tend to become detached from axes, and empty white
space round the graph increases. To remedy the former
complication, the default legends should be suppressed
or replaced by more closely positioned legends while,
to cure the later effect, GSview can be used to calculate
new BoundingBox coordinates (by transforming .ps
to .eps). If you select the option to plot an opaque
background even when white (by mistake), you may
then find it necessary to edit the resulting .eps file in a
text editor to adjust the clipping coordinates (identified
by %#clip in the .eps file) and background polygon
filling coordinates (identified by %#pf in the .ps file) to
trim away unwanted white background borders that are
ignored by GSview when calculating BoundingBox
coordinates. Another example of this technique is
with meta analysis plots, where it is also pointed out
that creating transparent backgrounds by suppressing
the painting of a white background obviates the need
to clip away extraneous white space.
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Plotting dendrograms: subgroups

The procedures described can also be used to im-

prove the readability of dendrograms where sub- 4.25
. . ) 4.00
groups have been assigned by partial clustering. The 275
next figure shows a graph from iris. tf1 when three 3.50
subgroups are requested, or a threshold is set corre- 3;33
sponding to the horizontal dotted line. The figure g;g
was created by these steps. % 295
First the title was suppressed, the y-axis range was % i-gg """""""""""""""""""""""" -
changed to (0,4.25) with 18 tick marks, the (x,y) = 15
offset was canceled as this suppresses axis moving, 125
. . 1.00
the label font size was increased from 1 to 3, and the 0.75
x-axis was translated to 0.8. 8-22
Then the PostScript stretch/slide/clip procedure was 0.00

used with these parameters

Xgtretch = 1-3

Ystretch = 2-0
=0.15,0.95

=0.10,0.60.

Xclip

Yclip

Windows users without PostScript printing facilities must create a *. eps file using this technique, then use
the SIMF[T procedures to create a graphics file they can use, e.g. =.jpg. Use of a larger font and increased
x-stretching would be required to read the labels, of course.
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6.3.3 Classical metric and non-metric (ordinal) scaling

Multi-dimensional scaling (MDS) provides various alternatives to dendrograms for visualizing distances
between cases, so facilitating the recognition of potential groupings in a space of lower dimension than the
number of variables. Given a n by m data set, the idea is to generate a set of n points in a Euclidean sub-space
of dimension 1 < k << n — 1 that have a distance matrix as close as possible to the distance matrix for the
original data, so that distances can be visualized in the subspace for say k = 2, or k = 3. There are two cases.

1. Classical metric scaling
This technique is used when the original data are in the form of observed quantities measured in terms
of coordinates where distance is meaningful.

2. Non-metric (ordinal) scaling
This technique is resorted to when the original data are of categorical or similar type that have been
observed on a scale where only ranking is important and not actual differences.

SIMF[T can perform classical metric and/or non-metric (ordinal) scaling using a distance matrix calculated
interactively or by supplying a pre-calculated distance matrix.

From the main SIMF[T menu choose [Statistics], [Multivariate], then [Scaling] using a distance matrix, read
in the test file g03faf.tf1, and analyze using both metric and non-metric techniques to obtain the results as
follows.

Eigenvalues from MDS (divided by the trace of the E matrix)

0.787130

0.280850

0.159630

0.077476

0.031624

0.020654

0.000000

-0.012186

-0.013685

-0.030479

-0.045469

-0.056206

-0.079207

-0.117400
[Sum 1 to 2])/[sum 1 to 13] = 0.9558 (95.58%) (actual values)
[Sum 1 to 2])/[sum 1 to 13] = 0.6709 (67.09%) (absolute values)
STRESS = 0.12557 (start = Metric 0%)
S-STRESS = 0.14962 (start = Metric 0%)

This table first lists the eigenvalues from classical metric scaling, where each eigenvalue has been normalized
by dividing by the sum of all the eigenvalues, then the STRESS and SSTRESS values are listed.

Note that the type of starting estimates used, together with the percentages of the metric values used in any
random starts, are output by SIMFJT and it will be seen that, with this distance matrix, there are small but
negative eigenvalues, and hence the proportion of the distances captured by the lower dimensional subspace
would be inflated, and in addition two-dimensional plotting could be misleading. However it is usual to
consider such small negative eigenvalues as being effectively zero, so that metric scaling in two dimensions
is probably justified in this case as most of the proportion is in the first two eigenvalues.

The indication (actual values) is for the case where the sum of eigenvalues is used in the denominator when

calculating the proportion P, i.e.
k n—1
P=3 4/Y 4
i=1 i=1
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while the indication (absolute values) is for the case where the sum of the absolute values is used as the
denominator, i.e.

k n-1
P = Z/L'/Z |41,
=1 =l

as discussed later.

In an ideal case all the eigenvalues would be positive and these two values would be the same. For this reason
a warning is issued when negative eigenvalues are encountered to alert users that caution is required when
regarding the subspace plot as a valid representation of the distance between cases.

The next figures confirm the validity of using metric scaling with these data by showing considerable agreement
between the two dimensional plots from metric scaling, and also non-metric scaling involving the STRESS
calculation. Note that the default labels in such plots may be integers corresponding to the case numbers, and
not case labels, but such plot labels can be edited interactively, or overwritten from a labels file if required.

Classical Metric Scaling Non-Metric Scaling
os0 : : : ] oso : : : ]
1 Kl
0.20 F 1 0.20 F 1
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o~ 13 > o~ 12 2 ;
+— 3 +— '14 .
3 12 4 “ 3 9 4
S o000 210 S o000 10
% AL 5 o " b 5
IS 6 IS .
(@} O
@) N O g
-0.20 | 1 -0.20 | 1
11
8 8
-0.40 | 1 -0.40 | 1
-0.60 -040 -020 0.00 020 040 -0.60 -040 -020 000 020 040
Component 1 Component 1

Format for data input

The data required for scaling must either be in the form of a multivariate matrix from which a distance matrix
is calculated interactively, then either used directly or saved to a file for retrospective analysis. Of course a
distance matrix D = d;; from a n by m data matrix is a symmetric n by n matrix but, because the diagonals are
zero and generally d;; = d;, then only n(n — 1)/2 differences need to be available. For that reason, distance
matrices are stored and analyzed by SIMF[T in strict lower triangular format as now described.

For instance, the data contained in test file cluster. tf1 is the following 12 by 8 matrix
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10 40 20 110 60 40 3.0 90
80 50 1.0 140 19.0 7.0 13.0 21.0
30 10 30 10 30 60 230 370
9.0 0.0 7.0 7.0 1.0 20 21.0 20
70 120 9.0 50 140 9.0 120 140
20 130 150 20 230 6.0 340 8.0
11.0 70 20 1.0 40 170 11.0 4.0
60 30 70 120 110 80 80 0.0
80 210 1.0 100 31.0 9.0 3.0 180
19.0 140 120 9.0 16.0 100 0.0 27.0
170 180 100 6.0 19.0 140 1.0 240
150 210 80 70 17.0 120 4.0 220
leading to the strict lower triangle of the 12 by 12 distance matrix below.

22.0

36.2 288

229 29.7 36.6

1.95 16.6 31.1 245

39.8 327 406 318 26.1

217 283 382 213 193 36.2

141 241 426 188 189 342 185

32.7 23.0 454 449 236 38.7 36.6 334

31.6 239 372 410 222 439 335 339 247

322 244 391 418 202 414 313 334 199 825

299 227 377 390 172 384 292 314 181 114 6.24

However this lower triangle would be stored packed by rows as follows

22.0
36.2
28.8
22.9
29.7
36.6

6.24

and distance matrices supplied for analysis by SIMF[T must be formatted in this way.

Theory for metric scaling

For instance, once a distance matrix D = (d; j) has been calculated for n cases with m variables, as described
for dendrograms, it may be possible to calculate principal coordinates. This involves constructing a matrix E

defined by

eij = —%(d,?j —d? — d?j +d%),

where d% is the average of dl.zj over the suffix j, etc., in the usual way. The idea is to choose an integer k,
where 1 < k << n — 1, so that the data can be represented approximately in a space of dimension less than
the number of cases, but in such a way that the distance between the points in that space correspond to the
distances represented by the d;; of the distance matrix as far as possible. If E is positive semi-definite, then
the ordered eigenvalues A; > 0 of E will be nonnegative and the proportionality expression
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will show how well the cases of dimension n are represented in this subspace of dimension k. The most useful
case is when k = 2, or k = 3, and the d;; satisfy

dij < dix +djk,
so that a two or three dimensional plot will display distances corresponding to the d;;.

If this analysis is carried out but some relatively large negative eigenvalues result, then the proportion P
may not adequately represent the success in capturing the values in distance matrix in a subspace of lower
dimension that can be plotted meaningfully.

It should be pointed out that the principal coordinates will actually be the same as the principal components
scores when the distance matrix is based on Euclidean norms. Further, where metrical scaling succeeds,
the distances between points plotted in say two or three dimensions will obey the triangle inequality and so
correspond reasonably closely to the distances in the dissimilarity matrix, but if it fails it could be useful to
proceed to non-metrical scaling, which is discussed next.

Theory for non-metric (ordinal) scaling

Often a distance matrix is calculated where some or all of the variables are ordinal, so that only the relative
order is important, not the actual distance measure. Non-metric (i.e. ordinal) scaling is similar to the metric
scaling previously discussed, except that the representation in a space of dimension 1 < k << n —1 is sought
in such a way as to attempt to preserve the relative orders, but not the actual distances. The closeness of
a fitted distance matrix to the observed distance matrix can be estimated as either STRESS, or SSTRESS,
given by

———
i X (dij = dij)?

S =
i-1 72
\  ZLEnd
Y& - &)
SSTRESS = 7
\ o1 21 4y

STRES

where d; ; is the Euclidean squared distance between points 7 and j, and d; ;7 is the fitted distance when the d; i
are monotonically regressed on the d;;. This means that d;; is monotonic relative to d;; and is obtained from
d;; with the smallest number of changes.

It should be noted that this is a nonlinear optimization problem which may depend critically on starting
estimates, and so can only be relied upon to locate a local, not a global solution. For this reason, starting
estimates can be obtained in SIMF[T by a preliminary metric scaling, or alternatively the values from such a
scaling can be randomly perturbed before the optimization, in order to explore possible alternative solution
points.

As mentioned previously, SIMF]T can save distance matrices to files, so that dendrogram creation, classical
metric, and non-metric scaling can be carried out retrospectively, without the need to generate distance matrices
repeatedly from multivariate data matrices. Such distance matrices will be stored as vectors, corresponding
to the strict lower triangle of the distance matrix packed by rows, (i.e. the strict upper triangle packed by
columns).
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6.3.4 K-means clustering

Given a swarm of n multivariate points, K-means clustering attempts to assign these data into K non-empty
clusters where 1 < K < n. The clusters are created by assigning cases to those groups that minimize the
within-cluster sum of squared distances of the data from the means of the clusters. Starting values from which
to commence the iterations to find such clusters must be provided.

Example 1

From the SIMFIT main menu choose [Statistics], [Multivariate], then [K-means clustering], and observe the
format for the test data contained in g03eff. tf1 which are observations of five variables on twenty soil types

as follows.

77.3 13.0
82.5 10.0
66.9 20.6
47.2 33.8
65.3 20.5
83.3 10.0
81.6 127
47.8 36.5
48.6 371
61.6 25.5
58.6 26.5
69.3 223
61.8 30.8
67.7 25.3
57.2 31.2
67.2 227
59.2 31.2
80.2 13.2
822 111
69.7 20.7
begin{values}
82.5 10.0
47.8 36.5
67.2 227

end{values}

Note that starting cluster coordinates are appended to this data set in the section identified by

begin{values} ... end{values}

as this is the most convenient way to perform K-means clustering. However, these can be supplied indepen-
dently, e.g. in a file like g03eff.tf2, or generated randomly. Note that K-means clustering is an iterative

9.7
7.5
12.5
19.0
14.2
6.7
5.7
15.7
14.3
12.9
14.9
8.4
7.4
7.0
11.6
10.1
9.6
6.6
6.7
9.6

7.5
15.7
10.1

1.5
1.5
2.3
2.8
1.9
2.2
2.9
2.3
2.1
1.9
2.4
4.0
2.7
4.8
2.4
3.3
2.4
2.0
2.2
3.1

1.5
2.3
3.3

technique and the outcome will depend on the starting clusters.

From the analysis the following results are displayed, where for each case (in the odd-numbered rows) the
cluster number to which it is assigned is the corresponding figure below it (in the even-numbered rows).

6.4
6.5
7.0
5.8
6.9
7.0
6.7
7.2
7.2
7.3
6.7
7.0
6.4
7.3
6.5
6.2
6.0
5.8
7.2
5.9

6.5
7.2
6.2
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Results for K-means clustering with g03eff.tf1
Variables included: 12345
Number of clusters K = 3
Transformation: Untransformed
Weighting: Unweighted for replicates
Cases (odd rows) and Clusters (even rows)
1 2 3 4 5 6 7 8 9 10 11

1 1 3 2 3 1 1 2 2 3 3

13 14 15 16 17 18 19 20
3 3 3 3 3 1 1 3

Final cluster centroids

81.183 11.667 7.1500 2.0500 6.6000
47.867 35.800 16.333 2.4000 6.7333
64.045 25.209 10.745 2.8364 6.6545

Note that the final cluster centroids minimizing the objective function, given the starting estimates supplied,
are calculated, and the cases are assigned to these final clusters.

Plots of the clusters and final cluster centroids can be created as in the next figure for variables x| and x;, with
the optional labels as these were also supplied on the data file g03eff. tf1 (as for dendrograms).

Variable 2

40

30

20

10

K-means Clusters

D
QM
K
N
L
crT
A G
S
40 50 60 70 80 90
Variable 1

With two dimensional data representing actual distances, outline maps can be added and other special effects
can be created, as shown later. Further, techniques are provided to perturb the default positions of labels if
this is required in order to clarify the labeling.
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Example 2

The next table is for analysis of the Fisher Iris data set in iris.tf1, using starting clusters in iris.tf2.

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 2 ¥ 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 ¥ 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
2 2 2 2 3 223 3 8 3 2 3
3 3 3 3 3 2 22 3 8 3 3 2
3 223 23 8 2 22 83 3 3 3
3 2 3 3 3 8 23 383 3 2 3
3 3 223 3 2

Cluster Size WSSQ

1 50 15.15
2 62 39.82
3 38 23.88

Final cluster centroids

5.0060 3.4280 1.4620 0.2460
5.9016 2.7484 4.3935 1.4339
6.8500 3.0737 5.7421 2.0711

The data were maintained in the known group order (as in manoval. t£f5), and the clusters assigned are seen
to be identical to the known classification for group 1 (setosa), while limited misclassification has occurred
for groups 2 (versicolor, 2 assigned to group 3), and 3 (viginica, 14 assigned to group 2), as shown by the
starred values. Clearly group 1 is distinct from groups 2 and 3 which show some similarities to each other, a
conclusion also illustrated in the next figure.

K-means Clusters for Iris Data

4.0 1

3.5 A

Variable 2

2.5 1

2.0 -

4.0 5.0 6.0 7.0 8.0
Variable 1
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Example 3

This example explains how to include additional features such as maps which are often added to plots to
emphasize the meaning of clusters.

Stretching and clipping are also valuable when graphs have to be re-sized to achieve geometrically correct
aspect ratios, as in the map shown in this next figure, which can be generated by the K-means clustering
procedure using program simstat as follows.

* Input ukmap. tfl with coordinates for UK airports.

* Input ukmap.tf2 with coordinates for starting centroids.

* Calculate centroids then transfer the plot to advanced graphics.

* Read in the UK coastal outline coordinates as an extra file from ukmap . tf3.
» Suppress axes, labels, and legends, then clip away extraneous white space.

» Stretch the PS output using the [Shape] then [Portrait +] options, and save the stretched eps file.

K-Means Clusters for U.K. Airports
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Example 4

It is frequently useful to be able highlight groups of data points in a two dimensional swarm, as in this figure.

K-means cluster centroids

40 | ]
| (47.8,35.8,163,2.4,6.7)
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Variable 1

In this case a partition into three groups has been done by K-means clustering, and to appreciate how to use
this technique, note that this figure can be generated by the K-means clustering procedure using program
simstat as follows.

* Input the K-means clustering test file kmeans. tf1.

* Calculate the centroids, using the starting estimates appended to the test file. View them, which then
adds them to the results file, then record the centroid coordinates from the results file.

* Select to plot the groups with associated labels, but then it will prove necessary to move several of the
labels by substituting new labels, or shifting the x or y coordinates to clarify the graph.

* Add the solid background ellipses using the lines/arrows/boxes option because both head and tail
coordinate must be specified using the red arrow, as well as an eccentricity value for the ellipses. Of
course, any filled shapes such as circles, squares, or triangles can be chosen, and any size or color can
be used.

* Add the centroid coordinates as extra text strings.

Of course, this technique can be used to highlight or draw attention to any subsets of data points, for instance
groups in principal component analysis.



274

Multivariate analysis

Example 5

This example considers the plotting of principal component scores instead of original variables, illustrated in
the next figure for kmeans. tf1.

Variable 3

Score 2
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10.0 15.0 20.0 25.0 30.0 35.0 40.0
Variable 2

K-Means clusters: Scores 1 and 2

-15 -10 -05 0.0 0.5 1.0 15
Score 1

2.0

Note that, in the upper figure, symbols F, S, and P have been translated for clarity, and it should be compared
to an earlier figure, for the same data with variables 1 and 2. This highlights an important point when
plotting clusters for more than 2 variables: the plot shape depends on the variables chosen. So, for a more
representative plot when there are more than 2 variables it is better to plot principal component scores instead
of variables. The SIMFT default is to plot the scores obtained using the correlation matrix technique, as this
can prevent the analysis being dominated by columns with unduly large values.

In the lower figure, symbols B, O, M, and P have been translated for clarity, but now the principal component
scores 1 and 2 have been plotted, which will usually be a better representation of the clustering, as the shape
of the plot is not so strongly influenced by the variables chosen.



K-means clustering 275

Theory

Once a n by m matrix of values a;; for n cases and m variables has been provided, the cases can be sub-divided
into K non-empty clusters where K < n, provided that a K by m matrix of starting estimates b,; has been
specified. The procedure is iterative, and proceeds by moving objects between clusters to minimize the

objective function
K m

Z Z Zwi(aij — ax;)?
k=1ieS j=1
where Sy is the set of objects in cluster k and dy; is the weighted sample mean for variable j in cluster k. The

weighting factors w; can allow for situations where the objects may not be of equal value, e.g., if replicates
have been used to determine the a;;.

Certain other aspects of the SIMF[T implementation of K-means clustering should be made clear.

1. If variables differ greatly in magnitude, data should be transformed before cluster analysis but note
that, if this is done interactively, the same transformation will be applied to the starting clusters. If a
transformation cannot be applied to data, clustering will not be allowed at all, but if a starting estimate
cannot be transformed (e.g., square root of a negative number), then that particular value will remain
untransformed.

2. If, after initial assignment of data to the starting clusters some are empty, clustering will not start, and
a warning will be issued to decrease the number of clusters requested, or edit the starting clusters.

3. Clustering is an iterative procedure, and different starting clusters may lead to different final cluster
assignments. So, to explore the stability of a cluster assignment, you can perturb the starting clusters
by adding or multiplying by a random factor, or you can even generate a completely random starting
set. For instance, if the data have been normalized to zero mean and unit variance, then choosing
uniform random starting clusters from U(—1, 1), or normally distributed values from N (0, 1) might be
considered.

4. After clusters have been assigned you may wish to pursue further analysis, say using the groups for
canonical variate analysis, or as training sets for allocation of new observations to groups. To do this,
you can create a SIMF[T MANOVA type file with group indicator in column 1. Such files also have the
centroids appended, and these can be overwritten by new observations (not forgetting to edit the extra
line counter following the last line of data) for allocating to the groups as training sets.

5. If weighting, variable suppression, or interactive transformation is used when assigning K-means
clusters, all results tables, plots and MANOVA type files will be expressed in coordinates of the
transformed space.

6. When viewing two dimensional plots of clusters where there are more than two variables, users can
choose which coordinates to display, and this can give a misleading impression where it can seem that
some cases have been wrongly assigned. This is to forget that the assignment is based on a selection
process that uses all of the variables, and is a good reason to view using several pairs of coordinates to
get a better overall picture, or to plot using principal components.

7. When displaying clusters as principal components, the loadings used to plot scores for data and centroids
are calculated interactively from the data correlation matrix and standardized for unit variance. The
scores are not used for further iterations to refine the clustering procedure.
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6.4 Multivariate projection and display techniques

Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.

https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

o,
~~

6.4.1 Principal components

Principal component analysis attempts to express a n by m data set with m > 2 in new coordinates Y obtained
by rotating the original coordinates X so that the overall variance of the observations is contained in decreasing
order in the new variables.

If this is successful in that most of the variance is contained in the first 2 or 3 of the Y variables then this
allows inferences to be drawn about the data in a sub-space of dimension < m.

Example 1

From the main St(MF[T menus choose [Statistics], [Multivariate], then [Principal components] and analyze
the default test file provided (g03aaf.tfl) which contains the following data

0 N©O© O N M~
N OCTWONDOOO W= B
N Ol 0W WO N —= 010w

leading to these results.

Variables included: 12 3

Transformation: Untransformed

Matrix type: Variance-covariance matrix

Score type: Score variance = eigenvalue

Replicates: Unweighted for replicates

Eigenvalues Proportion Cumulative x> DOF 2
8.274 0.6515 0.6515 8.613 5 0.1255
3.676 0.2895 0.9410 4118 2 0.1276
0.750 0.0590 1.0000 0.000 0 0.0000
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Loadings (by column)
-0.138 0.699 0.702
-0.250 0.661 -0.707
0.958 0.273 -0.084
Scores (by column)
-2.150 -0.173 -0.107
3.800 -2.890 -0.510
0.153 -0.987 -0.269
-4710 1.300 -0.652
1.290 2.280 -0.449
4100 0.144 0.803
-1.630 -2.230 -0.803
2110 3.250 0.168
-0.235 0.373 -0.275
-2.750 -1.070 2.090

The significance of the options used for the analysis and the results listed in this table are now explained.

Variables included
All three variables were included as this was defined in the trailer section of g03aaf.tfl, but the
variables to be included can also be adjusted interactively.

Transformation
The data were used without any transformation.

Matrix type
If the magnitude of the variables are similar so that the data do not need to be centralized and scaled,
then the covariance matrix can be used. Otherwise the correlation matrix should be used.

Score type
Several options are available, to provide consistency and facilitate comparison with published data.

Replicates

SiMF[T provides the facility to supply a weighting vector to permit data suppression (setting a weight
to zero), or to allow for replicates (setting a weight equal to the number of replicates used in the
observation).

Eigenvalues

These are listed in decreasing order, the proportion of variance and cumulative sum of variances
captured by each component is listed, and a chi-square test is performed to check the significance
of each component. The significance levels are not valid if the correlation matrix is used instead of
the covariance matrix. Clearly the first two principal components are sufficient to represent the three
original variables.

Loading
Column j of the loading matrix contains the coeflicients required to express y; as linear function of
the variables x1, x2, ...,x,. The values can be used to indicate the importance of the contribution of

the original variables to the rotated variables.

Scores
Row i of the scores matrix contains the values for row i of the original data expressed in variables
¥Y1,¥2,...,¥Ym. 1f most of the variance can be explained by the first two or three variables, the values

can be used instead of the original observations to visualize grouping and clustering, etc.
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Example 2

The next example concerns the analysis of the Fisher iris data with 150 cases and 4 variables (Sepal length,
Sepal width, Petal length, and Petal width) contained in the test file iris.tfl. The figures below show the
scores and loadings for these data after analyzing the correlation matrix.

The score plot displays the score components for all samples using the selected principal components, so
some may prefer to label the legends as principal components instead of scores, and this plot is used to search
for possible groupings among the sample. The components can be labeled using any labels supplied at the
end of the data file, but this can cause confusion where, as in the present case, the labels overlap leading to
crowding. A method for moving labels to avoid such confusion is provided. However, with such dense labels
it is best to just plot the scores using different symbols and colors for the three groups.

The loading plot displays the coefficients that express the selected principal components y ; as linear functions
of the original variables x1,x2, . . . , X;;, S0 this plot is used to observe the contributions of the original variables
x to the new ones y.

Note that figures also illustrate an application of the SIMF[T technique for adding extra data interactively to
create the cross-hairs intersecting at (0, 0), and it also shows how labels can be added to identify the variables
in a loadings plot. It should be noted that, as the eigenvectors are of indeterminate sign and only the relative
magnitudes of coefficients are important, the scattergrams can be plotted with either the scores calculated
from the SVD, or else with the scores multiplied by minus one, which is equivalent to reversing the direction
of the corresponding axis in a scores or loadings plot.

Principal Components for Iris Data
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Loadings for Iris Data
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The confidence ellipse plotted on the scores will be explained later.

Example 3

An important topic in principal component analysis is deciding how to choose a sufficient number of principal
components to represent the data adequately. As the eigenvalues are proportional to the fractions of variance
along the principal component axes, a table of the cumulative proportions is calculated, and some users may
find it useful to include sufficient principal components to account for a given amount of the variance, say
70%. Consider these results from the analysis of data with eight variables contained in test file cluster.tfl
and analyzed using the covariance matrix.

Eigenvalues

198.9
106.8
88.29
40.18
17.46
9.036
3.966
0.803

Proportion  Cumulative

0.4274
0.2294
0.1897
0.0863
0.0375
0.0194
0.0085
0.0017

0.4274
0.6568
0.8465
0.9328
0.9703
0.9898
0.9983
1.0000

XZ

61.13
48.09
39.73
25.39
15.04
9.149
4.349
0.000

DOF

35

p
0.0041

0.0075
0.0054
0.0309
0.0898
0.1033
0.1137
0.0000

The next figure shows how scree plots can be displayed to illustrate the number of components needed to

represent the data adequately.
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For instance, in this case, it seems that approximately three of the principal components are required. A
useful rule of thumb for selecting the minimum number of components is to observe where the scree diagram
crosses the average eigenvalue or becomes flattened indicating that all subsequent eigenvalues contribute to a
comparable extent. Use of the chi-square statistics for this type of investigation will be described later.

Eigenvalue Scree Diagram
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Theory 1: The calculation of principal components

In the principal components analysis of a n by m data matrix, new coordinates y are selected by rotation of
the original coordinates x so that the proportion of the variance projected onto the new axes decreases in the
order y1,y2,...,¥Ym. The hope is that most of the variance can be accounted for by a subset of the data in y
coordinates, so reducing the number of dimensions required for data analysis.

It is usual to scale the original data so that the variables are all of comparable dimensions and have similar
variances, otherwise the analysis will be dominated by variables with large values. Basing principal com-
ponents analysis on the correlation matrix rather than the covariance or sum of squares and cross product
matrices is often recommended as it also prevents the analysis being unduly dominated by variables with large
values. The data format for principal components analysis is exactly the same as for cluster analysis; namely
a data matrix with n rows (cases) and m columns (variables).

If the data matrix is X with covariance, correlation or scaled sum of squares and cross products matrix S, then
the quadratic form
alT Saq

is maximized subject to the normalization alTal = 1 to give the first principal component

Similarly, the quadratic form

is maximized, subject to the normalization and orthogonality conditions agaz =1and agal =0, to give the
second principal component
m
2= Z azix;

i=1

and so on. The vectors a; are the eigenvectors of S with eigenvalues /l%, where the proportion of the variation
accounted for by the ith principal component can be estimated as

m
2 2
/l[./§ 2.
J=1

Actually SIMF[T uses a singular value decomposition (SVD) of a centered and scaled data matrix, say

X, =(X-X)/\(n=1)asin

X, = VAPT

to obtain the diagonal matrix A of singular values, the matrix of left singular vectors V as the n by m matrix
of scores, and the matrix of right singular vectors P as the m by m matrix of loadings.

Theory 2: Confidence ellipses in scores plots

Note that a 95% confidence Hotelling T2 ellipse is also plotted, which assumes a multivariate normal
distribution for the original data and uses the F distribution.

The confidence ellipse is based on the fact that, if ¥ and S are the estimated mean vector and covariance
matrix from a sample of size n and, if x is a further independent sample from an assumed p—variate normal
distribution, then

p(n*—1)

n(n—p) "

where the significance level for the confidence region can be altered interactively.

x-S x-5) ~
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Theory 3: The chi-square test for significant components

In cases where the correlation matrix is not used, a chi-square test statistic is also provided along with
appropriate probability estimates to make the decision more objective. In this case, if k principal components
are selected, the chi-square statistic

(n—1-02m+5)/6) {— i log(A?) + (m — k) log( i Af/(m—k))}

i=k+1 i=k+1

with (m — k —1)(m — k +2) /2 degrees of freedom can be used to test for the equality of the remaining m — k
eigenvalues.

If one of these test statistics, say the k + 1th, is not significant then it is usual to assume k principal components
should be retained and the rest regarded as of little importance. So, if it is concluded that the remaining
eigenvalues are of comparable importance, then a decision has to be made whether to eliminate all or preserve
all. For instance, from the last column of p values referring to the above chi-square test for g03aaf. tf1,
it might be concluded that a minimum of two components are required to represent this data set adequately.
However, for the case of iris.tf1, three components would be required.

The common practise of always using two or three components just because these can be visualized is to be
deplored.

Theory 4: Calculating scores from loadings

The data used by SIMF]T are automatically centered at run time, and sometimes also scaled if requested, so
it is not usually necessary to transform the original data for principal component analysis, especially if the
correlation matrix method is used. However, in order to calculate scores using the loadings retrospectively
the following points should be noted.

1. The original data matrix must be centralized by subtracting column sample means.

2. If the correlation matrix technique was used to calculate the scores, then the data must also be scaled
by dividing columns by the column sample standard deviations.

3. If the covariance matrix technique was used no further scaling is required.

4. If the sum of squares and cross-product matrix method was used, then the centralized data must also be
multiplied by Vn — 1.

5. The final scaling of the scores will be that used when generating the loadings.
6. The average of a group of k scores is the same as using loadings with the means from the same k values.
7. The scores are unspecified up to multiples of -1.

To illustrate this procedure consider the following steps that are required to calculate the scores for a covariance
matrix with scores normalized to have variance equal to the corresponding eigenvalue, using the notation for
subroutine g03aaf in the NAG library documentation.

¢ Obtain the data matrix X
e Transform X to obtain the centered matrix Y
* Generate the loading matrix P

¢ Calculate the scores V = Y P as shown next.
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-0.1376 0.6990  0.7017 )

P=| -0.2505 0.6609 -0.7075
0.9583 0.2731 -0.0842

V=YP

0.1 05 -21
-29 -25 29
-09 -05 -0.1

H fg _‘]1'; -0.1376 0.6990  0.7017
= 0'1 _1'5 3'9 -0.2505 0.6609 —0.7075
: : : 0.9583 0.2731 -0.0842

-19 -05 -21
2.1 1.5 29
0.1 05 -0.1

1.1 -15 =31

-2.1514 -0.1731 -0.1068
3.8042 -2.8875 -0.5104
0.1532 -0.9869 -0.2694

-4.7065 1.3015 -0.6517
1.2938  2.2791 -0.4492
4.0993  0.1436  0.8031

-1.6258 -2.2321 -0.8028
2.1145  3.2512  0.1684

-0.2348  0.3730 -0.2751

-2.7464 -1.0689  2.0940

Note that, as the sign of eigenvectors is arbitrary and can change with relatively small perturbations of a data
set, SIMF|T provides the option to reflect plots of loadings and scores in order to retain consistency of spatial
distribution for the visual presentations of results.
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6.4.2 Factor analysis

Factor analysis seeks to explore the relationships between multivariate observations with m variables in terms
of a set of k hypothetical factors, where k < m. It is widely used in social and psychological research where
the factors could be things such as intelligence which are difficult to quantify and model, but it is not used
much in the physical sciences where the construction of deterministic models is preferred where possible.

Example 1

From the main SiMF[T menu choose [Statistics], [Multivariate], then [Factor analysis] and read in the default
test file g03caf.tfl which contains the following correlation matrix from a sample of 211 subjects where
9 variables were measured. Actually, due to the symmetry and unit diagonals, only the strict lower or strict
upper triangle is needed, but the SIMF[T data input requires a full matrix because the factor analysis procedure
can also read in a data matrix then calculate the correlation matrix interactively.

1 0.523 0.395 0471 0.346 0.426 0.576 0.434 0.639
0.523 1 0.479 0.506 0.418 0.462 0.547 0.283 0.645
0.395 0479 1 0.355 0.270 0.254 0.452 0.219 0.504
0.471 0.506 0.355 1 0.691 0.791 0.443 0.285 0.505
0.346 0.418 0.270 0.691 1 0.679 0.383 0.149 0.409
0.426 0.462 0.254 0.791 0.679 1 0.372 0.314 0.472
0.576 0.547 0.452 0.443 0.383 0.372 1 0.385 0.680
0.434 0.283 0.219 0.285 0.149 0.314 0.385 1 0.470

0.639 0.645 0.504 0.505 0.409 0472 0.680 0.470 1

This matrix is discussed in the book Factor Analysis as a Statistical Method by D.N.Lawley and E.A.Maxwell
London Butterworths (2nd Edition) 1971 which must be consulted in order to understand the following results.

Results from analysis of test file g03caf.tf1
Number of variables 9

Transformation Untransformed

Matrix type Input correlation matrix

Number of factors 3

Replicates Unweighted for replicates

F(9) 0.0350

Test statistic TS 7.1494

Degrees of Freedom 12 (Number of cases = 211)

P(x>>TS) 0.8476

Eigenvalues Communalities ¥

15.968 0.54954 0.45046
4.3577 0.57293 0.42707
1.8475 0.38345 0.61655
1.1560 0.78767 0.21233
1.1190 0.61947 0.38053
1.0271 0.82308 0.17692
0.92574 0.60046 0.39954
0.89508 0.53846 0.46154

0.87710 0.76908 0.23092
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Residual correlations

0.0004

-0.0128  0.0220

0.0114 -0.0053 0.0231

-0.0100 -0.0194 -0.0162 0.0033

-0.0046  0.0113 -0.0122 -0.0009 -0.0008

0.0153 -0.0216 -0.0108 0.0023 0.0294 -0.0123
-0.0011  -0.0105 0.0134 0.0054 -0.0057 -0.0009 0.0032
-0.0059 0.0097 -0.0049 -0.0114 0.0020 0.0074 0.0033 -0.0012
Factor loadings by columns

0.6642 -0.3209 -0.0735

0.6888 -0.2471 -0.1933

0.4926 -0.3022 -0.2224

0.8372 0.2924 -0.0354

0.7050 0.3148 -0.1528

0.8187 0.3767 0.1045

0.6615 -0.3960 -0.0778

0.4579 -0.2955 0.4914

0.7657 -0.4274 -0.0117

Example 2

Test file g03ccf. tf1 contains the following correlation matrix that is also discussed by Lawley and Maxwell.
It is from an analysis of 220 students on the six subjects indicated in column 1. They suggest that "the fact
that all the correlations between the variates are positive indicates that students who get scores above average
on any one of the subjects tend also to get scores above average on the other subjects."

Gaelic 1 0.439 0410 0.288 0.329 0.248
English 0.439 1 0.351 0.354 0.320 0.329
History 0.410 0.351 1 0.164 0.190 0.181
Arithmetic  0.288 0.354 0.164 1 0.595 0.470
Algebra 0.329 0.320 0.190 0.595 1 0.464

Geometry 0.248 0.329 0.181 0.470 0.464 1

The next table shows the results from analysis of this correlation matrix for two factors.

Results from analysis of test file g03ccf.tf1
Number of variables 6

Transformation Untransformed

Matrix type Input correlation matrix
Number of factors 2

Replicates Unweighted for replicates
F(¥) 0.1088

Test statistic 7S 2.3346

Degrees of Freedom 4 (Number of cases = 220)
P(x*=>TS) 0.6754
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Eigenvalues Communalities ¥
5.6142 0.48983 0.51017
2.1428 0.40593 0.59407
1.0923 0.35627 0.64373
1.0264 0.62264 0.37736
0.9908 0.56864 0.43136
0.8905 0.37179 0.62821

Factor loadings by columns

0.55332 -0.42856
0.56816 -0.28832
0.39218 -0.44996
0.74042 0.27280
0.72387 0.21131

0.59536 0.13169

The score coeflicients are now shown but also a further possibility should be mentioned. As the factors are
only unique up to rotation, it is possible to perform a Varimax or Quartimax rotation to calculate a rotation
matrix R before working out the score coefficients, which may simplify the interpretation of the observed

variables in terms of the unobservable variables.

Factor score coefficients

Method  Regression
Rotation None
0.19318 -0.39203
0.17035 -0.22649
0.10852 -0.32621
0.34950 0.33738
0.29891 0.22861
0.16881 0.09783
The next figures illustrate the rows from the loading matrix labeled as r1,r2, - - - , r6 both before and after a

Varimax rotation with y = 1 and reflection of the y-axis and indicating the presence of two clusters.

Loadings Before Rotation

Factor Loading 2

Factor Loading 1

Loadings After Rotation

Factor Loading 2
&

=

0.10 L L L s
0.00 0.20 0.40 0.60 0.80

Factor Loading 1

Many workers find it convenient to rotate loadings in this way until all are positive so that the relative
magnitudes and potential groupings can be visualized more easily. The example illustrated above indicates
that factor 2 is what is known as a bi-polar factor with approximately half positive and half negative, but that

the obvious grouping is still preserved by rotation.

It should be pointed out that this procedure may also require the use of reflection of axes in order to achieve
positive loadings, as in the present case where the second set of loadings were reflected by the automatic
technique provided by SIMFIT to do such transformations interactively.
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Theory

This technique is used when it is wished to express a multivariate data set in m manifest, or observed variables,
in terms of k latent variables, where k < m. Latent variables are variables that by definition are unobservable,
such as social class or intelligence, and thus cannot be measured but must be inferred by estimating the
relationship between the observed variables and the supposed latent variables. The statistical treatment is
based upon a very restrictive mathematical model that, at best, will only be a very crude approximation and,
most of the time, will be quite inappropriate. For instance, Krzanowski (in W.J.Krzanowski Principles of
Multivariate Analysis, Oxford, revised edition, 2000) explains how the technique is used in the psychological
and social sciences, but then goes on to state

At the extremes of, say, Physics or Chemistry, the models become totally unbelievable. p477
It should only be used if a positive answer is provided to the question, “Is the model valid?” p503

However, despite such warnings, the technique is now widely used, either to attempt to explain observables
in terms of hypothetical unobservables, or as just another technique for expressing multivariate data sets
in a space of reduced dimension. In this respect it is similar to principal components analysis, except that
the technique attempts to capture the covariances between the variables, not the variances. If the observed
variables x can be represented as a linear combination of the unobservable variables or factors f, so that the
partial correlation 7;; ; between x; and x; with f; fixed is effectively zero, then the correlation between x; and
x; can be said to be explained by f;. The idea is to estimate the coefficients expressing the dependence of x
on f in such a way that the the residual correlation between the x variables is a small as possible, given the
value of k.

The assumed relationship between the mean-centered observable variables x; and the factors is

k
xp= ) Aijfy+eifori=1,2,..,mandj=12,.. .k
j=1

where A;; are the loadings, f; are independent normal random variables with unit variance, and e; are
independent normal random variables with variances ;. If the variance covariance matrix for x is X, defined
as

S =AAT +¥,

where A is the matrix of factor loadings A;;, and ¥ is the diagonal matrix of variances y;, while the sample
covariance matrix is S, then maximum likelihood estimation requires the minimization of

m
F(¥)= )" (6;~logb)) — (m k),
j=k+1
where 6; are eigenvalues of S* = w-1/299~1/2_ Finally, the estimated loading matrix Ais given by
A=v"?y@©-1'?,
where V are the eigenvectors of S*, @ is the diagonal matrix of 6;, and / is the identity matrix.

The proportion of variation for each variable x; accounted for by the k factors is the communality Zf-:] /l%j,

the Psi-estimates are the variance estimates, and the residual correlations are the off-diagonal elements of
C - (AAT +¥)

where C is the sample correlation matrix. If a good fit has resulted and sufficient factors have been included,
then the off-diagonal elements of the residual correlation matrix should be small with respect to the diagonals
(listed with arbitrary values of unity to avoid confusion). Subject to the normality assumptions of the model,
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the minimum dimension k can be estimated by fitting sequentially with k = 1, k =2, k = 3, and so on, until
the likelihood ratio test statistic

TS=[n-1-2m+5)/6-2k/3]F(¥)

is not significant as a chi-square variable with [(m — k)> — (m + k)] /2 degrees of freedom. Note that data
for factor analysis can be input as a general n by m multivariate matrix, or as either a m by m covariance or
correlation matrix. However, if a square covariance or correlation matrix is input then there are two further
considerations: the sample size must be supplied independently, and it will not be possible to estimate or plot
the sample scores in factor space, as the original sample matrix will not be available.

It remains to explain the estimation of scores, which requires the original data of course, and not just the
covariance or correlation matrix. This involves the calculation of a m by k factor score coeflicients matrix @,
so that the estimated vector of factor scores f, given the x vector for an individual can be calculated from

A

f=xTo.

However, when calculating factor scores from the factor score coeflicient matrix in this way, the observable
variables x; must be mean centered, and also scaled by the standard deviations if a correlation matrix has been
analyzed. The regression method uses

O =Y 'AU+ATY AT,

while the Bartlett method uses
O =P IANTP AT
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6.4.3 Procrustes analysis

Procrustes analysis is useful when there are two matrices X and Y with the same dimensions, and it wished
to see how closely the X matrix can be made to fit the target matrix Y using only distance preserving
transformations, like translation and rotation. For instance, X could be a matrix of loadings, and the target
matrix Y could be a reference matrix of loadings from another data set.

From the main SIMF]T menu choose [Statistics], [Multivariate], then [Procrustes] and analyze the following
two matrices

[0.63 0.58]
X =136 039
[1.01 1.76)
[0.00 0.00]
Y = [1.00 0.00
0.00 2.00

contained in the default test files g03bcf.tfl with X-data to be rotated, and g03bcf.tf2 containing the
target matrix Y, to obtain the following results.

Results from Procrustes analysis
X-data for rotation: g03bcf.tfl
Y-data for target: g03bcf.tf2
Number of rows: 3

Number of columns: 2

Type: To origin then Y-centroid
Scaling: Least squares scaling

a = 1.5563

Residual sum of squares = 0.019098
Residuals from Procrustes rotation

0.09644

0.08455

0.05145

Rotation matrix from Procrustes rotation
0.9673 0.2536

-0.2536 0.9673

Y-hat matrix from Procrustes rotation
-0.0934 0.0239

1.0805 0.0259

0.0130 1.9502

There are numerous options for performing this calculation including the following alternative types
* No translation or normalization
* Translation to the origin
* Translation to the origin then to the Y centroid after rotation
* Unit normalization
e Translation and normalization (i.e. standardization)

with or without least squares scaling after the rotation.

The following diagram shows the result from transforming the original X matrix which is initially distant from
the target Y matrix into the transformed X matrix ¥ which has been brought almost into coincidence with the
target Y matrix by movement of the centroid, rotating and scaling.



Multivariate analysis

290

Procrustes Analysis

T 1 T T T
20 | -
L]
/ \\
15 | P .
I,I \ / \
1 \ / \
1 \ / \
N I \\ / \
c I \\ ) \\
e ,' \ / v,
1.0 | \ ! WPANS)
% |' \\ // e(\‘\'(\o
&) ! O '
| £ '
]
]
05 1 i
1
]
]
]
1
0.0 | -
1 1 1 1 1
-0.5 0.0 0.5 1.0 15
Column 1

—O Original Y Matrix - -|:|- Original X Matrix - —A Transformed X Matrix
Also, as well as displaying the residuals, the sum of squares, the rotation and best fit matrices, options are

provided to plot arbitrary rows or columns of these matrices.

Theory
First the centroids of X and Y are translated to the origin to give X, and Y. Then the matrix of rotations R

that minimize the sum of squared residuals is found from the singular value decomposition as
x'y.=ubpv”
R=UVT,

and after rotation a dilation factor @ can be estimated by least squares, if required, to give the estimate

A

Y. = aX.R.
Additional options from the SIMFT Procrustes interface include normalizing both matrices to have unit sums
of squares, normalizing the X matrix to have the same sum of squares as the Y matrix, and translating to the
original Y centroid after rotation. Note that these Procrustes options can often be done interactively in S(MF[T

whenever loadings are calculated.
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6.4.4 Varimax and Quartimax rotation

Generalized orthomax rotation techniques can be used to simplify the interpretation of loading matrices, e.g.
from canonical variates or factor analysis. These are only unique up to rotation so, by applying rotations
according to stated criteria, different contributions of the original variables can be assessed.

Example 1

From the main SiMF]T menu choose [Statistics], [Multivariate], then [Varimax and Quartimax] and analyze
the default test file provided, g03baf.tf1, to obtain the following results.

Results from Varimax rotation
Number of rows: 10
Number of columns: 3
Type: Unstandardised
Scaling: Varimax (y = 1)
Original data A
0.788 -0.152 -0.352
0.874 0.381 0.041
0.814 -0.043 -0.213
0.798 -0.170 -0.204
0.641 0.070 -0.042
0.755 -0.298 0.067
0.782 -0.221 0.028
0.767 -0.091 0.358
0.733 -0.384 0.229
0.771 -0.101 0.071
Rotation matrix R
0.63347 -0.53367 -0.56029
0.75803 0.57333 0.31095
0.15529 -0.62169 0.76772
Rotated matrix A* = AR
0.32929 -0.28884 -0.75901
0.84882 -0.27348 -0.33974
0.44997 -0.32664 -0.63297
0.34496 -0.39651 -0.65659
0.45259 -0.27584 -0.36962
0.26278 -0.61542 -0.46424
0.33219 -0.56144 -0.48537
0.47248 -0.68406 -0.18319
0.20881 -0.75370 -0.35429
0.42287 -0.51350 -0.40888

The input loading matrix A has m rows and k columns and results from the analysis of an original data matrix
with n rows (i.e. cases) and m columns (i.e. variables), where k factors have been calculated for k < m.

Example 2

If the input loading matrix is not standardized to unit length rows, this can be done interactively, as in the next
example which also illustrates the use of Varimax rotation to simplify the interpretation of loadings containing
negative values by forming a rotated loading matrix with most values positive.
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Results from Varimax rotation
Number of rows: 10

Number of columns: 2

Type: Row standardized
Scaling: Varimax (y = 1)
Original data A

0.789  -0.403
0.834 -0.234
0.740 -0.034
0.586  -0.185
0.676  -0.248
0.654 0.140
0.641 0.234
0.629 0.351
0.564 0.054
0.808 0.414

Rotation matrix R
0.7279 0.6857
-0.6857 0.7279
Rotated matrix A* = AR
0.8506 0.2477
0.7675 0.4016
0.5619 0.4827
0.5534 0.2672
0.6621 0.2830
0.3800 0.5504
0.3061 0.6099
0.2171  0.6868
0.3735 0.4260
0.3042 0.8554

Factor Loadings Before Varimax Rotation Factor Loadings After Varimax Rotation

-r10
040 «r10 ] 0.80

Factor 2
o
8
Factor 2
3

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
Factor 1 Factor 1

In these diagrams it is clear that factor 1 loads most heavily on variables 1 to 5 (i.e. as rows 1 to 5 of the
loading matrix with symbols r1 to r5), while factor 2 loads most heavily on variables 6 to 10 (i.e. as rows 6 to
10 of the loading matrix with symbols 16 to r10). However it should be noted that before rotation there were
both positive positive and negative loadings in the left hand figure as emphasized by the red line, while after
rotation all loadings are now positive. So, the dependence of factors and loadings may be thought easier to
appreciate after the rotation to make all values positive as in the right hand figure.

The StMF[T Varimax procedure is made available when loading matrices are calculated and provides the
facility to plot any selection of two or three columns of a loading matrix before or after rotation.
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Theory

The rotated matrix A* is calculated so that the elements A} ; are either relatively large or small. This involves

maximizing the function
2
m
* \2
2 l
i=1

where there were m variables originally and k factors were chosen for k < m.

k
V =
=1

iu’;,)“ -ty

=1 i=1 Jj=

k
Jj=

There are several cases as follows
* Varimax rotation: y = 1
* Quartimax rotation: y = 0.
* Equamax rotation: y = k/2.
* Parsimax rotation: y = m(k — 1)/(m + k +2).
» User chosen rotation: vy input.

The resulting rotation matrix R satisfies A* = AR and, when the matrices have been calculated they can be
viewed, written to the results log file, saved to a text file, or plotted.
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6.4.5 Biplots in two or three dimensions
Biplots are widely used to view multivariate data in a space with smaller dimensions.
The data would normally be held in a spreadsheet program like Microsoft Office Excel or LibreOffice Calc, as

in this example of an unselected table of multivariate statistical data from K.R. Gabriel in Biometrika 1971,
58, 453-67.

Percent Christian | Armenian | Jewish | Moslem | American | Shaafat | A-Tur | Silwan | Sur-Bahar
Toilet 98.2 97.2 97.3 96.9 97.6 94.4 90.2 94 70.5
Kitchen 78.8 81 65.6 73.3 91.4 88.7 82.2 84.2 55.1
Bath 14.4 17.6 6 9.6 56.2 69.5 31.8 19.5 10.7
Electricity 86.2 82.1 54.5 74.7 87.2 80.4 68.6 65.5 26.1
Water 32.9 30.3 21.1 26.9 80.1 74.3 46.3 36.2 9.8
Radio 73 70.4 53 60.5 81.2 78 67.9 64.8 57.1
TV set 4.6 6 1.5 3.4 12.7 23 5.6 2.7 1.3
Refrigerator 29.2 26.3 4.3 10.5 52.8 49.7 21.7 9.5 1.2

Such tables must be rectangular, with optional row and column labels, and all other cells filled with numerical
data (missing data must be replaced by estimates). Often it would only be necessary to select cells containing
numerical values from such a table by highlighting as follows.

Percent Christian | Armenian American | Shaafat Sur-Bahar
Toilet
Kitchen

Electricity

TV set
Refrigerator

However, sometimes row and column labels could also be needed, when a labeled table with cells containing
either labels or numerical values would be selected, as follows.

Note that the dummy label in cell(1,1) is not used.

The structure of the default SIMF[T test file houses. tf1 available after selecting [Statistics] from the SIMF[T
main menu, followed by [Multivariate], then [Biplots] will now be explained.



Biplots in two or three dimensions 295

First of all, note that SIMF[T is not constrained to work with spread sheet programs, and the data file
format is more universal and much simpler, being a simple ASCII table of space separated numerical values
with optional row and column labels. So the default test file houses.tfl contains the following table of
observations.

982 972 973 969 976 944 902 940 705
788 81.0 656 733 914 887 822 842 551
144 17.6 6.0 96 56.2 695 31.8 195 107
86.2 821 545 747 872 804 686 655 26.1
329 303 211 269 80.1 743 463 36.2 9.8
73.0 704 530 605 812 780 679 648 57.1

4.6 6.0 1.5 3.4 127 23.0 5.6 2.7 1.3
29.2 26.3 43 105 528 497 217 9.5 1.2

Also, as the row and column labels would be required for a biplot, these are added to the test file as follows.

begin{labels}

Toilet

Kitchen

Bath

Electricity

Water

Radio

TV set

Refrigerator
Christian

Armenian

Jewish

Moslem

Am.Colony Sh.Jarah
Shaafat Bet-Hanina
A-Tur Isawyie

Silwan Abu-Tor
Sur-Bahar Bet-Safafa
end{labels}

An Excel macro called simfit6.x1s is distributed with the SIMF[T package and it can output spreadsheet
tables as correctly formatted SIMF[T data files from within Excel. Another easy way is to copy and paste the
whole table directly into SIMFT using the [Paste] option from the file selection control, or to copy and paste
into program maksim which will then output a correctly formatted SIMF[T data file. However, if this course
of action is to be followed, the following important restrictions may have to be noted.

1. There must be no missing values and every cell in the numeric part of the table must contain a valid
number, except cell(1,1) which is ignored.

2. Data copied to the clipboard from a spreadsheet program will have tab separated columns and so SIMF[T
will be able to perform numerous format conversion procedures interactively.

3. If spaces are used as column separators instead of tabs, the data must be in scientific format using full
stops for decimal points not commas.

4. If spaces are used as column separators instead of tabs, there must no spaces in the labels, and any
must be replaced by undercores before copying to the clipboard from a standard ASCII text editor
such as notepad. For example, replace time of day by time_of_day, or cycles per second by
cycles_per_second. This restriction does not matter with formatted SIMF[T data files as the row
labels followed by the column labels are added as sequential lines between the begin{labels} and
end{labels} section of the data file trailer.

The next figures illustrate typical biplots derived from houses. tf1.
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As with other projection techniques, such as principal components, it is necessary to justify that the number
of singular values used to display a biplot does represent the data matrix adequately. To do this, consider the
next table from the singular value decomposition of houses. tf1.

Proportion of total variance captured by singular values
Data file: houses.tf1, rank = 8
Index o Fraction Cumulative o? Fraction Cumulative
1 499.393 0.7486 0.7486 249394  0.9631 0.9631
88.3480 0.1324 0.8811 7805.36  0.0301 0.9933
33.6666 0.0505 0.9315 1133.44  0.0044 0.9977
17.8107  0.0267 0.9582 317.222 0.0012 0.9989
12.8584 0.0193 0.9775 165.339  0.0006 0.9995
10.4756  0.0157 0.9932 109.738  0.0004 1.0000
3.37372  0.0051 0.9983 11.3820  0.0000 1.0000
8 1.15315 0.0017 1.0000 1.32974  0.0000 1.0000

No o~ wD

In this example, it is clear that the first two or three singular values do represent the data adequately, and this
is further reinforced by Figure 3 where the percentage variance represented by the successive singular values
is plotted as a function of the singular value index. Here we see the cumulative variance CV (i)

1003, o7

k 2
=19

CV() =

plotted as a function of the index i, and such tables or plots should always be inspected to make sure that
CV (i) is greater than some minimum value (say 70 percent, for instance) for i = 2 or i = 3 as appropriate.

100% Q O O
@ ‘ f f f : :

8 9% -/ T P T T
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Figure 3: Cumulative Variance Plot

The theory behind the biplot options available in SIMF[T will now be described.
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Theory

The biplot is used to explore relationships between the rows and columns of any arbitrary matrix, by projecting
the matrix onto a space of smaller dimensions using the singular value decomposition (SVD). It is based upon
the fact that, as a n by m matrix X of rank k can be expressed as a sum of k rank 1 matrices as follows

X = o-lulvlT + o-zuzvg +---+ o-kukvi,

then the best fit rank  matrix ¥ with r < k which minimizes the objective function

m n

S = ZZ(XU ~yij)?

i=1 j=1
= trace[(X - Y)(X - Y)T]
is the sum of the first r of these rank 1 matrices. Further, such a least squares approximation results in the
minimum value
Smin = 0-r2+l + 0-r2+2 toot O-IE
so that the rank 7 least squares approximation Y accounts for a fraction

2 2
Op 4+ 07

2 2 2
0']+0'2+ +0'k

of the total variance, where k is less than or equal to the smaller of n and m, k is greater than or equal to r,
and oy =0 fori > k.

Figure 1 illustrates a biplot for the data in test file houses. tf1l. The technique is based upon creating one of

several possible rank-2 representations of of a n by m matrix X with rank k of at least two as follows. Let the
SVD of X be

x=Uzv’

k
= ZO’,‘M,‘V?
i=1

so that the best fit rank-2 matrix Y to the original matrix X will be

ur uz1
_ ur2 u (oa] 0 V11 Vi2 ... Vim
- (0 0'2) (v21 Vs ... Vom
Uln U2n

Then Y can be written in several ways as GH' , where G is a n by 2 matrix and H is a m by 2 matrix as follows.
1. General representation
UNIVOT U210

VO UDRNO2 | (yyfor viovor ... Vimyor
: : V21V02 V2202 ... Vom0

Uin o1 U2pNO2

2. Representation with row emphasis

uppor U102
U201 U202 Vi V12 ... Vim
. . Var V22 ... Vom

Uln01  U2p02
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3. Representation with column emphasis

uir Uzl
_ iz U2 V1101 V1207 oo Vim0l
- V2102 V202 ... Vo072
Ulpn U2n

4. User-defined representation

uo  uzoy

Lt]zO'la M220-2a vlloﬁ vlza’]ﬁ e vlmrrﬁ

1 1
: V210'2ﬁ szfo .. VszTf
u1n0']" uznaz"

where) <a < l,and =1 - «.

To construct a biplot we take the n row effect vectors g; and m column effect vectors h; as vectors with origin
at (0,0) and defined in the general representation as

gi = (uiiNo1, uNo)
hJT = (vij\o1, vaj\om)

with obvious identities for the alternative row emphasis and column emphasis factorizations. The biplot
consists of n vectors with end points at (u1;4/071, u2i+/02) and m vectors with end points at (vi /o1, v2j+4/072)
so that interpretation of the biplot is then in terms of the inner products of vector pairs. That is, vectors
with the same direction correspond to proportional rows or columns, while vectors approaching right angles
indicate near orthogonality, or small contributions. Another possibility is to display a difference biplot in
which a residual matrix R is first created by subtracting the best fit rank-1 matrix so that

R = X—O'lulv]T

k
= Z O'[Lt[VlT
=2

and this is analyzed, using appropriate vectors calculated with o» and o3 of course. Again, the row vectors
may dominate the column vectors or vice versa whatever representation is used and, to improve readability,
additional scaling factors may need to be introduced. For instance, the previous figures used the residual
matrix and scaling factors of -100 for rows and -1 for columns to reflect and stretch the vectors until comparable
size was attained. To do this over-rides the default auto-scaling option, which is to scale each set of vectors
so that the largest row and largest column vector are of unit length, whatever representation is chosen.

Biplots are most useful when the number of rows and columns is not too large, and when the rank-2
approximation is satisfactory as an approximation to the data or residual matrix. Note that biplot labels should
be short, and they can be appended to the data file as with houses.tfl, or pasted into the plot as a table
of label values. Fine tuning to re-position labels was necessary with these figures, and this can be done by
editing the PostScript file in a text editor, or by using techniques described elsewhere for moving labels in
scattergrams.

Sometimes, as with Figure 2, it is useful to inspect biplots in three dimensions. This has the advantage that
three singular values can be used, but the plot may have to be viewed from several angles to get a good idea
of which vectors of like type are approaching a parallel orientation (indicating proportionality of rows or
columns) and which pairs of vectors 7, j of opposite types are orthogonal (i.e., at right angles, indicating small
contributions to x; ;)
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6.5 Multivariate analysis of variance (MANOVA)
Tutorials and worked examples for simulation,
?\' curve fitting, statistical analysis, and plotting.
A

https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

6.5.1 Introduction

The multivariate analysis of variance technique is an extension of the standard univariate analysis of variance
procedure (ANOVA) to the situation where observations of more than one variable are made for each subject.
So, for instance, a simple application of ANOVA would be to assume that multiple observations have been
made of a single variable in several groups and, assuming that this variable is distributed normally in each
group with the same variance, to test if all the population means are identical. In the corresponding MANOVA
case it would be to assume that all the observations are from multivariate normal distributions with the same
covariance matrix, and to test for identical mean vectors in the populations.

For example, sometimes a designed experiment is conducted in which more than one response is measured at
each treatment, so that there are two possible courses of action.

1. Do a separate ANOVA analysis for each variable.
The disadvantages of this approach are that it is tedious, and also it relies upon the questionable
assumption that each variable is statistically independent of every other variable, with a fixed variance
for each variable. The advantages are that the variance ratio tests are intuitive and unambiguous, and
also there is no requirement that sample size per group should be greater than the number of variables.

2. Do an overall MANOVA analysis for all variables simultaneously.
The disadvantages of this technique are that it relies on the assumption of a multivariate normal
distribution with identical covariance matrices across groups, it requires a sample size per group greater
than the number of variables, and also there is no unique and intuitive best test statistic. Further, the
power will tend to be lower than the power of the corresponding ANOVA. The advantages are that
analysis is compact, and several useful options are available which simplify situations like the analysis
of repeated measurements.

Central to a MANOVA analysis are the assumptions that there are n observations of a random m dimensional
vector divided into g groups, each with n; observations, so that n = Zf:l n; wheren; > mfori=1,2,...,g.
If y;; is the m vector for individual j of group i, then the sample mean j;, corrected sum of squares and
products matrix C;, and covariance matrix S; for group i are

1
Yi = n_[ Zyij
Jj=1
C = Z(J’ij — ) (yij —5)"
=
1
Si = c:.

ni—l

For each ANOVA design there will be a corresponding MANOVA design in which corrected sums of squares
and product matrices replace the ANOVA sums of squares, but where other test statistics are required in
place of the ANOVA F distributed variance ratios. This will be clarified by dealing with typical MANOVA
procedures, such as testing for equality of means and equality of covariance matrices across groups.
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6.5.2 MANOVA examples

From the main SiMF]T menu choose [Statistcs], [Multivariate], then [MANOVA], noting that several test files
named manoval.tfk are provided for k = 1 to k = 5. It is important to realize that the first column in all
data sets provided for MANOVA analysis must have the group numbers as successive integers in column 1 in
nondecreasing order, with further columns for observations.

MANOVA example 1. Testing for equality of all means

Example 1 describes the results from analyzing these data for three groups and two variables contained in test
file manoval. tf3.

10
16
16
14
9
12
8
6
6
14
16
10
18
14
10 16

— —
OPhhOOMNPSTPOOM-—-HOOW

WWWWWMNMNNMNPDNOND = = =22
N

Column 1 is the group number (in nondecreasing order), while columns 2 and 3 are the observations.

If all groups have the same multivariate normal distribution, then estimates for the mean ¢ and covariance
matrix X can be obtained from the overall sample statistics & = y and X

~ 1 g n . 7

2= ZZ()’U - ) (ij — A)
i=1 j=1

obtained by ignoring group means y; and summing across all groups. Alternatively, the pooled between-

groups B, within-groups W, and total sum of squares and products matrices T can be obtained along with the

within-groups covariance matrix S using the group mean estimates y; as

g
B=) n(3i-5»GF:i-»"
izl
W= Z (vij = 30) (i — )"
i1 =1
8
= Z(”i - 1S;
-1
=(n-g)S$
T=B+W

=(n-1)3.
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This table is typical, and clearly strong differences between groups will be indicated if B is much larger than
W.

Source of variation d.f. | ssp matrix
Between groups g-1 B
Within groups n-g w
Total n—1 T

The usual likelihood ratio test statistic is Wilk’s lambda defined as
_ W
|B| + W]
but other statistics can also be defined as functions of the eigenvalues of BW~!. Unlike B and W separately,

the matrix BW~! is not symmetric and positive definite but, if the m eigenvalues of BW~! are 6;, then Wilk’s
lambda, Roy’s largest root R, the Lawley-Hotelling trace T, and the Pillai trace P can be defined as

=1
A=

El 1+9,'
R = max(6;)
T:ZQi

i=1

m

0;

P= :

Z 1+9i

1

L

The next table of results was obtained when manoval.tf3 was analyzed, and the methods used to calculate
the significance levels will then be outlined.

MANOVA Hj: all mean vectors are equal

Number of groups 3

Number of variables 2

Number of observations 15

Statistic Value Transform NDOF )4

Wilks lambda 0.1917 7.062 4,22 0.0008 Reject Hy at 1%
Roys largest root 2.801

Lawley-Hotelling T 3.173 8.727 4, 11 0.0017 Reject Hy at 1%
Pillais trace 1.008

The next table indicates conditions on the number of groups g, variables m, and total number of observations
n that lead to exact F variables for appropriate transforms of Wilk’s A.

Parameters F statistic Degrees of freedom
20 —-m—-1)(1-A
g=2,anym (2g —m - 1)( ) m,2g —m — 1
mA VA
-m-2)(1-VA
g=3, anym (3¢ = m = 2)( ) 2m,2(n—m-2)
mVA
m=1, any g (n-g)(1-4) g-ln-g
’ (g-DA Vi ’
-g-D(1-vVA
m=2anyg | LEZDUZVA o) g 1)
(g-DVA

For other conditions the asymptotic expression

(2n—2—m—g

5 )log/\ ~ Fing-1
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is generally used. The Lawley-Hotelling trace is a generalized Hotelling’s TO2 statistic, and so the null
distribution of this can be approximated as follows.

Defining the degrees of freedom and multiplying factors a and S by

V]=g—1

vo=n-—g

o=

B

mvi(vy —m)
vitvo—mvy—1
(Vz— 1)(1/1 +Vvy—m— 1)

(va=m)(va—m—1)(v2 —m - 3)
mvi

vo—m+1’

then the case v > 0 leads to the approximation

T ~ ﬂFv,vg—mH’

otherwise the alternative approximation

T~a)(]2¢

is employed, where f = mv;/{a(v, —m — 1)}. The null distributions for Roy’s largest root and Pillai’s trace
are more complicated to approximate, which is one reason why Wilk’s A is the most widely used test statistic.

MANOVA example 2. Testing for equality of selected means

The next table resulted when groups 2 and 3 were tested for equality of selected means, another example of a

Hotelling’s T2 test.

MANOVA Hj: selected group means are equal

First group

Second group

Number of observations
Number of variables
Hotelling 772

Test statistic S
Numerator DOF
Denominator DOF
P(F = S)

2 (5 cases)

3 (5 cases)

15 (to estimate CV)
2

12.00

5.498

2

11

0.0221 Reject Hy at 5% significance level

MANOVA Hj: selected group means are equal

First group

Second group

Number of observations
Number of variables
Hotelling 72

Test statistic S
Numerator DOF
Denominator DOF
P(F >5)

2 (5 cases)

3 (5 cases)

10 (to estimate CV)
2

15.18

6.640

2

7

0.0242 Reject Hy at 5% significance level

The first result uses the difference vector d 3 between the means estimated from groups 2 and 3 with the
matrix W = (n — g)§ estimated using the pooled sum of squares and products matrix to calculate and test 72
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according to

Tzz(m

dy s W™'do s
ny +n3 ’

n—-g-m+1_,
————T" ~ Frin—g-m+l,
m(n—g) m,n—g—m+1

while the second result uses the data from samples 2 and 3 as if they were the only groups as follows

_(m =18+ (3 -1)S;

$23
’ np+nz—2
nanj3 _
T’ = d2T35213d2,3
ny +n3 ’ >

np+ny—m-—1

T? ~ Fppytns—me1-
m(ny +n3 —2) LT

The first method could be used if all covariance matrices are equal (see next) but the second might be preferred
if it was only likely that the selected covariance matrices were identical.

MANOVA example 3. Testing for equality of all covariance matrices ‘

The next data set in manoval. tf2 has three groups for three types of Cushing’s syndrome, the variables are
logarithms of urinary excretion rates (mg/hr) for two steroid metabolites, and the table below the data shows
the results from testing that the within-group variance-covariance matrices are equal.

1.1314  2.4596
1.0986 0.2624
0.6419 -2.3026
1.3350 -3.2189
1.4110 0.0953
0.6419 -0.9163
2.1163  0.0000
1.3350 -1.6094
1.3610 -0.5108
2.0541 0.1823
2.2083 -0.5108
2.7344  1.2809
2.0412  0.4700
1.8718 -0.9163
1.7405 -0.9163
2.6101 0.4700
2.3224  1.8563
2.2192  2.0669
2.2618 1.1314
3.9853 0.9163
2.7600 2.0281

WWWWWMNPDMNPDMNNMNODMNODNODNODNODNON =22 S oo

MANOVA Hj: all covariance matrices are equal

Number of groups 3
Number of observations 21
Number of variables 2
Test statistic C 19.24
Degrees of freedom 6

P(x*>C) 0.0038 Reject Hy at 1% significance level
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These results refer to using Box’s test to analyze manoval.tf2 for equality of covariance matrices. This
depends on the likelihood ratio test statistic C defined by

=

where the multiplying factor M is

M=1-

8
(n—g)log|S| = ) (ni - 1)1og|s,.|},

i=1

2m? +3m - 1 i 1 1
6(m+1)(g—-1) ni—-1 n-g

i=1

|

and, for large n, C is approximately distributed as y? with m(m + 1)(g — 1)/2 degrees of freedom. Just as
tests for equality of variances are not very robust, this test should be used with caution, and then only with

large samples, i.e. n; >> m.

MANOVA example 4. Profile analysis

Test file manoval.tfl has two groups and five variables as follows,

while the following table shows the results of statistical analysis using the profile option.

11 18 15 18 15
33 27 31 21 17
20 28 27 23 19
18 26 18 18 9
22 23 22 16 10
18 17 20 18 18
31 24 31 26 20
14 16 17 20 17
25 24 31 26 18
36 28 24 26 29

[N T ST \C TN O T | ST G G W Wy

MANOVA Hy: selected group profiles are equal

First group 1 (5 cases)
Second group 2 (5 cases)
Number of observations 10 (to estimate CV)
Number of variables 5
Hotelling 772 35.65
Test statistic S 5.570
Numerator DOF 4
Denominator DOF 5
P(F = S) 0.0438 Reject Hy at 5% significance level

The next figure illustrates the results from plotting the group means from manoval.tfl using the profile
analysis option, noting that error bars are not added as a multivariate distribution is assumed,
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MANOVA Profile Analysis
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Profile analysis attempts to explore a common question that often arises in repeated measurements ANOVA
namely, can two profiles be regarded as parallel. This amounts to testing if the sequential differences between
adjacent means for groups i and j are equal, that is, if the slopes between adjacent treatments are constant
across the two groups, so that the two profiles represent a common shape.

To do this, we first define the m — 1 by m transformation matrix K by

I 1 0 0 0
0 1 -1 0 0
K=o o 1

Then a Hotelling’s T test is conducted using the pooled estimate for the covariance matrix S; i =[(mi=1)Si+
(nj —1)S;]/(n; + n; —2) and mean difference vector d;; = y; — y; according to

nin; -
- (n +;) (Kdip)" (KSi;K") ™ (Kd;;)
L J

and comparing the transformed statistic

njtn;—m T2 F
(ni+n; —2)(m—1) b

to the corresponding F' distribution.

Clearly, from the above table, the profiles are not parallel for the data in test file manoval.tfl.
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6.6 Comparing groups

Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk

https://simfit.org.uk
https://simfit.silverfrost.com

o
~

6.6.1 Canonical variates (discriminant functions)

Canonical variates is a technique used to transform multivariate data into new coordinates in order to highlight
differences and similarities between groups of observations.

If MANOVA investigation suggests that at least one group mean vector differs from the the rest, it is usual to
proceed to canonical variates analysis, although this technique can be also be used for data exploration when
the assumption of multivariate normality with equal covariance matrices is not justified.

Example 1

From the main SiMF]T menu choose [Statistics], [Multivariate], then [Canonical variates], and read in the test
file manoval.tf4 from the C:\Program Files\simfit\dem folder, which contains the following data for
three groups of three subjects, each with observations on three variables.

13.3 106 21.2
134 94 21.0
129 10.0 20.5
13.6 102 21.0
13.2 96 20.1
122 99 207
142 107 21.1
139 104 198
139 11.0 191
begin{values}

140 11.0 22.0

120 9.0 19.0

13.0 9.0 20.0
end{values}

WWWwMNMDMNDN = = =

Column 1 has the group numbers as nondecreasing integers, while columns 2, 3, and 4 are observations on
three variables. Because canonical variates are also used to see how closely additional unassigned observations
compare to the defined groups of the training set, these can be added as additional values to the end of the
data file as shown.

The table below shows the results from analyzing these data, and this is followed by a summary that will be
explained in more detail later.
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Results from analysis of manova.tf4: rank = 3
2

Correlations  Eigenvalues Proportions X NDOF )4
0.8826 3.5238 0.9795 7.9032 6 0.2453
0.2623 0.0739 0.0205 0.3564 2 0.8368

Canonical variate means
0.9841 0.2797

1.181 -0.2632
-2.165 -0.01642

Canonical coefficients
-1.707 0.7277
-1.348 0.3138
0.9327 1.220

* The number of correlations is the larger of the rank and the number of groups less one.

* The eigenvalues are for the within group sum of squares matrix, and these are used to estimate the
proportion of variation explained by the canonical variates.

* The chi-square statistic is used to decide the number of canonical variates required to represent the data.
* The degrees of freedom and a p value for the significance of this chi-square statistic are presented.

Perhaps the most useful application of this technique is to plot the group means together with the data and
95% confidence regions in canonical variate space in order to visualize how close or how far apart the groups
are. This is done for the first two canonical variates in the next figure.

Canonical Variate Means

QA

Cv 2
>

Using the option to edit plot parameters the above figure was constructed to show the labeled canonical
variate means (filled circles) together with 95% confidence confidence regions, along with the original data
and the three additional observations. Finally the ranges of data plotted were adjusted in order to display the
confidence ranges as circles instead of ellipses.

From this graph it is evident that groups 1 and 2 (circles and triangles) are similar but both groups are distinct
from group 3 (squares). Additional observation C (half filled diamonds) can be assigned the groups 1 and 2
but additional observations A and B do not belong to any of the training sets.
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Example 2
To appreciate the use of canonical variates to distinguish groups with a larger data set, consider the next

figures, which illustrate the famous Fisher Iris data set contained in manoval.tf5 using the first two principal
components, and also the first two canonical variates for comparison.

Principal Components for Iris Data
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Theory

First of all, note that canonical variates, unlike principal components, are not simply obtained by a distance
preserving rotation: the transformation is non-orthogonal and best represents the Mahalanobis distance
between groups.

The confidence range

In the first figure of Example 1 we see the group means identified by the filled symbols labeled as 1, 2 and
3, each surrounded by a 95% confidence region, which in this case is circular as equally scaled physical
distances are plotted along the axes. The canonical variates are uncorrelated and have unit variance so,
assuming normality, the 100(1 — @)% confidence region for the population mean is a circle radius

r= \,X(ZI’Z/”“

where group i has n; observations and )((zl , is the value exceeded by 100a% of a chi-square distribution with
2 degrees of freedom.

Note that, alternatively, a circle radius .,/ Xi , can be plotted as this defines a tolerance region, i.e. the region

within which 100(1 — @)% of the whole population is expected to lie.
The additional observations

Also, the test file manoval.tf4 has three other observations appended which are to be compared with the
main groups in order to assign group membership, that is, to see to which of the main groups 1, 2 and 3
the extra observations should be assigned. The half-filled diamonds representing these are identified by the
labels A, B and C which, like the identifying numbers 1, 2, and 3, are plotted automatically by SIMFT to
identify group means and extra data. In this case, as the data sets are small, the transformed observations
from groups 1, 2 and 3 are also shown as circles, triangles and squares respectively, which is easily done
by saving the coordinates from the plotted transforms of the observations in ASCII text files which are then
added interactively as extra data files to the means plot.

The calculation of canonical variates
The aim of canonical variate analysis is to find the transformations a; that maximize F;, the ratios of B (the

between group sum of squares and products matrices) to W (the within-group sum of squares and products
matrix), i.e.

4/ Bai/(g—1)
" aTWai/(n-g)
where there are g groups and n observations with m covariates each, so thati = 1,2,...,/ where [ is the lesser

of the number of groups minus one and the rank of the data matrix. The canonical variates are obtained by
solving the symmetric eigenvalue problem

(B—-2*W)x =0,

where the eigenvalues /l% define the ratios F;, and the eigenvectors a; corresponding to the /l% define the
transformations. So, just as with principal components, a scree diagram of the eigenvalues in decreasing order
indicates the proportion of the ratio of between-group to within-group variance captured by the canonical
variates.

Note that the previous results table lists the rank k of the data matrix, the number of canonical variates
[ = min(k, g — 1), the eigenvalues /l%, the canonical correlations /l%/(l + /l%), the proportions /l%/2§.=1 /13., the
group means, the loadings, and the results of a chi-square test.
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The number of canonical variates

Itis important to realize that the first two canonical variates may be insufficient to represent the data adequately.
A scree diagram can be plotted to estimate the minimum number required, or the eigenvalues, proportions, or
chi-square statistics calculated from the data can be used.

For instance. If the data are assumed to be from a common multivariate distribution, then to test for a
significant dimensionality greater than some level i, the statistic

1
=(—1-g—(k=-g)/2) > log(1+13)

j=i+l

has an asymptotic chi-square distribution with (k —i) (g — 1 —i) degrees of freedom. If the test is not significant
for some level &, then the remaining tests for i > & should be ignored. It should be noted that the group
means and loadings are calculated for data after column centering and the canonical variates have within
group variance equal to unity. Also, if the covariance matrices 8 = B/(g — 1) and w = W/(n — g) are used,
thenw™ !B = (n-g)W~'B/(g - 1), so eigenvectors of W~! B are the same as those of w™!, but eigenvalues
of W-!'B are (g — 1)/(n — g) times the corresponding eigenvalues of w™! .

In the iris plot of Example 2 there are only two canonical variates, so the canonical variates diagram is fully
representative of the data set, and both techniques illustrate the distinct separation of group 1 (circles = setosa)
from groups 2 (triangles = versicolor) and 3 (squares = virginica), and the lesser separation between groups 2
and 3.

Users of these techniques should always remember that, as eigenvectors are only defined up to an arbitrary
scalar multiple and different matrices may be used in the principal component calculation, principal compo-
nents and canonical variates may have to be reversed in sign and re-scaled to be consistent with calculations
reported using software other than SIMF[T. To see how to compare extra data to groups involved in the
calculations, the test file manoval. tf4 should be examined.
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6.6.2 Discriminant analysis: Mahalanobis distances

Discriminant analysis is based on comparing multivariate observations made with different groups of subjects
in order to define the distances between the groups, and also to assign new observations to appropriate groups.

From the main StMF[T menus choose [Statistics], [Multivariate, [Discriminant analysis] then read in the
default test file g03daf. tf1 which has the following data.

1 1.1314 2.4596
1 1.0986 0.2624
1 0.6419 -2.3026
1 1.3350 -3.2189
1 1.4110 0.0953
1 0.6419 -0.9163
2 21163 0.0000
2 1.3350 -1.6094
2 1.3610 -0.5108
2 2.0541 0.1823
2 22083 -0.5108
2 27344 1.2809
2 2.0412 0.4700
2 1.8718 -0.9163
2 1.7405 -0.9163
2 26101 0.4700
3 23224 1.8563
3 22192 2.0669
3 22618 1.1314
3 3.9853 0.9163
3 27600 2.0281

This data set has three groups, indicated by the nondecreasing integers in columns 1, for three types of
Cushing’s syndrome, the variables in columns 2 and 3 are logarithms of urinary excretion rates (mg/hr) for
two steroid metabolites.

The following options are then available.

Calculate the group sample means and the pooled sample means.
The numerical values for the vectors of means can be displayed.

Test for equality of the vectors of population means.
If required, this can be done using the MANOVA options provided by SIMF[T.

Test if all population variance-covariance matrices are equal.

The results from discriminant analysis will differ depending on whether it is assumed that the variables
all have the same population covariance matrix (as estimated from the pooled samples) or different
covariance matrices (as estimated from the group samples).

Calculate distances between the groups.
The Mahalanobis distance matrix Dl.zj can be calculated assuming equal or unequal variance-covariance
matrices.

Plot the groups.
The centroids can also be plotted to indicate the center of gravity of the groups while, for cases with
more than two variables, the principal components can be plotted instead.

The results from such a systematic investigation are now presented.

First of all here are the group and pooled means followed by a MANOVA test for equality of means.
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Table 1. Mean vectors
Group1 1.0433 -0.6034
Group2 2.0073 -0.2060
Group3 2.7097 1.5998
Pooled 1.8991 0.1104

Table 2. MANOVA test for Hy: population mean vectors are equal

Number of groups 3

Number of variables 2

Number of observations 21

Statistic Value Transform NDOF 2

Wilks lambda 0.3144 6.660 4,34 0.0005 Reject Hy at 1% significance level
Roys largest root 1.801

Lawley-Hotelling T 1.937 8.231 4,17 0.0006 Reject Hy at 1% significance level
Pillais trace 0.7625

A mean vector for a group is simply the vector consisting of sample means for each variable within that
group, and the results suggest that the population mean vectors for these three groups are not the same, so that
regarding the subjects as forming three distinct groups seems to be justified in this case.

The results in this next table for testing if the population variance-covariance matrices for the groups are
identical suggests that we should consider rejecting the null hypothesis.

Table 3. Testing Hy: population variance-covariance matrices are equal

Number of groups 3
Number of observations 21
Number of variables 2
Test statistic C 19.24
Degrees of freedom 6
P(x*>>0C) 0.0038 Reject Hy at 1% significance level

Note that, in the following values for the Mahalanobis distances D% between groups, assuming a common pop-
ulation variance-covariance matrix leads to a symmetric distance matrix, but for unequal variance-covariance
matrices the distance matrix is not symmetric.

Table 4. Mahalanobis distances
D}, assuming equal CV

0.00000 3.58476 11.7998
3.58476 0.00000 3.25922
11.7998 3.25922 0.00000

Dy, assuming unequal GV

0.00000 9.55703 51.9737
8.51398 0.00000 25.2973
25.1215 4.71142 0.00000

Finally, the next figure displays the observations for the groups followed by the same data but with centroids
added together with spokes to emphasize the groups.

In the present case there are only two variables so these can be used as axes but, for more than two variables,
the option to plot principal components should be used
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Theory
Defining the mean vector

Consider a group of X of size n with m variables as in

X1l X12 ottt Xim
x = [F21 X2 Xom
Xnl Xn2  °° Xum
for then the vector of column means
X=[x, % - Fm|

where X; is the mean of column j is generally referred to as the mean vector as in Table 1 and Table 2.
Alternatively, regarding the points as having unit mass, this is would be the center of mass or centroid of
the data regarded as a multivariate swarm. For two mean vectors to be equal requires all corresponding
component means to be equal.

Testing for equality of covariance matrices

The results from analyzing g03daf . tf1 in Table 3 refer to using Box’s test to analyze for equality of population
covariance matrices. This depends on n the overall sample size, m the number of variables, g the number
of groups, n; the sample size in group i, S the pooled variance-covariance matrix with determinant |S|, S;
the within-group variance-covariance matrices with determinants |S;|, and the likelihood ratio test statistic C
defined by

g
c=M {(n — ) log|S| = Y (ni - 1>1og|s,-|} .

i=1

Here the multiplying factor M is

2 B g
M1 2m*+3m — 1 Z 1
6(m+1)(g—-1) l”i—l n-—g

i=

and, for large n, C is approximately distributed as y? with m(m + 1)(g — 1)/2 degrees of freedom. Just as
tests for equality of variances are not very robust, this test should be used with caution, and then only with
large samples, i.e. n; >> m.

The squared Mahalanobis distance between two groups

The squared Mahalanobis distance D%j between two group means X; and x; referred to in Table 4 can be
defined as either

Dy = (% - ) 57 (& - %))

depending on whether the covariance matrices are assumed to be equal, when the pooled estimate S is used
and D?j = Dii, or unequal when the group estimate §; is used and D?j # D%i. This distance is a useful
quantitative measure of similarity between groups, but often there will be extra measurements which can then
be appended to the data file, as with g03daf. tf1, so that the distance between measurement k and group j

can be calculated as either
Dij = (xg —)Ej)TS_](xk - X;)

or D} ; = (xx — )" 87" (v — %)).
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6.6.3 Discriminant analysis: Allocating observations to training sets

Discriminant analysis provides methods for allocating new observations to existing training sets, i.e. groups
that have been defined on the basis of previous investigations.

From the main StMF[T menus choose [Statistics], [Multivariate, [Discriminant analysis] then read in the
default test file g03daf. tf1 which has the following data.

1.1314
1.0986
0.6419
1.3350
1.4110
0.6419
2.1163
1.3350
1.3610
2.0541
2.2083
2.7344
2.0412
1.8718
1.7405
2.6101
2.3224
2.2192
2.2618
3.9853
2.7600

WWWWWMNMNPDMNDMNDMNODNODMPODPODNON =222 a oo

begin{values}

1.6292
2.5572
2.5649
0.9555
3.4012
3.0204
end{values}

2.4596
0.2624
-2.3026
-3.2189
0.0953
-0.9163
0.0000
-1.6094
-0.5108
0.1823
-0.5108
1.2809
0.4700
-0.9163
-0.9163
0.4700
1.8563
2.0669
1.1314
0.9163
2.0281

-0.9163

1.6094
-0.2231
-2.3026
-2.3026
-0.2231

This data set has three groups, indicated by the nondecreasing integers in columns 1, for three types of
Cushing’s syndrome, the variables in columns 2 and 3 are logarithms of urinary excretion rates (mg/hr) for
two steroid metabolites, and the values below the data are additional observations for allocating to one of the
three groups. Such extra observations can also be added interactively and expanded training sets containing

the newly assigned data can be saved as SIMF[T MANOVA type files.

Assigning new observations to groups defined by training sets can be made more objective by employing
Bayesian techniques than by simply using distance measures, but only if a multivariate normal distribution
can be assumed. For instance, the next table displays the results from assigning the six observations appended
to g03daf.tfl to groups defined by using the data as a training set, under the assumption of unequal

variance-covariance matrices and equal priors.
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Method
CV-mat
Priors

Observation

1

o g~ W

Posterior probabilities

Predictive
Unequal
Equal
Group-allocated

2

WWwWw-=DMNW

Atypicality indices

0.0939
0.0047
0.0186
0.6969
0.3174
0.0323

0.9046
0.1682
0.9196
0.3026
0.0130
0.3664

0.0015
0.8270
0.0618
0.0005
0.6696
0.6013

0.5956
0.9519
0.9540
0.2073
0.9908
0.9807

0.2539
0.8360
0.7966
0.8599
1.0000
0.9779

0.9747
0.0184
0.9122
0.9929
0.9843
0.8871

Plotting training sets and assigned observations

The next figure displays the training set from g03daf. tf1, together with the assignment of the extra observa-
tions appended to this test file as described previously. The additional observations allocated to the existing
training set to create this expanded training set are emphasized by solid arrows, which confirm what the
atypicality indices suggest, i.e. additional observation 5 is not particularly close to group 3.

Expanded Training Set
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Theory

The results from discriminant analysis will differ depending on whether it is assumed that the variables
all have the same population covariance matrix so that this can be estimated from the pooled samples.
Alternatively estimates from the separate groups can used. However, estimating variance-covariance matrices
from multivariate samples requires sample sizes very much greater than the number of variables and, if this
condition is not met, poor estimates can lead to incorrect allocations. So, unless sample sizes in all training
sets are very much larger than the number of variables, it is probably best to use pooled estimates and ignore
the tests suggesting unequal variance-covariance matrices.

The calculation is for g groups, each with n; observations on m variables, and it is necessary to make
assumptions about the identity or otherwise of the variance-covariance matrices, as well as assigning prior
probabilities. Then Bayesian arguments lead to expressions for posterior probabilities g ;, under a variety of
assumptions, given prior probabilities 7 ; as follows.

» Estimative with equal variance-covariance matrices (Linear discrimination)
logg; o —iD? +logn;
g4, 7% g7
 Estimative with unequal variance-covariance matrices (Quadratic discrimination)
logg; <« —1D? +logn; — Llog|S;]|
g4 2Pk Tlogmj — 5 10g19;
* Predictive with equal variance-covariance matrices

i
((nj + 1) /np)m2 {1+ [n;/((n = g)(n; + 1) D} (n-e*D/2

4;

* Predictive with unequal variance-covariance matrices
o ﬂjr(nj/Z)
T((nj =m)/2)((nF = 1) /np)m2IS;[V2{1 + (n;/(n} = 1)) D}/

qj

Subsequently the posterior probabilities are normalized so that 25:1 g;j = 1 and the new observations are
assigned to the groups with the greatest posterior probabilities. In this analysis the priors can be assumed to
be all equal, proportional to sample size, or user defined. Also, atypicality indices /; are computed to estimate
how well an observation fits into an assigned group. These are

 Estimative with equal or unequal variance-covariance matrices

1; = P(D};/2,m/2)
* Predictive with equal variance-covariance matrices
I = R(D};/(Dy; + (n=g)(nj = 1)/n;),m/2,(n =g =m+1)/2)
* Predictive with unequal variance-covariance matrices

Ij = R(D};/(DZ; + (n5 = 1) [n}),m[2, (n; — m)/2),

where P(x, @) is the incomplete gamma function, and R(x, @, 8) is the incomplete beta function. Values of
atypicality indices close to one for all groups suggest that the corresponding new observation does not fit well
into any of the training sets, since one minus the atypicality index can be interpreted as the probability of
encountering an observation as or more extreme than the one in question given the training set.

The assignment of extra observations to the training sets depends on the data transformation selected and
variables suppressed or included in the analysis, and this must be considered when supplying extra observations
interactively.
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7 Survival analysis

Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.

https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

(N
~

7.1 Introduction

Survival analysis attempts to develop a statistical model for situations where a group is observed from time
t = 0 onwards until a number of the subjects in the original group no longer survive. It can be used to model
numerous situations ranging from the failure of machinery by wear and tear to the death of individuals due to
disease or old age.

SMFTT provides several techniques to analyze the following types of survival data.

1. Estimates of proportions of a population surviving as a function of time are available by some technique
which does not directly estimate the number surviving in a populations of known initial size, rather,
proportions surviving are inferred by indirect techniques such as light scattering for bacterial density
or enzyme assay for viable organisms. In such instances the estimated proportions are not binomial
variables so fitting survival models directly by weighted least squares is justified, especially where
destructive sampling has to be used so that autocorrelations are less problematical. Program gcfit is
used in mode 2 for this type of fitting.

2. A population of individuals is observed and information on the times of censoring (i.e. leaving the
group) or failure are recorded, but no covariates are measured. In this case, survival density functions,
such as the Weibull model, can be fitted by maximum likelihood, and there are numerous statistical and
graphical techniques to test for goodness of fit. Program gcfit is used in mode 3 for this type of fitting.

3. When there are covariates as well as survival times and censored data, then survival models can be
fitted as generalized linear models. The SIMF|T GLM simplified interface module is used for this type
of analysis.

4. The Cox proportional hazards model does not attempt to fit a complete model, but a partial model
can be fitted by the method of partial likelihood as long as the proportional hazards assumption is
justified independently. Actually, after fitting by partial likelihood, a piece-wise hazard function can be
estimated and residuals can then be calculated. The SIMF[T GLM simplified interface module is also
used for this type of analysis.

To summarize, in the context of survival analysis, the random survival time 7 with density f(¢), cumulative
distribution function F(¢), survivor function S(#), hazard function %(¢), and cumulative hazard function H(¢)
are defined for > 0 by

f() =0

- d
F(1) /0 £(u) du
S(t)y=1-F(1)

h(t) = f(1)/S(t)
H(t) =‘/0 h(u) du
f(t) = h(t) exp{-H(1)}.
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Clearly, the survivor function S(¢) = exp{—H ()} is the probability of surviving up to time ¢, which decreases
monotonically from 1 to zero as ¢ increases, while the hazard function is the probability of failure at # given
survival up to this time. However, analysis is often complicated by left censoring when new individuals
join the group at some ¢ > 0, or right censoring when individuals leave the original group without failing.
The alternative methods used to quantify the behavior of any particular group simply depend on the model
assumed, while any predictions made from estimated parameters also depend on the size and homogeneity of
the group under investigation in terms of covariates.

7.2 1-sample Kaplan-Meier survivor function

Given observations of some critical event such as survival, recovery from illness, failure of a machine, or death
of a subject, as a function of time within a given group, the Kaplan-Meier or product moment nonparametric
estimator for a suitable step function to model the survivor function has gained wide acceptance.

Example 1

From the main SiMF[T menu choose [Statistics], [Time series and survival], then [Kaplan-Meier], and study
the default test file survive.tf2 which has the following format.

Time to relief  Censorship  Frequency

1.1 0

1.4 0 1
1.3 0 1
1.7 0 1
1.9 0 1
1.8 0 1
1.6 0 1
2.2 0 1
1.7 0 1
2.7 0 1
4.1 0 1
1.8 0 1
1.5 0 1
1.2 0 1
1.4 0 1
3.0 0 1
1.7 0 1
2.3 0 1
1.6 0 1
2.0 0 1

These data were for twenty patients taking an analgesic to relieve headache pain and the data have been
formatted according to this scheme, where the critical event in this case is freedom from pain.

1. First column
Time in hours (not necessarily ordered)

2. Second column
Censoring code (0 = occurrence of the critical event, 1 = right-censored)

3. Third column
Frequency of the observation

4. Note
The starting sample size will be taken as the sum of all the frequencies in column 3. So subjects
remaining at or after the last failure should be included as right-censored with the appropriate frequency.
Failure to do this will lead to an underestimate of the starting size for the group and a biased estimator.
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These data do not contain censored observations and all the subjects were observed until the headache ceased,
so the estimated survivor function S(#) was as displayed in the next table and graph.

Time to relief  Estimate S(#)  Standard Error

1.1 0.95 0.0487
1.2 0.90 0.0671
1.3 0.85 0.0798
1.4 0.75 0.0968
1.5 0.70 0.1025
1.6 0.60 0.1095
1.7 0.45 0.1112
1.8 0.35 0.1067
1.9 0.30 0.1025
2.0 0.25 0.0968
2.2 0.20 0.0894
23 0.15 0.0798
2.7 0.10 0.0671
3.0 0.05 0.0487
4.1 0.00 0.0000

Kaplan-Meier 5(t)
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Example 2

The next table and graph are for the data contained in test file survive.tf1l which is for time to remission in
21 leukemia patients.
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This data set contains right-censored observations with a 1 instead of 0 in column two, and also records the
number of replicates with frequencies of 2 or 3 instead of 1 in column three.

Time to remission  Censorship  Frequency
6 1 1
6
7
9
10
10
11
13
16
17
19
20
22
23
25
32
34
35
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Note that the eleven points at times 6, 9, 10, 11, 17, 19, 20, 25, 32, 34, and 35 where loss by censoring
happened are indicated in the above diagram by plus signs (+).
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Theory

The nomenclature regarding the Kaplan-Meier estimator for a survivor function arose because it is most
widely used in reliability studies, where machinery is operated until failure occurs, and in clinical studies
where a group of patients under treatment is observed until some critical event like recovery from illness,
relief from suffering, or death happens. It is often complicated by the fact that right censoring occurs, where
a subject leaves the group without the critical event occurring, e.g. when a clinical trial is discontinued.

For these reasons it is well to remember that as S(¢) = 1 — F(z) then F(#) = 1 — S(¢) and there may be some
occasions where it could be more logical to regard F(¢) as the survivor function.

Suppose that there are exactly k distinct times where at least one critical event, e.g. a failure occurred. Then
the calculation is based on ordering these k distinct times for failure into an increasing sequence

H<bhh<tiza <-:---<tg

and recording the number that failed at each time, but also taking note of the number lost at each time due to
censoring.

To understand the method, note that, as the times ¢; are distinct and ordered failure times, i.e. t;_1 < t;, and
the number in the sample that have not failed by time #; is n;, while the number that do fail is d;, then the
estimated probabilities of failure and survival at time ¢#; are given by
ﬁ(failure) = d,-/n,-
p(survival) = (n; — d;) /n;.

The Kaplan-Meier product limit nonparametric estimate of the survivor function is then defined as a step
function which is given in the interval ¢; to ;41 by the product of survival probabilities up to time #;, that is

A L(ni—d;
$(r) = (g)
with variance estimated by Greenwood’s formula as
L ™ d;
V(@) =81)?° ), ———.
nj(nj—dj)

It is understood in this calculation that, if failure and censoring occur at the same time, the failure is regarded
as having taken place just before that time and the censoring just after it.

It should be pointed out that steps in the survivor function only occur at failure points and, in the absence of
any censored points, the Kaplan-Meier estimate for the survivor function at ¢ = #; is just the usual binomial
parameter estimate.
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7.3 1-sample Weibull survivor function
Often experimentalists prefer to fit a continuous parameteric survivor function to survival data in order to

quantify the data by best-fit parameters instead a nonparameteric step-wise approximation, and the Weibull
distribution is often used for this purpose.

From the main SIMF|T menu choose [Statistics], [Time series and survival], then [Kaplan-Meier], and study
the default test file survive.tf2 which has the following format.

Time to relief  Censorship  Frequency

1.1 0

1.4 0 1
1.3 0 1
1.7 0 1
1.9 0 1
1.8 0 1
1.6 0 1
2.2 0 1
1.7 0 1
2.7 0 1
41 0 1
1.8 0 1
1.5 0 1
1.2 0 1
1.4 0 1
3.0 0 1
1.7 0 1
2.3 0 1
1.6 0 1
2.0 0 1

These data were for twenty patients taking an analgesic to relieve headache pain and the data have been
formatted according to this scheme, where the critical event in this case is freedom from pain.

1. First column
Time in hours (not necessarily ordered)

2. Second column
Censoring code (0 = occurrence of the critical event, 1 = right-censored)

3. Third column
Frequency of the observation

4. Note
The starting sample size will be taken as the sum of all the frequencies in column 3. So subjects
remaining at or after the last failure should be included as right-censored with the appropriate frequency.
Failure to do this will lead to an underestimate of the starting size for the group and a biased estimator.

These data do not contain censored observations and all the subjects were observed until the headache ceased.

The Kaplan-Meier menu then provides the option to fit a Weibull survivor function and to overlay it on the
Kaplan-Meier step function as in the next figure.
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Kaplan-Meier 5(t) and Best Fit Weibull Curve
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Of course the maximum likelihood Weibull estimate displayed is only one possible curve, and SIMF[T offers
the opportunity to fit alternative curves by weighted least squares, or generalized linear interactive modeling
(GLIM).

Tests for goodness of fit and for comparing parameter estimates require the actual parameter estimates and
standard errors, i.e. estimates for their their standard errors, where the numerical values for these will depend
upon the particular parameterization scheme used to define the Weibull model. So, as the next table shows,
the Weibull model can be fitted with several parameterizations, and the one used by SIMFJT is designed to
stabilize the calculations for the maximum likelihood estimate, as described subsequently.

Alternative MLE Weibull parameterizations

S(1) = exp[—exp(B)r®]
S(t) = exp[-At58]
S(1) = exp[-(An)®]

Parameter ~ Value  Standard error Lower95%cl Upper95%cl )4
B 27870 0.4273 1.889 3.685 0.0000
B -2.1073 0.4627 -3.079 -1.135 0.0002
A 0.1216 0.0563 0.003 0.240 0.0444
A 0.4695 0.0401 0.385 0.554 0.0000
tip  1.8675 0.1761 1.497 2.238 0.0000

Correlation coefficient(8, B) = -0.8755
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Theory

To understand fitting the Weibull distribution, note that maximum likelihood parameter and standard error
estimates are reported for three alternative parameterizations, namely

S(1) = exp(-exp(B)1®)
= exp(-1t8)
= exp(—(An®).
Since the density and survivor function are
(1) = BArB exp(-ar®)
S(1) = exp(—At?),

and there are d failures and n — d right censored observations, the likelihood function /(B, 1) is proportional
to the product of the d densities for the failures in the overall set of n observations and the survivor functions,

that is
n
(B, ) « (BA)4 (H t?_l)exp (—/l tlB)
i=1

ieD

where D is the set of failure times.

Actually, the log-likelihood function objective function

L(B,p) = dlog(B) +dB+ (B~ 1) ) log(t;) - exp(p) ) 1F
1

ieD i=
with A1 = exp(p) is better conditioned, so it is maximized and the partial derivatives
Ly =0L/dp
L,=0L/0B
Ly = 0°L/dB>
L =8*L/dBAS
Ly = 8*L/dB?

are used to form the standard errors and correlation coefficient according to

se(B) = \/—Lu/(Lllez - L3,)

se(B) = \/_L22/(L11L22 - L3,)

corr(B, B) = Lia/+/Li1Laa.

Given the maximum likelihood estimates for B and (3, the estimates for A and A are calculated and the
standard errors worked out by the propagation of errors technique, while the half-time #;/,, which is the time
to 50% survival, is calculated numerically using the survivor function with parameters equal to the maximum
likelihood estimates.
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7.4 1-sample GLM survivor function with covariates

The general linear modeling technique (GLM) can be used to analyze survival data when there are covariates.
It should be emphasized that GLM is a very powerful technique, but it must be used with great care as it
requires more understanding from users than most analytical techniques. It defines an error type for the
observations, and assumes that the distribution of mean values is described in a link function which is a linear
combination of covariates. Further, additional model information in the form of data transformation, offsets,
weights, and strata may be required. For this reason SIMFT provides a simplified interface for fitting survival
data which will now be described

From the main SiMF]T menu choose [Statistics], [Time series and survival], then [GLM], and study the default
test file cox. tf1 which has data from P. Feigel and M. Zelen Biometrics 21, 826-838 (1965) in the following
format.

covariate x; covariate x, covariate x3 observationy timein weekst indicator s

0.8329 0 0 0 65.00 1
-0.2877 0 0 0 156.0 1
1.4586 0 0 0 100.0 1
0.9555 0 0 0 134.0 1
1.7918 0 0 0 16.00 1
2.3514 0 0 0 108.0 1
2.3026 0 0 0 121.0 1
2.8332 0 0 0 4.000 1
1.6864 0 0 0 39.00 1
1.9459 0 0 0 143.0 1
2.2407 0 0 0 56.00 1
3.4657 0 0 0 26.00 1
3.5553 0 0 0 22.00 1
4.6052 0 0 0 1.000 1
4.6052 0 0 0 1.000 1
3.9512 0 0 0 5.000 1
4.6052 0 0 0 65.00 1
1.4816 1 1.4816 0 56.00 1
1.0986 1 1.0986 0 65.00 1
1.3863 1 1.3863 0 17.00 1
0.4055 1 4.0547 0 7.000 1
2.1972 1 2.1972 0 16.00 1
1.6677 1 1.6677 0 22.00 1
2.3026 1 2.3026 0 3.000 1
2.9444 1 2.9444 0 4.000 1
3.2958 1 3.2958 0 2.000 1
3.3322 1 3.3322 0 3.000 1
3.4340 1 3.4340 0 8.000 1
3.2581 1 3.2581 0 4.000 1
3.0445 1 3.0445 0 3.000 1
4.3694 1 4.3694 0 30.00 1
4.6052 1 4.6052 0 4.000 1
4.6052 1 4.6052 0 43.00 1

The above data format, i.e. the meaning of these six columns of data for this example of GLM survival
analysis with three covariates must be thoroughly understood as will be explained.
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If there are m covariates the first m columns must be the covariates, then column m + 1 must be either O
(failure) or 1 (right censoring), column m + 2 must be the nonnegative survival time, while column (m + 3)
could be a default value of 1, or the weight for replicates or (in some case) the stratum indicator.

For these data the particular details are as follows.

e Column 1:
covariate x1 = log white blood cell count (in thousands)

e Column 2:
covariate x, = AG-factor positive or negative (0 or 1)

e Column 3:
covariate x3 (in this special case x3 = x1x; i.e. column 1 multiplied by column 2)

* Column 4:
observation y (where y = 0 for failure, or y = 1 for censored)

e Column 5:
t = survival time in weeks (¢ must be > 0)

* Column 6:
s = 1 this should usually be 1. However, it could be interpreted as a weighting factor for replicates,
except for the SIMF[T advanced Cox regression procedure when it would be assumed to be the stratum
indicator.

In order to fit survival data using generalized linear models (GLM) by maximum likelihood four components
must be defined.

1. A random variable, say Y with mean E(Y) = u, and variance V(Y)
2. A set of covariates x1, x2, . . ., x;; recorded at the same time as Y
3. Alink function g(.) which is a function of u

4. A linear predictor function of the covariates = 277:] Bjixi

In addition it is supposed that the relationship between E(Y) and 7 is

g(u)=n

and the fit is achieved by an iterative process.

As the GLM technique for fitting survival models is very complicated, requiring careful choices for the
distribution of Y and the link function g(.) as well as the calculation of offsets and use of data transformations,
SiMF[T supplies a simplified interface to handle the following four special cases.

* The exponential model

* The Weibull model

* The extreme distribution model
* The Cox model

The following table displays the results from analyzing the same test file cox. tf1 using each of these models
sequentially.
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Model: exponential survival
No. parameters = 4, Rank = 4, No. points = 33, Deg. freedom = 29

Parameter Value Lower95%cl  Upper95%:cl Std.error p
Constant  -5.1498 -6.201 -4.098 0.5142 0.0000
B(1) 0.4818 0.115 0.849 0.1795 0.0119
B(2) 1.8705 0.374 3.367 0.7317 0.0161
B(3) -0.3278 -0.831 0.175 0.2460 0.1931 **

Deviance = 38.55, A =1

Model: Weibull survival

No. parameters = 4, Rank = 4, No. points = 33, Deg. freedom = 29

Parameter Value Lower95%cl  Upper95%cl Std.error )2
Constant  -5.0405 -6.182 -3.899 0.5580 0.0000
B(1) 0.4761 0.108 0.844 0.1800 0.0131
B(2) 1.8413 0.338 3.344 0.7349 0.0181
B(3) -0.3244 -0.829 0.180 0.2465 0.1985 **
a 0.9777 0.889 1.066 0.0434 0.0000

Deviance = 37.06
Deviance - 2nlog[alpha] = 38.55

Model: Extreme value survival
No. parameters = 4, Rank = 4, No. points = 33, Deg. freedom = 29

Parameter Value Lower95%cl  Upper95%cl Std.error )2
Constant  -5.2457 -6.502 -3.989 0.6143 0.0000
B(1) 0.9024 0.520 1.284 0.1868 0.0000
B(2) 3.8711 2.272 5.471 0.7821 0.0000
B(3) -0.7195 -1.241 -0.198 0.2549 0.0085
a 0.0344 0.030 0.039 0.0020 0.0000

Deviance = 35.69
Deviance - 2nlog[alpha] = 258.1

Model: Cox proportional hazards

Deviance = 131.48, Number of time points = 33

Parameter Estimate Score Lower95%cl  Upper95%cl  Std.error )4
B(1) 0.7325 5.138E-06 0.248 1.217 0.2371  0.0043
B(2) 2.7557 1.886E-06 0.731 4.780 0.9913  0.0093
B(3) -0.5792 5.062E-06 -1.188 0.030 0.2981 0.0615 *

It is very difficult to check goodness of fit when using the simplified GLM procedure in a situation where, as
in this case, the number of covariates is greater than zero, because only a limited number of techniques are
available for checking the deviance residuals as the technique is not simply estimating the parameters of a
theoretical equation for survival as a function of time. The most useful technique is probably to examine the
half-normal residuals plot for apparent linearity. Another indication is the final deviance, and the pattern of
convergence displayed during the iteration to find the minimum deviance. Again, the statistical significance
of the parameter estimates should be taken into account. The p values reported in the above table refer to a,
approximate two-tailed ¢ test on the ratio of parameter estimate to the corresponding standard error in order
to test the null hypothesis

Hy : The population parameter is not significantly different from zero.

In other words, a p value less than 0.05 suggests that the parameter estimate could be meaningful, i.e. the
corresponding parameter has been estimated reasonably well and it seems to be significantly different from
zero. However, when p values exceed 0.05 this is indicated by stars as in the above table, drawing attention
to the fact that the 95% confidence region for that parameter includes zero.
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Theory

Many survival models can be fitted to NV, uncensored together with N, right censored survival times with
associated explanatory variables using the GLM technique from SiMF[T programs linfit, gcfit in mode 4, or
simstat.

For instance, the SIMFT simplified GLM interface allows you to read in data for the covariates, x, the variable
y which can be either 1 for right-censoring or 0 for failure, together with the times ¢ in order to fit survival
models. With a density f(¢), survivor function S(z) = 1 — F(¢) and hazard function h(t) = f(¢)/S(¢) a
proportional hazards model is assumed for ¢ > 0 with

h(tr) = At) exp( ) Bjxij)
J
= A(1;) exp(B” xi)
A(t) = /t/l(u) du
0

f(1) = (1) exp(B" x = A(1) exp(B” x))
S(1) = exp(=A(1) exp(B" x)).

The SIMFIT comprehensive GLM procedure allows almost any model to be fitted to survival data, but it
requires that users must understand the numerous choices that have to be made concerning distributions to be
assumed, starting estimates to provide, link functions required, offsets that have to be provided, etc.

For these reasons the SIMF[T simplified GLM interface can fit several survival models using the appropriate
choices for error distribution, link function, offset, data transformation, etc. required, as long as data are
provided in the format demonstrated for the SIMF]T test file cox. tf1.

The exponential survival model

The exponential model has constant hazard and is particularly easy to fit, since

n=p"x
f(t) =exp(n —texp(n))
F(t) =1 —exp(-texp(n))
A(r) =1
A(t) =t
h(r) = exp(1n)
and E (1) = exp(-7),

so this simply involves fitting a GLM model with Poisson error type, a log link, and a calculated offset of
log(?).

The selection of a Poisson error type, the log link and the calculation of offsets are all done automatically
by the simplified interface from the data provided, as will be appreciated on fitting the test file cox.tfl. It
should be emphasized that the values for y in the simplified GLM procedure for survival analysis must be
either y = 0 for failure or y = 1 for right censoring, and the actual time for failure  must be supplied paired
with the y values.

Internally, the SIMFT simplified GLM interface reverses the y values to define the Poisson variables and uses
the ¢ values to calculate offsets automatically. Users who wish to use the advanced GLM interface for survival
analysis must be careful to declare the Poisson variables correctly and provide the appropriate offsets as offset
vectors.
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The Weibull survival model

Weibull survival is similarly easy to fit, but is much more versatile than the exponential model on account of
the extra shape parameter « as in the following equations.

f(1) = at® exp(n — 1" exp(n))
F (1) = 1 —exp(-texp(n))

A(r) = ar®!

A() =t°

h(r) = ar® Lexp(n)
E(t)=T(1+1/a)exp(-n/a).

However, this time, the offset is @ log(¢), where a has to be estimated iteratively and the covariance matrix
subsequently adjusted to allow for the extra parameter « that has been estimated. The iteration to estimate «
and covariance matrix adjustments are done automatically by the S(MF[T simplified GLM interface, and the
deviance is also adjusted by a term —2n log &.

The extreme value survival model
Extreme value survival is defined by

J (1) = aexp(ar) exp(n — exp(at +1))

which is easily fitted, as it is transformed by u = exp(¢) into Weibull form, and so can be fitted as a Weibull
model using ¢ instead of log(¢) as offset. However it is not so useful as a model since the hazard increases
exponentially and the density is skewed to the left.

The Cox proportional hazards model

This model assumes an arbitrary baseline hazard function 2y(¢) so that the hazard function is

h(1) = A0(2) exp (7).

It should first be noted that Cox regression techniques may often yield slightly different parameter estimates,
as these will often depend on the starting estimates, and also since there are alternative procedures for allowing
for ties in the data. In order to allow for Cox’s exact treatment of ties in the data, i.e., more than one failure or
censoring at each time point, this model is fitted by the SIMF[T GLM techniques after first calculating the risk
sets at failure times #;, that is, the sets of subjects that fail or are censored at time #; plus those who survive
beyond time #;. Then the model is fitted using the technique for conditional logistic analysis of stratified data.
The model does not involve calculating an explicit constant as that is subsumed into the arbitrary baseline
function. However, the model can accommodate strata in two ways. With just a few strata, dummy indicator
variables can be defined as in test files cox.tf2 and cox.tf3 but, with large numbers of strata, data should
be prepared as for cox.tf4.

As an example, consider the results shown in the previous table from fitting an exponential, Weibull, then Cox
model to data in the test file cox.tfl. In this case there is little improvement from fitting a Weibull model
after an exponential model, as shown by the deviances and half normal residuals plots. The deviances from
the full models (exponential, Weibull, extreme value) can be compared for goodness of fit, but they can not
be compared directly to the Cox deviance.
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7.5 2-sample Mantel-Haenszel log-rank test

The Mantel-Haenszel test and related procedures are used to compare two sets of survival data and to test for
the suitability of the exponential, Weibull, Gompertz, Cox, and extreme value survival models.

From the main StMFIT menu choose [Statistics], [Time series and survival], then [Kaplan-Meier] for two
samples, and study the default test files survive.tf3 and survive.tf4 with data for remission from
Leukemia from Frierich et al, Blood, 21, 699-716, 1963 in the following formats.

survive.tf3: 6-MP data

Time Code Number
6 3
6
7
9
10
10
11
13
16
17
19
20
22
23
25
32
34
35

4 414 L0021 100212020 20
_ A ) = e e e e e e e

survive.tf4:Placebo data
1 2

o

O~ wODN

8
11
12
15
17
22
23

O O O OO0 O0OO0OO0oOOoOOo
il \C TR \O R SN \C T \C IEE i \ ]

e Column 1: time (not necessarily ordered)
* Column 2: censoring code (0 = failure, 1 = right-censored)
* Column 3: frequency of the observation

Note: The starting sample size will be taken as the sum of all the frequencies in column 3. So subjects
remaining at or after the last failure should be included as right-censored with the appropriate frequency.

The results from the Mantel-Haenszel log-rank test are recorded in the next table.
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For survive.tf3: 9 failures, 12 censored
For survive.tf4: 21 failures, 0 censored
Hy : ha(t) = hp(t) (equal hazards)

H : ha(t) = 0hp (1) (proportional hazards)

OMH test statistic 16.79
P()(2 > OMH) 0.0000 Reject Hy at 1% significance level
Estimate for 6 0.1915

95% confidence range  0.0828, 0.4429

The conclusion that the two groups differ significantly is reinforced by the next figure showing the Kaplan-
Meier survivor functions, including censored data, from this analysis.

Kaplan-Meier Survival Curves (+ for censoring)
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S
>
n Placebo
0.2 i
0.0 .
0 5 10 15 20 25 30 35
Time

Also, various graphs can be plotted to explore the form of the estimated hazard function h(t) and estimated
cumulative hazard function H(¢) for the commonly used models based on the identities

Exponential : H(t) = At
Weibull : log(H (7)) = log A® + Blog1t
Gompertz : log(h(z)) =log B + At
Extreme value : log(H(t)) = a(t - ).
For instance, A (¢) would be linear for the exponential model, for the Weibull distribution a plot of log(— log($(r))
against log 7 should be linear, while the proportional hazards assumption would merely alter the constant term

since, for h(t) = AB(Ar)B8~1,

log(—1og(S(r)) = log# +log A® + Blog1.
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Theory

To understand the graphical and statistical tests used to compare two samples, and to appreciate the results
displayed in the previous results table, consider the relationship between the cumulative hazard function H(¢)
and the hazard function 4(t) defined as follows

h(t) = f(1)/S(1)
H(r) :‘/0 h(u)du

= —log(S(1)).

Testing for the presence of a constant of proportionality in the proportional hazards assumption amounts to
testing the value of 6 with respect to unity. If the confidence limits in the results table enclose 1, this can be
taken as suggesting equality of the two hazard functions, and hence equality of the two distributions, since
equal hazards implies equal distributions.

The QM H statistic given in the results table can be used in a chi-square test with one degree of freedom for
equality of distributions, and it arises by considering the 2 by 2 contingency tables at each distinct time point
t; of the following type.

Died | Survived | Total
GroupA de njA —dj njA
GI‘OllpB ij n;jB —ij n;p
Total dj nj —dj nj

Here the total number at risk n; at time ¢; also includes subjects subsequently censored, while the numbers
dja and d;p actually dying can be used to estimate expectations and variances such as

E(dja) =njadj/n;
dj(nj—dj)njan;p

V(i) = n3(nj = 1)

Now, using the sums

Oa=) dja

Ejp= Z E(dja)
Va= Z V(dja)
as in the Mantel-Haenszel test, the log rank statistic can be calculated as
04— Ep)?
OMH = M‘
Va

Clearly, the graphs, the value of 6 with 95% confidence range not enclosing 1, and the chi-square test with
one degree of freedom all support the hypothesis that the the assumption of a Weibull distribution with
proportional hazards but not equal hazards cannot be rejected with these data.
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7.6 n-sample Cox regression

Cox regression can be used with data sets containing strata with covariates where it is not convenient to
use a nonparametric method or a fully defined statistical model. Rather it makes the somewhat restrictive
assumption of proportional hazards.

From the main SIMF[T menu choose [Statistics], [Time series and survival], then [Cox regression], and study
the default test file cox.tf4 which has three covariates and three strata as shown next.

t
1.0072
0.0209
0.7954
0.0582
0.0611
0.1750
0.2593
0.9463
0.0898
0.0787
0.1378
0.6303
0.2115
0.1085
0.5227
0.0164
0.6804
1.1091
0.0154
0.0816
0.4498
0.0847
1.0198
0.0607
0.0968
0.2083
5.0050
0.0243
1.0054
0.1810
0.0512
0.2579
0.5309
0.2753
0.1252
0.0664
0.6108
0.0187
0.1026
0.1016

1 0 0.4314
Continued on next page
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a1 A O 1 Hd A 00 400 40 120 1A A0 A 1A 000 40 100 44 4014041400 0Ol
OO0 0O -~ 0002+ =24 4 4 4002+ 2000000000+~ =2 2400000 —=-00O0 =<
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1
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0
1
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1
0
0
1
1
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1
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1
0
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X1 X2 X3 Yy t s
1 0 1 0 07174 A
0 0 1 1 02297 A1
1 1 0 1 0.0346 2
0 1 1 1 0.0478 2
0 1 0 0 01261 2
0 1 0 1 0.0827 3
1 0 0O O 0.8903 1
0 0 1 0 0.2746 1
1 0 0 1 0.9722 A1

Note that Cox regression data files for m covariates must be formatted as follows x1,x2, ..., X, ¥, £, s. Here,

for example, with test file cox.tf4 we have the following format.
e column 1, 2, and 3: covariates x1, x, and x3
* column 4: y = 0 (failure) or y = 1 (right censored)
* column 5: time ¢

e column 6: strata s

The results table is shown next.

Deviance = 109.25, Number of time points = 50
B(i) Estimate Score Lower95%cl  Upper95%cl  Std.error 2

1 -0.4893  8.156E-05 -1.423 0.445 0.464 0.2973 ***
2 0.1609  -2.865E-05 -0.724 1.046 0.440 0.7162 ***
3 1.5749 2.992E-04 0.562 2.588 0.504 0.0030

Before proceeding to demonstrate further features of the SIMF[T Cox regression procedure it is necessary
to caution about the fact that analyzing the same data using different software packages may give differing

results. This is inevitable with all nonlinear iterative methods and is because of several factors.

1. The Cox regression procedure does not completely specify a unique statistical model.

2. The solution point found is not unique but will depend on the method used and the starting values used.

3. The results obtained will depend on the technique used to deal with ties.

4. Ttis fairly common to find that some of the parameters are not well defined, i.e. not statistically different

from zero as shown by stars in the last column.

5. The scores are derived from the partial derivatives estimated at the solution point so any values much

less than about 107 can be regarded as effectively undefined due to rounding errors.

Probably the easiest way to check the goodness of fit is to inspect the half-normal residuals plot, while to
compare strata the collected survivor function estimates should be viewed. These two plots for the current

analysis are shown next.
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Theory

It should be pointed out that parameter estimates using the comprehensive Cox procedure may be slightly
different from parameter estimates obtained by the GLM procedure if there are ties in the data, as the Breslow
approximation for ties may sometimes be used by the comprehensive procedure, unlike the Cox exact method
which is employed by the GLM procedures.

Another advantage of the comprehensive procedure is that experienced users can input a vector of offsets, as
the assumed model is actually
A(t,x) = 2o(1) exp(B" x + w)

for parameters 3, covariates x and offset w.

Then the maximum likelihood estimates for 8 are obtained by maximizing the Kalbfleisch and Prentice
approximate marginal likelihood
- exp(B” si + wi)

L=
L iR () eXP(BT X1+ wp) |4

where, n, is the number of distinct failure times, s; is the sum of the covariates of individuals observed to fail
at 7(;), and R(#(;)) is the set of individuals at risk just prior to ;).

In the case of multiple strata, the likelihood function is taken to be the product of such expressions, one for
each stratum. For example, with v strata, the marginal likelihood will be

vV
L= l_[Lk.
k=1

Once parameters have been estimated the survivor function exp( -A (t(;y) and residuals r(#;) are then calculated
using

H(1) = Z 4

tj<t; ZlER(t(j)) exp(ﬂTxl +0Jl)

r(t1) =H(t;) exp(B" x; + wy),

where there are d; failures at ¢;.

Note that the deviance is minus twice the log of marginal likelihood and the significance of nested models
with different parameters contributing can be assessed by chi-square tests, as an alternative to the two-tailed
t test given in the results table. Also, stratum differences (i.e. differences between groups) can be examined
using the log-ranks test.
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8 Curve and surface fitting

Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.

https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

LN
~

8.1 Introduction

Curve and surface fitting aims to fit mathematical models described by equations or systems of equations to
observations in order to estimate parameters that can be used to interpret the experimental data.

An example to illustrate the advantages of curve fitting

As a typical example consider the results from using SIMF[T program hlfit to fit the dose response data in test
file h1fit.tf4 to one then two binding sites, where the aim is to decide if the assumption of two sites can be
justified on statistical grounds and, if so, to estimate the parameters for the model

A A
f=—2 s 2

1+Kaix 1+ Kaxx

but with C = 0. hilfit displays the following plots to illustrate that fitting two sites gives significant improvement
over fitting one site, and hlfit also provides convincing evidence of this by showing how the overall fit results
as the sum of the distinct contributions from the low and high affinity sites.

Data, Best-Fit Curve and Previous Fit Deconvolution: 2 High/Low affinity sites
ol T T T T — ol
o -
S e 8
o .-
uug 15 F uug 15 6 ; _-O o
c c . le)
[o] [o]
x 10 + x 1.0 /@
o o
8
[} [}
(%2} (%2}
Qo Qo
O o5t O o5
0.0 4 0.0
0.0 1.0 20 3.0 4.0 5.0 0.0 1.0 20 3.0 4.0 5.0
Ligand Concentration (mM) Ligand Concentration (mM)

Not only does the evidence support the hypothesis that there are two classes of binding sites of differing
affinity and activity, but this is substantiated by the following results table for estimated parameters, their
standard errors, 95% confidence ranges, and significance levels.

Number Parameter  Value Std.error  Lower95%cl  Upper95%cl p
1 Aq 0.91175 0.2451 0.4079 1.416 0.0010
2 Ar 1.0625 0.3055 0.4344 1.691 0.0018
3 Ka 0.97501  0.6857 -0.4345 2.385 0.1669 *
4 Ka, 8.5829 2.004 4.463 12.70 0.0002

Apparent Viqx (i.e. Ay +Ax+---+A,) =1.9742
Apparent K, (i.e. xo where f(xo) — C = Vipax/2) = 0.31272

Here parameters A; and A, are proportional to the responses from two populations of binding sites with
binding constants Ka; and Ka,, and the apparent overall response and half saturation point are calculated by
numerical techniques, which removes the subjective element involved in data interpretation. A brief survey
of the nomenclature used and procedures provided by SIMF[T follows.
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The Data

In the simplest case an experimentalist would have N pairs of observations x(i), y(i), possibly together with
s(i), the estimated standard deviations of y (i) to use as weights w (i) = 1/s(i)?, as follows

X =x(1),x(2),x(3),...,x(N)

Y =y(1),y(2),x(3),...,y(N)
S=s(1),5(2),5(3),...,s(N)

and there could be three possibilities.

1. Case 1
Values of x(7) are known with high accuracy, as fixed by experiment, and the error distribution of y(i)
is assumed to be one of constant variance. In this case it is usual to set all s(i) = 1.

2. Case 2
Values of x(7) are known with high accuracy, as fixed by experiment, and the error distribution of y(7)
is assumed to vary as a function of the experimental conditions, so values for s(i) are required.

3. Case3
Values of x(i) and y (i) would both be measured, i.e. there could be error or variation in X and Y.

Of course there are endless variations on this simple scheme, for instance, X and/or Y could be multidimen-
sional, and the model might have to be defined as an implicit function, ®(x,y) = 0, or require numerical
integration of a system of nonlinear differential equations.

The weighting

It is important to realize that all curve fitting is actually weighted curve fitting. The only issue is whether the
weighting is assumed to have a defined form, to be estimated from the sample, or to be estimated independently.

e Case 1
This is the simplest and most used technique because it assumes that X is an independent variable and
Y values result from a random error € with constant variance added to an exact function value, i.e.

y(@) = f(x(D)) + €(D).

With this approach no separate attempt is made to estimate the variance of Y as the sample variance of
Y is used. It has the great attraction of simplicity but there are two things to observe:

a) This assumption is almost never true as, in general, error variance is an increasing function |Y|.

b) It diminishes the importance of low |Y| values so that the resulting fit is dominated by large |Y | values.

* Case?2
This is more realistic in that it accepts that the variance of Y is not constant and attempts to remedy
this by providing or calculating a set of weighting factors s(7). However, if the s(7) are inaccurate, the
resulting fit can be even more biased than with Case 1. In particular, using a weighting scheme based
simply on the experimental Y values or the estimated function values can lead to a situation the reverse
of Case 1, where the fit can be dominated by small values of the observations.

* Case3
This requires that the variance-covariance matrix CV(X,Y) be estimated, and sample estimates for
variance-covariance matrices are notoriously unreliable. For this reason this approach is often reserved
for the analysis of very large samples with very simple model equations, together with prior knowledge
of the covariance structure.

The model



342 Curve and surface fitting

The model to be fitted will involve parameters that have to be estimated, e.g. a parameter vector ©® as in
@ = 91792793""79}’”
and models are usually described as linear or nonlinear.

Linear models

Linear models are of the form f(©,x) = 0} f1(x) + 02 f2(x) + 03 f3(x) + - - - + O, fin (x) and examples could be

A simple straight line: f(6,x) = 61 + 6rx
A multilinear model: f(©,x) = 01x) + 0xp + 03x - - - + Oy
A polynomial: f(®,x) =61 + 6rx + O3x 4+ O™ L
These all have partial derivatives of f(®, x) with respect to 6; that are independent of ©.

The advantage of linear models is that they can be fitted very easily and usually lead to unique solutions.
Another advantage is that the assumption of normally distributed errors zero means and constant variance
allows the application of convenient statistical tests for goodness of fit and parameter significance based on
the y2, ¢, and F distributions. The disadvantage is that the real world is nonlinear and linear models are not
based on scientific laws but are used for convenience when a meaningful mathematical model is not available.

Nonlinear models

Nonlinear models do not have have partial derivatives of f(®, x) with respect to ; that are independent of ®.
Examples could be the following.

01x 63x Om_1x
+ +oet
Or+x O4+x O +x

Michaelis-Menten functions: f(©,x) =

Exponential functions: f(0,x) = 6] exp(—62x) + 03 exp(—04x) + - - - + Op—1 exp(—0,,,x)

01x + 02x2 +--0+ Hm/zxm/z

Rational functions: f(0,x) =

L4 0041 X + O 2 x? + - + O™/

The advantage of using nonlinear models is that they may be a good approximation to reality based on scientific
laws. The disadvantage is that they have to be fitted by iterative techniques which depend critically on sensible
scaling, good starting estimates, and meaningful limits on parameter values. Because of this, local rather than
global solutions may be located.

However it is well to remember a distinct limitation of nonlinear regression: all the numerical techniques used
to fit the models, and all the statistical methods used to interpret the results, are based on the assumptions
that the model can be regarded as approximately linear at a solution point, and that the weighting factors are
known exactly.

The objective function

This will usually be WSSQ, the weighted sum of squared residuals defined as

N
WSSQ = > wd)[y() - £(©,x()]%,

i=1

and the hope is that minimizing this expression with respect to parameters ® will be equivalent to finding the
maximum likelihood estimates.
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Options

The SIMF[T package provides many options to prepare data, define models, fit data, and test for model
discrimination, goodness of fit, and parameter redundancy as briefly summarized below.

* Programs for linear models
Simple linear models can be fitted by program linfit which also provides techniques for orthogonal
regression, generalized linear models (GLM), and partial least squares (PLS). Polynomials can be fitted
by program polnom, which also allows inverse prediction, i.e. generating calibration curves. Several
varieties of cubic splines can be fitted by program spline, and used to compare curves by compare,
while program calcurve is dedicated to using splines to construct calibration curves followed by inverse
prediction of x given y.

* Programs for simple nonlinear regression
The following programs attempt to guess starting estimates then fit models and output tables of statistical
results and graphs.
— mmfit fits Michaelis-Menten models.
— hlfit fits high and low affinity binding site models.
— sffit fits cooperative ligand binding isotherms.
— rffit fits positive rational functions.
— exfit fits several types of exponentials functions.
— gcfit fits classical nonlinear growth models.
* Advanced nonlinear regression

Program qnfit provides the following facilities but, as it is extremely comprehensive, it requires con-
siderable expertise and should only be used by experienced analysis.

Models can be functions of one or several independent variables.

Multiple linked or independent models can be fitted simultaneously.

Parameters can be constrained interactively within user-defined limits.

Three dimensional plots and contours of the objective function can be plotted at solution points.

The best fit models can be used for evaluation or inverse prediction.

Models can be used from a built-in library or supplied as text files.

Single nonlinear differential equations can be fitted.

Models defined as convolutions of two defined functions can be fitted.

* Differential equations
Program deqsol allows the simulation and fitting of systems of nonlinear differential equations but, like
gnfit, it should only be used by experts.

» Simulation
An essential technique required for advanced curve fitting is the ability to simulate exact data using
program makdat then add random error to simulate reality using program adderr. SmMF[T also
provides numerous additional facilities to confirm the robustness of results from regression with respect
to sensitivity of the results to perturbations of parameter values, change in the range of variables, nature
of the error, etc.
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How to interpret tables of parameter estimates

The meaning of the results generated by program exfit after fitting two exponentials to exfit.tf4 will now be
explained, as a similar type of analysis is generated by all the user-friendly curve fitting programs. Consider,
first of all the next table listing parameter estimates which result from fitting the two exponential function

f(t) = Ay exp(—k1t) + Ay exp(—kat).

Parameter  Value  Std.error Lower95%cl Upper95%cl p
Aq 0.8526  0.0677 0.713 0.992 0.0000
Ay 1.1764  0.0747 1.023 1.330 0.0000
k1 6.7933  0.8541 5.038 8.549 0.0000
ko 1.1121  0.0511 1.007 1.217 0.0000
AUC 1.1834  0.0147 1.153 1.214 0.0000

AUC is the area under the curve fromz =0to ¢t = oo
Initial time point (A) = 0.03598

Final time point (B) = 1.611

Areafromt=Atot =B =0.9383

Average over range (A, B) = 0.5958

The first column gives the estimated values for the parameters, i.e., the amplitudes A; and decay constants
k;, although it must be appreciated that the pairwise order of these is arbitrary. Actually program exfit will
always try to rearrange the output so that the amplitudes are in increasing order, and a similar rearrangement
will also occur with programs mmfit and hlifit. For situations where A; > 0 and k; > O, the area from zero to
infinity, i.e. the AUC, can be estimated, as can the area under the data range and the average function value
calculated from it. The parameter AUC is not estimated directly from the data, but is a secondary parameter
estimated algebraically from the primary parameters. The standard errors of the primary parameters are
obtained from the inverse of the estimated Hessian matrix at the solution point, but the standard error of
the AUC is estimated from the partial derivatives of AUC with respect to the primary parameters, along
with the estimated variance-covariance matrix. The 95% confidence limits are calculated from the parameter
estimates and the ¢ distribution, while the p values are the two-tail probabilities for the estimates, i.e., the
probabilities that parameters as extreme or more extreme than the estimated ones could have resulted if the true
parameter values were zero. The windows defined by the confidence limits are useful for a quick rule of thumb
comparison with windows from fitting the same model to another data set; if the windows are disjoint then the
corresponding parameters differ significantly, although there are more meaningful tests. Clearly, parameters
with p < 0.05 are well defined, while parameters with p > 0.05 must be regarded as ill-determined.

Expert users may sometimes need the estimated correlation matrix

CVi,

Cij= ———.,
\CViCV;;
where —1 < C;; < 1, Cy; = 1, which is shown in the next table, and where the index i refers to the natural

order of parameters, thatisi = 1,2, 3,4 corresponds to Ay, k1, Az, k».

Parameter correlation matrix

1
-0.8756 1
-0.5961 0.8995 1

-0.8478 0.9485 0.8199 1
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How to interpret tables for goodness of fit

The next table, displaying the results from analyzing the residuals after fitting two exponentials to exfit.tf4,
is typical of many SIMF[T programs. Residuals tables should always be consulted when assessing goodness
of fit.

Analysis of residuals: WSSQ 24.397
P(x* > WSSQ) 0.5533
R?, cc(theory,data)? 0.9934
Largest absolute relative residual 11.99%
Smallest absolute relative residual 0.52%
Average absolute relative residual 3.87%

Absolute relative residuals in range 0.1-0.2  3.33%
Absolute relative residuals in range 0.2-0.4  0.00%
Absolute relative residuals in range 0.4-0.8 0.00%

Absolute relative residuals > 0.8 0.00%
Number of negative residuals (1) 15
Number of positive residuals (n;) 15
Number of runs observed (r) 16
P(runs < r: given nj and ny) 0.5759
5% lower tail point 11

1% lower tail point 9
P(runs < r : given n; plus ny) 0.6445
P(signs < least number observed) 1.000
Durbin-Watson test statistic 1.8061
Shapiro-Wilks W statistic 0.9387
Significance level of W 0.0841
Akaike AIC (Schwarz SC) statistics 1.7979 (7.4027)

Verdict on goodness of fit: incredible

Several points should be remembered when assessing such residuals tables, where there are N observations
y(i), with weighting factors s(), theoretical values f(x(i)), residuals r(i) = y(i) — f (x(i)), weighted residuals
r(i)/s(i), and where m parameters have been estimated. Theoretical details for the statistical tests will be
found in the SIMF[T reference manual w_manual.pdf, or the appropriate tutorial documents.

« WSSQ
The x? test on N — m degrees of freedom using WSSQ, the objective function at the solution point

where
WSSO - Z(y<z>s(lf<xl ) ’

is only meaningful if the weights defined by the s(i) supplied for fitting are good estimates of the
standard deviations of the observations at that level of the independent variable; say means of at least
five replicates. Inappropriate weighting factors will result in a biased chi-square test. Also, if all the
s(i) are set equal to 1, unweighted regression will be performed and an alternative analysis test based
on the coeflicient of variation will be performed.

. Ie2
The R? value is the square of the correlation coefficient between data and best fit points. It only
represents a meaningful estimate of that proportion of the fit explained by the regression for simple

unweighted linear models, and should be interpreted with restraint when nonlinear models have been
fitted.

¢ Absolute relative residuals
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The results based on the absolute relative residuals a (i) defined using machine precision € as
o 20r()]
Y max(e, [y()| + 1 (x(0)])

do not have statistical relevance, but they do have obvious empirical justification, and they must be
interpreted with commonsense, especially where the data and/or theoretical values are very small.

Run and sign tests

The probability of the number of runs observed given n; negative and n; positive residuals is a very
useful test for randomly distributed runs, but the probability of runs given N = n; + n,, and also the
overall sign test are weak, except for very large data sets.

Durbin-Watson test
The Durbin-Watson test statistic

N-1
DG+ 1) =)
i=1

N

D r@?

i=1

DW =

is useful for detecting serially correlated residuals, which could indicate correlated data or an inappro-
priate model. The expected value is 2.0, and values less than 1.5 suggest positive correlation, while
values greater than 2.5 suggest negative serial correlation.

Shapiro-Wilks test

Where N, the number of data points, significantly exceeds m, the number of parameters estimated,
the weighted residuals are approximately normally distributed, and so the Shapiro-Wilks test should be
taken seriously.

Akaike and Schwarz criteria
The Akaike AIC statistic
AIC = Nlog(WSSQ/N) +2m

and Schwarz Bayesian criterion SC
SC = Nlog(WSSQ/N) + mlog N

are only really meaningful if minimizing WSSQ is equivalent to Maximum Likelihood Estimation.
Note that only differences between AIC with the same data, i.e. fixed N, are relevant, as in the evidence
ratio ER, defined as ER = exp[(AIC(1) — AIC(2))/2].

The qualitative conclusion

The final verdict is calculated from an empirical look-up table, where the position in the table is
a weighted mean of scores allocated for each of the tests listed above. It is qualitative and rather
conservative, and has no precise statistical relevance, but a good result will usually indicate a well-
fitting model.

Residuals plots

As an additional measure, plots of residuals against theory, and half-normal residuals plots can be
displayed after such residuals analysis, and they should always be inspected before concluding that any
model fits satisfactorily.

Leverages
With linear models, SIMF[T also calculates studentized residuals and leverages, while with generalized
linear models, deviance residuals can be tabulated.
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How to interpret tables for model discrimination results

After a sequence of models have been fitted, tables like the next one are generated.

WSSQ-previous 224.9

WSSQ-current 24.4

Number of parameters-previous 2

Number of parameters-current 4

Number of x-values 30

Akaike AIC-previous 64.44

Akaike AIC-current 1.798, ER = 3.998E + 13
Schwarz SC-previous 67.24

Schwarz SC-current 7.403

Mallows C,, 213.7, Cp/m; = 106.9
Numerator degrees of freedom 2

Denominator degrees of freedom 26

F test statistic (FS) 106.9

P(F > FS) 0.0000

P(F < FS) 1.0000

5% upper tail point 3.369

1% upper tail point 5.526

Conclusion based on the F test

Reject the previous model at 1% significance level
There is strong support for the extra parameters
Tentatively accept the current best fit model

First of all, note that the above model discrimination analysis is only strictly applicable for nested linear
models with known error structure, and should be interpreted with restraint otherwise. Now, if WSSQ; with
m1 parameters is the previous (possibly deficient) model, while WSSQ, with m, parameters is the current
(possibly superior) model, so that WSSQ1 > WSSQ,, and m < my, then

P (WSSQ1 — WSSQ3)/(my — my)
WSSQ2/(N — m3)

should be F distributed with my — m and N — m; degrees of freedom, and the F test for excess variance can
be used. Alternatively, if WSSQ2/(N — my) is equivalent to the true variance, i.e., model 2 is equivalent to
the true model, the Mallows C), statistic

WSSO,
P WSS80,/(N — my)

can be considered. This has expectation m if the previous model is sufficient, so values greater than m, that
is Cp/m > 1, indicate that the current model should be preferred over the previous one. However, graphical
deconvolution should always be done wherever possible, as with sums of exponentials, Michaelis-Mentens,
High-Low affinity sites, sums of Gaussians or trigonometric functions, etc., before concluding that a higher
order model is justified on statistical grounds.

- (N— Zl’m)
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8.2 Goodness of fit

Goodness of fit analysis is always required before a model can be considered to be satisfactory, otherwise
using parameter estimates to characterize experimental observations can lead to false interpretation.

As an example consider the use of program gcfit to fit nonlinear growth models to data in the test file
gefit.tf2 as shown in the next figure. A typical situation would be when an experimentalist would want to
fit growth curves to data with the main aim being to estimate parameters like the maximum growth rate, the
time at which this was achieved, and the final size attained in order to characterize a group under observation,
say bacterial colonies of several species incubated with alternative antibiotics.

Fitting Alternative Growth Models

1.254

Data and Best Fit Curves

Time

The models fitted were Model 1 (exponential), Model 2 (monomolecular) and Model 3 (logistic) as follows.

Model 1: fi(t) = Ay exp(k1t)
Model 2: f>(t) = Ax(1 — exp(—kat))
A3z

Model 3: f5(1) = 1+ Bexp(—kst)

Itis perfectly clear in this case that Model 1 is completely unsatisfactory, Model 2 would give a rough estimate
for the final asymptotic size, while Model 3 would accurately fit all features of the data set. The aim of this
document is to show how SIMF[T could be used to make a decision in situations where the outcome is not so
clear cut.

SIMF[T program gcfit also displays the following summary.
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Model WSSQ/NDOF P(C>W) P(Runs<r) N>10% N >40% Av.r% Verdict

1 1.52E+02 0.000 0.000 29 17 40.03  Verybad
2 1.81E+01 0.000 0.075 20 0 12.05 Very poor
3 1.32E+00 0.113 0.500 0 0 3.83 Incredible

The way to interpret this goodness of fit summary table will now explained, but it must always be remembered
that the only situations where statistical tests are justified, and when minimizing WSSQ is equivalent to
maxmimum likelihood, are when the following four conditions are met.

1.

2.
3.

4.

The values x (i) must be known exactly, and not subject to errors of estimation or natural variation. In
other words, X can be regarded as an independent variable and not a covariate.

The error of measurement € (i) must be normally distributed with mean zero.
The variance of €(7) has one of two forms.

(a) The homoscedastic case where weighting factors s(Z) are all equal to one and WSSQ/NDOF
estimates the constant variance.

(b) The heteroscedastic case where the variance of (i) is a function of X and/or Y and exact values for
the standard deviation of the €(i) are supplied as s(¢). In other words, values of s(7) are supplied
to reduce this case to the homoscedastic case with error variance = 1.

The model is correct and linear.

As experimental errors are more like a Cauchy distribution than a normal distribution, variance of the
experimental error is usually an increasing function of the absolute value of the observations, values of s(i)
supplied are at best only determined with limited precision from independent studies or at worst are determined

from

replicates, and the model is nonlinear and often only an approximation anyway, such results tables must

be interpreted with restraint.

WSSQ/NDOF
This is the objective function estimated by SIMF[T and WSSQ/NDOF should be approximately one
at the solution point, as the expectation of a chi-square variable is the number of degrees of freedom.

P(C>=W)

This is the very approximate result of a performing a y? test on the weighted sum of squared residuals.
An alternative test is usually done by SIMF[T based on the estimated coefficient of variation here and
for the previous result when all s(i) = 1.

P(Runs <r)
This is the probability of runs less than the number obtained, given the number of negative and positive
residuals.

N > 10%
This is the number of data points where the ratio of absolute residual to absolute value of observation
exceeds 0.1.

N > 40%
This is the number of data points where the ratio of absolute residual to absolute value of observation
exceeds 0.4.

Av.r%
This is the average of absolute residual divided by absolute observation as a percentage.

Verdict
This is a somewhat arbitrary decision based on a formula involving all of these, and also some other
factors.
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Analysis of residuals

Analysis of residuals and/or weighted residuals is a very important way to judge goodness of fit, especially
when there is only one independent variable, and SIMF]T provides numerous ways to do this as follows.

1.

Tables of residuals
These highlight residuals which indicate poor fit by colour changes and stars.

Tables summarizing goodness of fit based on residuals

Test for runs and serial correlations
These rely on the residuals being in a systematic order, such as in order of the independent variable.

Test for a normal distribution

Residuals cannot be normally distributed due to correlations induced by parameter estimation, nev-
ertheless the Shapiro-Wilks test is quiet robust when the number of observations greatly exceeds the
number of parameters estimated.

. Methods for plotting residuals

(a) Residuals plotted against the independent variable
(b) Residuals plotted against the observations
(c) Residuals plotted against the best-fit model
(d) Normal and half-normal plots
Probably option (a) is the easiest to interpret and residuals have to deviate wildly from normality

before option (d) picks this up. Unfortunately this is the only option available when there are multiple
independent variables.

Residuals and/or weighted residuals should be scattered randomly about zero, and the next plot shows very
clearly that with Model 1 there is a systematic nonlinear drift which is much less with model 2, while model
3 shows a much more acceptable pattern

Residuals from GCFIT with Models 1, 2, and 3

- XModel3
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N 0.00 | o O 3 A i T
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0.0 2.0 4.0 6.0 8.0 10.0
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A plot of the n ordered residuals or weighted residuals as Y against normal order statistic medians as X should
be very close to linearity, since residuals should be approximately normally distributed when the number of
points is much greater than the number of parameters estimated. The medians are approximated using

xi = ® ' (z) where z; = (i —3/8)/(n+ 1/4) fori=1,2,--- ,n.

Here ®~! is the inverse standard normal distribution function. It is also possible to create a half-normal plot
where Y are the ordered absolute residuals, and X values are calculated by a similar approximation but using
zi=(m+0.5+10)/(2n+9/8) to allow for the wrapping round of the negative residuals. If correctly weighted
residuals are plotted, as in the next figure for the fitted logistic model, the Y values should be in the range -3
to 3 for the normal plot, but O to 3 for the half normal plot.

Normal Plot: r = 0.9906
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Half-Normal Plot: r = 0.9911
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Best-fit lines for the regression of Y on X are also plotted on these graphs along with the Pearson product-
moment correlation coefficient 7. The significance level p for the » will also be displayed when p < 0.05, but
this only happens when the residuals show clear departure from linearity in these plots.
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Testing for differences between two parameter estimates

This can sometimes be a useful simple procedure when you wish to compare two parameters resulting from
a regression, e.g., the final size from fitting a growth curve model, or perhaps two parameters that have been
derived from regression parameters e.g., AUC from fitting an exponential model, or LD50 from bioassay.

You input the two parameter estimates 6 and ¢, the standard error estimates s¢ and sy, the number of
experimental observations Ng and N, and the number of parameters estimated from the regression My and
M. At test for equality is then performed with the correction for unequal variances by the the Satterthwaite
procedure, using a . statistic with v degrees of freedom calculated with the Welch correction for unequal
variances given by

(szg +s%]>)2

V= 7 ~ 7 ~ .
sg/(No —Mg) +54,/(Nyp — My)

Here 6 and ¢ refer to the same parameter using the same mathematical model but estimated from two distinct
data sets of sizes Ng and N .

Such ¢ tests depend on the asymptotic normality of maximum likelihood parameters, and will only be
meaningful if the data set is fairly large and the best fit model adequately represents the data.

Note that ¢ tests on parameter estimates can be especially unreliable because they ignore non-zero covariances
in the estimated parameter variance-covariance matrix.

Testing for differences between several parameter estimates

To take some account of the effect of significant off-diagonal terms in the estimated parameter variance-
covariance matrix you will need to calculate a Mahalanobis distance between parameter estimates e.g., to test
if two or more curve fits using the same model but with different data sets support the presence of significant
treatment effects. For instance, after fitting the logistic equation to growth data by nonlinear regression, you
may wish to see if the growth rates, final asymptotic size, half-time, etc. have been affected by the treatment.

Note that, after every curve fit, you can select an option to add the current parameters and covariance matrix
to your parameter covariance matrix project archive, and also you have the opportunity to select previous fits
to compare with the current fit. For instance, you may wish to compare two fits with m parameters, A in the
first set with estimated covariance matrix C4 and B in the second set with estimated covariance matrix Cg.
The parameter comparison procedure will then perform a ¢ test for each pair of parameters, and also calculate
the quadratic form

0=(A-B)(Ca+Cp)""(A-B)

which has an approximate chi-square distribution with m degrees of freedom. You should realize that the rule
of thumb test using non-overlapping confidence regions is more conservative than the above 7 test: parameters
can still be significantly different despite a small overlap of confidence windows.

This technique must be used with care when the models fitted are themselves sums of k identical sub-functions
such as

f(@x) = f1(®,x) +f2(®’x) +-- +fk(®7x)'

Examples of where this can occur could be sums of exponentials, Michaelis-Menten terms, High-Low affinity
site binding isotherms, Gaussians, trigonometric terms, and so on. This is because the parameters are only
unique up to a permutation.
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For instance, the terms A; and k; are linked in the exponential function
m
Fey=)" Arexp(ki)
i=1

but the order implied by the index i is arbitrary. So, when testing if A; from fitting a data set is the same as
A from fitting another data set it is imperative to compare the same terms.

The user friendly programs exfit, mmfit, and hlfit attempt to assist this testing procedure by rearranging the
results into increasing order of amplitudes A; but, to be sure, it is best to use qnfit, where starting estimates and
parameter constraints can be used from a parameter limits file. That way there is a better chance that parameters
and covariance matrices saved to project archives for retrospective testing for equality of parameters will be
consistent, i.e. the parameters will be compared in the correct order.

The next figure illustrates a common problem, where the same model has been fitted to alternative data sets
and it is wished to decide if one or more parameters differ significantly.

Comparing Parameter Estimates for Logistic Models
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In this case, the logistic model defined as
01

=——"—
F® 1+ 6, exp(—0st)
was simulated using makdat and adderr then fitted by gcfit, and the main interest is to decide if the estimated
final asymptote i.e. §; differs significantly for the test files gcfit.tf2 and gcfit.tf3 which actually have
identical parameters 6; = 1, while gcfit.tf4 has a slightly larger asymptotic value 6; = 1.25, the other
parameters being identical 6, = 10 and 63 = 1.



354 Curve and surface fitting

The next table illustrates how this technique works.

Table of Mahalanobis y2, and corrected pairwise  tests for
differences between parameters(A, B) and covariances(Ca, Cb).

Comparison 1: Parameters from gcfit.tf3 (A) and gcfit.tf2 (B)
Q=(A-B)T(Ca+Cb)"'(A-B)=2.193E + 00, NDOF =3
P(x*>0Q)=0.5333
Index A B A-B t DOF p

1 0.996 0.999 -0.0033 -2.567E-01 53 0.7984

2 10.15 9.890 0.2600 7.224E-01 40 0.4743

3 0.985 0.988 -0.0033 -1.164E-02 37  0.9908

Comparison 2: Parameters from gcfit.tf4 (A) and gcffit.tf2 (B)
Q0=(A-B)T(Ca+Cbh)""(A-B)=7492E +02, NDOF =3
P(x2 = Q) = 0.0000: Reject Hy at 1% significance level

Index A B A-B t DOF p
1 1.224 0.999 0.2251 19.17 57 0.0000
2 10.04 9.890 0.1500 0.382 50 0.7038

3 0.969 0.988 -0.0191 -0.063 46  0.9501

Comparison 3: Parameters from gcfit.tf4 (A) and gcfit.tf3 (B)
Q=(A-B)T(Ca+Cb)"'(A-B)=1.064E + 03, NDOF =3
P(x* > Q) = 0.0000: Reject Hy at 1% significance level
Index A B A-B t DOF p
1 1.224 0.996 0.2284 16.21 59  0.0000 *****
2 10.04 10.15 -0.1100 -0.443 52  0.6596
3 0.969 0.985 -0.0158 -0.093 52  0.9265

The data were fitted using gcfit using the option to store parameter estimates and covariance matrices. Then
the global tests for different parameter sets, and ¢ tests for individual parameter differences were performed,
leading to the results indicated.

Clearly the parameter estimates for test files gcfit.tf2 and gcfit.tf3 indicate no significant differences,
while gcfit.tf4 differed significantly from both of these, due to a larger value for the asymptote 6; for
gcfit.tf4.

Graphical deconvolution

There are occasions when a model to be fitted consists of a sum of sub-functions and it is wished to estimate
the contribution of the sub-functions to the overall regression. In some instances it may be possible to plot
the overall function fitted to the data along with plots for the sub-functions.

This is particularly valuable with models such as the sum of Gaussians, which for three components is

2 2 2
Aj 1 (x—w Ar 1 (x—pu Az 1 (x—pus3
flx) = exp——= ( ) + exp ——= ( + exp—= .
\/zo—l 2 oz \/50-2 2 [op) \/50—3 2 g3

This model is notoriously difficult to fit unless the amplitudes A; and variances ‘7[2 are of similar size, but

the means y; are distinct. However it is one of several models where the ability to do such plotting, which is
loosely referred to as graphical deconvolution in SIMF]T, is provided.
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Using SiMF[T program gnfit to analyze the data in test file gauss3.tfl leads to the following table of
parameter estimates for parameters defined in terms of © as

fly = b 1(x—94)2+ 6 1(x—95)2+ % o 1(x—96)2
X) = exp—= |—— exp—= - .

\/597 2 67 \/598 2 Og \/599 2 69
The columns indicate: the parameter number, the lowest value allowed for the parameter, the highest value
allowed for the parameter, the value of the parameter estimate, the standard error of the parameter estimate,
the lower 95% confidence limit for the estimate, the upper 95% confidence limit for the estimate, and the
significance level for the estimate. The small p values and absence of stars after the last column in the next
table of results indicates that all 9 parameters were well determined.

Number Low-Limit High-Limit Value Std. Error  Lower95%cl  Upper95%cl p

1 0.000 2.000 0.90754 0.021624 0.8648 0.9503 0.0000
2 0.000 2.000 1.16433  0.042173 1.0810 1.2477 0.0000
3 0.000 2.000 0.92519  0.030130 0.8656 0.9848 0.0000
4 -2.000 2.000 -0.07298 0.015572 -0.1038 -0.0422 0.0000
5 2.000 6.000 3.74510  0.050816 3.6446 3.8456 0.0000
6 8.000 12.00 10.2774  0.096413 10.087 10.468 0.0000
7 0.100 2.000 0.92641  0.014331 0.8981 0.9547 0.0000
8 1.000 3.000 2.34330 0.070567 2.2038 2.4828 0.0000
9 2.000 4.000 2.76906 0.062637 2.6452 2.8929 0.0000

This conclusion is reinforced by the next graphical deconvolution plot showing the data as dots, the best-fit
curve as a dotted line, and the components contributing to the best-fit curve as red, green, and blue curves.

Graphical Deconvolution of Three Gaussians

0.50 T T T
0.40 .
* Data
-——-Best Fit

8 === Component 1
(—:’U 030 F m— Component 2 _
> m=—= Component 3
o
()
>
@
b 0.20 |
o]
O

0.10

0.00

-5.0 0.0 5.0 10.0 15.0



356 Curve and surface fitting

8.3 Linear regression
- Tutorials and worked examples for simulation,
? curve fitting, statistical analysis, and plotting.
A

https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

8.3.1 Fitting a straight line: simple

Simple least squares linear regression is used when there are two variables, X which is known accurately
and can be regarded as an independent variable, and ¥ which is a linear function of X except that there is
measurement error or random variation which is normally distributed with zero mean and constant variance.
From the StMF[T main menu choose [A/Z], open program linfit, choose simple linear regression and inspect
the default test file g02caf. tf1l which has the following data.

x y
0.0 100
0.0 155
1.0 200
25 245
40 283
50 31.2
75 450
10.0 99.0

Analysis yields the following results table and plot for the least squares best-fit straight line.

Parameter Value  Std. Error Lower95%cl  Upper95%cl p
constant (c) 7.5982 6.6858 -8.7613 23.958 0.2991 **
slope (m) 7.0905 1.3224 3.8548 10.326 0.0017

(r* = 0.8273,r = 0.9096, p = 0.0017)

Least Squares Linear Regression for GO2CAF.TF1

100 O 1

80 | B

60

40




Linear regression 357

The way to interpret this table is as follows.

Column 1 This indicates that the equation fitted is y = mx + c.

Column 2 Values for the estimated parameters (72 and ¢).

Column 3 The standard errors for the parameter estimates (se,, and se_).
Column 4 The lower 95% confidence limit for the true parameters.

Column 5 The upper 95% confidence limit for the true parameters.

Column 6 The significance level for the ¢ variables t,,, = 1i1/se,, and t. = ¢/se..

Column 7 The stars indicate that the constant is not significantly different from zero.

Last line This records the Pearson product-moment correlation coefficient r, and the significance level p,
indicating that the probability of these data resulting from a bivariate distribution with zero correlation
parameter p is less than 1%.

Theory
The assumed model is that y; = mx; + ¢ + €; for n > 2 observations, where ¢; is normally distributed with

zero mean and variance o2, and the best fit parameters are those at the minimum value of SSQ defined as the
sum of squared residuals, that is

$SO = zn: €
i=1

n
= > (i = 1hxi = )%
=1

The sample means ¥, y, standard deviations sy, sy, Pearson product-moment correlation coeflicient r, and
estimates 71, ¢ are as follows.

=1
1l
|

=

<
1l
|

p

1 -
sx:\n_lz(xi_x)z

1 < )
Sy =\nj;(yi—y)2

Z(xi -X)(yi—¥)
o1

r =
D=2 (i - )
i=1 i=1
zn]u,- -5 (i - )
7= i=1
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In order to perform an analysis of variance and estimate parameter standard errors further quantities are
required. The total sum of squares SST with degrees of freedom n — 1, the sum of squares of deviations about
the regression SSD with degrees of freedom n — 2, the sum of squares attributable to the regression SSR with
degrees of freedom 1, and the mean square of deviations about the regression M SD are defined as follows.

n
SST =)\ (vi =9’
i=1

SSD = SSQ
SSR = SST — SSD
MSD =SSO/ (n-2)

M SD is used as an estimate for the constant variance of y; in order to estimate the standard errors of the slope
and constant. Then the standard errors of the slope se,, and constant se. are

o, = | MSD
(xi = %)?

\;xl X
MSDZn:xiz
sec = | ——— =
(x; - %)

\n;x X

Another quantity that is sometimes required is the multiple correlation coefficient

n

>@i-9)?

Rz — i=1

n

D i-9)?

i=1

where J; is the best-fit value evaluated at x;, and R is the correlation coefficient for y; and y;. R? is said to
measure the proportion of the total variation about  explained by the regression.

In the special case of fitting a straight line by least squares then we also have

n 2
(Z(x,- - %) (yi - y))

_ i=1
D=2 (i - 5)°
i=1 i=1

and so the multiple correlation coefficient equals the square of the Pearson product-moment correlation
coefficient r between X and Y.

R2

It should be emphasized that the equation
R2 = 2

is only true for the special situation where the best-fit equation is assumed to be the least squares line, that is

y(x) = mx + €.
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8.3.2 Fitting a straight line: comprehensive

Comprehensive least squares linear regression is used when there are two variables, X which is known
accurately and can be regarded as an independent variable, and Y which is a linear function of X, except that
there is measurement error or random variation which is normally distributed with zero mean and constant
variance. This option provides procedures to check for goodness of fit which are not available with the simple
linear regression option.

From the St(MF{T main menu choose [A/Z], open program linfit, choose advanced linear regression and inspect
the default test file 1ine.tf2 which has the following data.

x y
2810 11.88
28.60 11.08
28.90 12.19
29.70 11.13
30.80 12.51
33.40 10.36
35.30 10.98
39.10 9.570
4460 8.860
46.40 8.240
46.80 10.94
4850 9.580
57.50 9.140
58.10 8.470
58.80 8.400
59.30 10.09
61.40 9.270
70.00 8.110
70.00 6.830
70.70  7.820
71.30 8.730
7210 7.680
74.40  6.360
74.50 8.880
76.70  8.500

The two columns of data have the following meanings.
1. Column one is the independent x (with no error), the temperature in degrees Fahrenheit.
2. Column two is the dependent variable y (with error), in pounds of steam per month.

This options then fits a straight line in the form y = mx + ¢ leading to the following results.

Table 1: Parameter estimates

Parameter Value Std. Error  Lower95%cl  Upper95%cl p
constant (c) 13.623 0.58146 12.420 14.826 0.0000
slope (m) -0.079829 0.010524 -0.1016 -0.058059  0.0000

r2 =0.7144, r = —0.8452, p = 0.0000
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Table 2: Residuals

X y Theory Residuals

28.1 1.188 1.138 0.5002
28.6 1.108 1.134 -0.2599
289 1219 1.132 0.8741 *
29.7 1113 1.125 -0.1221
30.8 1.251 1.116 1.3460 b
33.4 1.036 1.096 -0.5967  *
35.3 1.098 1.081 0.1750
39.1 9570 1.050 -0.9317  ~
446 8.860 1.006 -1.2030 **
46.4 8.240 9.919 -1.6790 **
46.8 1.094 9.887 1.0530 b
48.5 9580 9.751 -0.1713
575 9.140 9.033 0.1072 *
58.1 8.470 8.985 -0.5149  ~
58.8 8.400 8.929 -0.5291 *
59.3 1.009 8.889 1.2010 b
61.4 9270 8.722 0.5485 *
70.0 8.110 8.035 -0.0750
70.0 6.830 8.035 -1.2050 **
70.7 7.820 7.979 -0.1591
71.3 8.730 7.931 0.7988 *
721 7.680 7.867 -0.1873
744 6.360 7.684 -1.3240 **
745 8880 7.676 1.2040 *
76.7 8.500 7.500 0.9999 >

Table 3: Analysis of residuals

Sum of squared residuals: SSQ

Estimated average % coefficient of variation

R2, correlation coefficient(theory,data)2

Largest Absolute relative residual

Smallest Absolute relative residual

Average Absolute relative residual

Percentage of absolute relative residuals in range 0.1-0.2
Percentage of absolute relative residuals in range 0.2-0.4
Percentage of absolute relative residuals in range 0.4-0.8
Percentage of absolute relative residuals > 0.8

Number of residuals < 0 (m)

Number of residuals > 0 (n)

Number of runs observed (r)

P(runs < r: given m and n)

5% lower tail point

1% lower tail point

P(runs < r: given m plus n)

P(signs < least number observed )

Durbin-Watson test statistic

Shapiro-Wilks W statistic

Significance level of W

Akaike AIC (Schwarz SC) statistics

Verdict on goodness of fit: fantastic

18.223
9.45%
0.7144
18.85%
0.93%
7.80%
36.00%
0%

0%

0%

13

12

17
0.9502
9

7
0.9680
1.0000
1.9930
0.9596
0.4064
-3.904 (-1.467)
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Table 1
This illustrates that there was a strong linear correlation between x and y with well determined parameters, as
all p values were less than 0.01.

Table 2

This highlights large absolute relative residuals by the following scheme

* % % % k% > 160%, * * x * x > 80%, * * xx > 40%, * * * > 20%, ** > 10%, * > 5%

indicating that the fit is fairly reasonable, as there are only a few large values and no extremely large absolute
relative residuals. Absolute relative residuals are the absolute values of the ratios of residuals to the average
of experimental observations and best-fit values, that is

2|y; — mix; — €|

max (e, |yi| + [rix; +¢|)

where € is machine precision. These are very useful because they summarize what, to most experimentalists,
would be an indicator of how well a model fits the data, even though they do not have any standard statistical
interpretation.

Table 3
This presents all the statistics that SIMF[T uses to characterize goodness of fit leading to the qualitative, but

probably over-enthusiastic, conclusion of a fantastic fit.

The Half-Normal plot

Half-Normal Plot for Data in line.tf2: r = 0.9670
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This shows a typical result with data winding around the best-fit line, and no sign of systematic deviation.
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The Best-Fit Line

The next plot shows the data and best fit line y = rizx + ¢ together with the 95% confidence envelope.

Best Fit Line with 95% Confidence Bands
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A 100(1 — @/2)% confidence envelope can be added using the advanced line fitting and calibrating procedure
in linfit, or by reading the data file into polnom and fitting a polynomial of degree one then requesting the
addition of confidence limit curves. The confidence envelope is created using the two-valued function

1/2

1 _ )2
f)=mx+éxt(n-2,1-a/2) 1+_+n(x—x) s

" Z(Xi -x)?
p

where ¢ is the upper 0.975 point of a distribution with n — 2 degrees of freedom and @ = 0.05, while s is the
variance estimate SSQ/(n — 2).

The confidence curves are used by polnom to estimate confidence limits for predicting x from y when a
best-fit curve us used as a calibration curve.
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8.3.3 Fitting a straight line: orthogonal

Orthogonal linear regression is used when there are two variables, X and Y, which both have error of
measurement, and/or natural variation due to sampling from a population. Because of this there is no sense
in which one variable can be regarded as an independent variable, and the other a dependent variable with
added noise: they are really covariates, but they could be sufficiently related to justify fitting a straight line.
The problem is to decide the criteria to use when selecting a best-fit line.

From the StMF]T main menu choose [A/Z], open program linfit, choose one of the options for orthogonal or
reduced major axis regression and inspect the default test file swarm.tf1 which has the following data.

x y
-5.0754  6.4669
-0.1053  11.6754
3.4949 15.4471
3.9864  5.0136
51110  7.8573
5.4251 -0.1269
57351  2.5006
5.9965 12.8566
6.5293 13.0522
6.6922 11.7522
6.7427  7.9817
8.9142  6.0645
9.6825 19.2638
12.0221 14.5156
14.5866 19.9856
15.4610 17.7134
16.3355 22.4164
16.8102  9.7428
16.9810 23.3692
17.2585 17.3129
18.9608  5.2797
20.2275 16.5656
242327 26.7548
25.0702 12.7738
27.6169 25.1028

The following straight line procedures could be considered.
1. Least squares fit for y = ax + b, i.e. Y (X).
2. Least squares fit forx = ay + 3, i.e. X(Y).

3. Reduced major axis regression.
This minimizes the sum of the areas of the triangles formed by projecting across and up or down from
the data points to the best-fit line.

4. Orthogonal or major axis regression.
This minimizes the sum of squares of the orthogonal projections from the points to the best-fit line.

Reduced major axis regression minimizes the sum of the areas of the triangles A, least squares Y (X) minimizes
the sum of squares of the lengths B, least squares X (Y) minimizes the sum of squares of lengths C, while
orthogonal regression, minimizes the sum of squares of the lengths D as in the next diagram.
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The following plot shows the fit of lines by least squares, reduced major axis, and major axis (orthogonal)
regression to the data in test file swarm.tf1l. In general it seems that if the X and Y data are similarly scaled
then the choice depends on the variance of X and Y. If the variance of Y is very much greater than the variance
of X then least squares regression of ¥ on X could be preferred, and when the variance of Y is very much
less than that of X then least squares regression of X on Y might be better. With similar variance in Y and Y,
as in correlation analysis, then either both linear regression lines should be plotted, or one of the alternatives
described in this tutorial should be used if only one line is to be plotted.

Lines Fitted to Data with Error in X and Y
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Theory

For n pairs (x;, y;) with mean x = ¥ and mean y = y, the variances and covariance required are

1 < 5
Sxx:n—] ;(xi—x)

1« )
Syy = Z(Yi _y)2
i=1

n—1

1 < _ -
Sxy = P ;(Xi -3y — ).

Also, for an arbitrary point (x;,y;) and a straight line defined by y = a + bx the squares of the vertical,
horizontal, and orthogonal (i.e. perpendicular) distances, vl.z, hf, and oi2 between the point and the line are

<
|

7 =lyi—(a+bx)]?
vZ/b?
0? v%/(l +b?).

S
(3]
Il

Ordinary least squares

If x is regarded as an exact variable free from random variation or measurement error while y has random
variation, then the best fit line from minimizing the sum of vi2 is

yi(x) = Bix + [§ — 1]

where Bl = Sxy/Sxx. However, if y is regarded as an exact variable while x has random variation, then the
best fit line for x as a function of y from minimizing the sum of hl2 would be

x2(y) = (1/B2)y + [T~ (1/52)7]

where 32 = Syy/Sxy or, rearranging to express the line as y(x),
y2(x) = fox + [§ — pox],

emphasizing that the slope of the regression line for y,(x) is the reciprocal of the slope for x,(y). Since
neither of these two best fit lines can be regarded as satisfactory, SIMF[T plots both lines such that y;(x)
covers the range of x values while x;(y) covers the range of y values. However these two lines intersect at
(x,¥) and, from the fact that the ratio of slopes equals the square of the correlation coefficient, that is,

r* = pi/Ba.

then two best fit lines with similar slopes suggests strong linear correlation, whereas one line almost parallel to
the x axis and the other almost parallel to the y axis would indicate negligible linear correlation. For instance,
if there is no linear correlation between x and y, then the slope of the regression line for y(x) i.e. ,3 1 would
be zero, as would be the slope of the regression line for x(y) i.e. 1/, leading to > = 0. Conversely strong
linear correlation would lead to 8; = 3> and r? = 1.

The major axis and reduced major axis lines to be discussed next are attempts to get round the necessity to
plot two lines and just have one best fit line intermediate between these two lines to represent the correlation.
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The major axis line

Here it is the sum of 0%, the squares of the orthogonal distances between the points and the best fit line, that
is minimized to yield the slope as

N 1 /(a4 N N -
P3=3 (,32 - (1/B1) +)’\/4+ (B2 - (Uﬂl))z)
where y = 1if Sy, > 0,y =0if Sy, =0,and y = -1 if §,, < 0, so that the major axis line is

y3(x) = Bax + [§ — Bax].

Actually S5 is the slope of the first principal component axis and so it points in the direction of maximum
variability.

The reduced major axis line
Instead of minimizing the sum of squares of the vertical distances vl.z, or horizontal distances hl.z, it is possible
to minimize the sum of the areas of the triangles formed by the v;, h; with the best fit line as hypotenuse, i.e.
vih;/2, to obtain the reduced major axis line as

ya(x) = Bax + [ — Bax].

Here
Ba = YA/Syy/Sxx
=y\VBiB:
so that the slope of the reduced major axis line is the geometric mean of the slopes of the regression of y on x
and x on y.
Weighting

In the unlikely case that weighting of one of the set is observations is desired, then the variable to be weighted
would have to be specified as the Y variable, and weighted fitting could then performed using program qnfit.
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8.3.4 Fitting a polynomial: weighted least squares polynomial regression

Polynomial regression is used for data smoothing, detecting trends in noisy data, and for creating calibration
curves for inverse prediction. It is not much used for modeling data, as polynomial curves are too flexible, they
do not accommodate horizontal asymptotes, and they cannot be used for extrapolation. In many applications
nowadays they have been replaced by piecewise cubic splines.

From the main StMF[T menu choose the [A/Z] option, open program polnom, then browse the default test
file polnom.tf1 which contains the following data set.

X y s
0.0 0.098421 0.0056072
0.0 0.10950 0.0056072
0.0 0.10248  0.0056072
2.0 3.8448 0.052139
2.0 3.8647 0.052139
2.0 3.9434 0.052139
4.0 6.8490 0.38867
40 6.1469 0.38867
4.0 6.2091 0.38867
6.0 8.5864 0.22982
6.0 9.0156 0.22982
6.0 8.6585 0.22982
8.0 9.8616 0.45524
8.0 9.8748 0.45524
8.0 9.0798 0.45524

10.0 9.5218 0.51790

10.0 9.3098 0.51790

10.0 10.294 0.51790

The columns are for data simulated by SIMFJT according to y = 0.1 + 2.0x + 0.1x? and have the following
meanings.

1. The first column contains the independent variable x; in triplicate.

2. The second column contains the dependent variable y; arising from evaluating the model equation using
SiMF[T program makdat, then adding 5% relative error using SIMF[T program adderr to simulate
experimental error.

3. The third column are the sample standard deviations s; calculated by SiMF[T program adderr to use
for weights w; = 1/ s?. In the absence of replicates to calculate sample standard deviations for y; at
fixed x;, the third column could be replaced by s; = 1, or simply omitted, whereupon a default value of
s; = 1 would be used for unweighted regression.

Program polnom will then proceed to fit polynomials of degree m according to
f(x) :00+91X+92x2+93x3+...+06x6

form=0,1,2,..., k where k < 6 depends on the number of distinct values of x. Thatis, m = 0 for a constant
term, m = 1 for a straight line, m = 2 for a quadratic, m = 3 for a cubic, and so on. After fitting each degree,
several statistics are output to assess goodness of fit and determine the highest degree that can be justified.
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The idea of this systematic procedure is to determine if there is statistical evidence to justify a trend line or
progressive curvature in noisy data, or to select a model equation to use as a calibration curve for inverse
prediction. To appreciate this aspect consider the following results tables when the data are analyzed.

Table 1: Degree fitted and Chebyshev coefficients

Ag Ay Ay Aj Ay As
0.31113

16.034  7.9080

12.737 4.8194 -1.4456

12.735 48132 -1.4591 -0.0083774

12.762  4.8342 -1.4387 -0.055083  -0.059600

12.654  4.6602 -1.3858 -0.087456  -0.035275 0.22979

O W= O3

Another table of statistics required to determine the degree of the polynomial required is also displayed as
follows.

Table 2: Statistics to determine degree of the fitted polynomial

m o %change WSSQ %change P(y>>WSSQ) 5% FV P(F>FV) 5%
0 36.703 22901 0.0000 no

1 8.0833 77.98 10454 95.44 0.0000 no 334.50 0.0000 yes
2 0.9914 87.73 14.744 98.59 0.4700 yes 1048.6 0.0000 yes
3 1.0253 3.42 14.718 0.18 0.3977 yes 0.0249 0.8769 no
4 1.0511 2.52 14.363 2.41 0.3488 yes 0.3213 0.5805 no
5 1.0000 4.87 11.999 16.46 0.4457 yes 2.3639 0.1501 no

Here m is the degree fitted, o = \\WSSQ/NDOF, and FV is the F value for assessing the significance of
variance reduction by adding higher degree terms.

There are many results displayed in Tables 1 and 2 in order to suggest the highest degree that can be justified
statistically. The qualitative conclusions do not use a Bonferroni correction, but the actual significance levels
are also provided for purists. At this point SIMF[T program polnom outputs the next table to aid decision.

Table 3: information to help you select a best-fit polynomial
Lowest degree where < 10% change in o 2
Lowest degree where < 10% change in WSSQ 2
Lowest degree by chi-sqg. at 5% significance level 2
Lowest degree by chi-sqg. at 1% significance level 2

2

2

Lowest degree by F test at 5% significance level
Lowest degree by F test at 1% significance level

Accepting the recommendations of Table 3 leads to Table 4 for the best-fit quadratic.

Table 4: Results for weighted fitting (w = 1/s?)

Parameter Value Std. error  Lower95%cl  Upper95%:cl P
6o 0.10347  0.0032091 0.096630 0.11031 0.0000
01 2.1203 0.019731 2.0783 2.1624 0.0000
6, -0.11565 0.0035714 -0.12326 -0.10803 0.0000

Correlation matrix
1
-0.0960 1
0.0516 -0.8432 1
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If you selected to predict x from y the following warning is issued.

You must be very careful if you wish to use this best-fit
curve as a calibration curve for predicting x given y since
there are turning points for X,,in < x < Xjnax as follows:
x-value y-value

9.1673 9.8224

This is because the quadratic has a turning point within the range of the data, and so predicting x from y could
be misleading if a horizontal line for y = y( for some yq intersected the best fit curve twice. So you have to
choose whether to search upwards or downwards along the x axis for the prediction required. If a spurious
prediction results you have to change the search order. For degrees greater than two there may be multiple
turning points, so using degrees greater than two is not normally recommended for inverse prediction. Table
5 results from choosing to predict x from y and evaluate y given x along with 95% confidence ranges using
the data supplied in test files polnom.tf2 and polnom.tf3.

Table 5: Predicting x given y and evaluating y given x
Evaluation data for program polnom : x =2, 4,6, 8

x-input y-calculated 95% confidence limits
2.0 3.8816 3.8212, 3.9419
4.0 6.7345 6.6424, 6.8267
6.0 8.6623 8.5137,8.8108
8.0 9.6649 9.3927, 9.9370

Inverse prediction data for program polnom : y =2, 4,6, 8

y-measured  x-predicted 95% confidence limits
2.0 0.94293 0.92529,0.96118
4.0 2.0718 2.0347,2.1100
6.0 3.4182 3.3566, 3.4819
8.0 5.1976 5.0739, 5.3342

This next graph, constructed using SIMF[T program qgnfit, shows the data and best-fit quadratic along with
contributions of the individual components to the fit.

Deconvolution of y =a + bx + cx?
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Theory
It is possible to fit polynomials using multilinear regression with a constant term but with variables defined as
X1 =x,x =x2,x3 =X, ..., %, =x™. However, this is regarded as an inefficient and numerically inaccurate

technique. The best technique is to transform the original variables x into new variables —1 < ¥ < 1 according
to
~ 2x — Xmax — Xmin
XxX=————
Xmax — Xmin

Then a polynomial of degree m is fitted using Chebyshev polynomials as follows
gm(%) = 0.54411T0(%) + A1 2T1 (%) + A1 3T2(%) + - - + Ayt mat T (5).-
In this expression the T () are Chebyshev polynomials of the first kind of degree k defined as follows.

Ty (x) = cos(k cos ' (x)),k >0
Tr+1(x) = 24T (x) = Tg—1x, k > 1
For instance, Ty(x) = 1
Ti(x) =x
Tr(x) =2x%+1
Ts3(x) = 4x° - 3x.

The magnitude of the coefficients A,,,41 ; indicates the contribution of the corresponding Cheyshev polynomial
to the corresponding power of x. When fitting polynomials sequentially the coeflicients A,,;;,; will tend to
stabilize for powers of x that are contributing to the fit, but will often tend to diminish as further irrelevant
powers are added to the polynomial. So Table 1 provides a quick method for assessing the highest degree
polynomial required for a satisfactory fit. Of course, the coefficients and best-fit curve are transformed back
into the original space after a satisfactory degree has been decided.

The techniques used by SIMF T for calculating confidence limits for evaluation and inverse prediction are based
on extending the methods used for standard unweighted straight line fitting to the case of fitting polynomials
to weighted data.
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8.3.5 Multilinear least squares regression

Multilinear regression is resorted to in situations where the value of a variable Y is believed to depend on one
or more fixed variables X, but it has not proved possible to develop a mathematical model based on scientific
principles. Usually the variation in ¥ due to experimental error or sampling variation is considerably greater
than the variation in X, and in addition variables X are assumed to be uncorrelated, so that Y can be regarded
as a dependent variable, and X as independent variables.

From the main SIMF[T menu choose the [A/Z] option, open program linfit, choose [multilinear regression]
using least squares, then browse the default test file 1infit.tf2 which contains the following data set.

X1 X2 X3 X4 y
7.00 26.0 6.00 60.0 78.50
1.00 29.0 15.0 52.0 74.30
11.0 56.0 8.00 20.0 104.3
11.0 31.0 8.00 47.0 87.60
7.00 520 6.00 33.0 9590
11.0 550 9.00 22.0 109.2
3.00 71.0 17.0 6.00 1027
1.00 31.0 22.0 44.0 72.50
2.00 54.0 18.0 22.0 93.10
21.0 47.0 400 26.0 1159
1.00 40.0 23.0 34.0 83.80
11.0 66.0 9.00 12.0 1133
10.0 68.0 8.00 12.0 109.4

G GG (g TG G e ey S

The columns have the following meanings.

1. Column 1: % tricalcium aluminate

2. Column 2: % tricalcium silicate

3. Column 3: % tetracalcium alumino ferrite
Column 4: % dicalcium silicate

Column 5: Heat evolved in calories per gram of cement

AN A

Column 5: weighting factor.

Note that the weighting factor s must be supplied as the last column so that St(MF[T knows how many variables
are present. It is usual to set all the values of s to one as in the above example, but if accurate estimates for
the standard deviations of ¥ are known these could be used so that weighted least squares fitting can be done.

To conclude: if the data set supplied has k columns, then it will be presumed that there are k — 2 independent
variables X in columns 1,2, ..., k — 2, the dependent variable Y is in column k — 1, and the weighting factors
are in column k. If these are all equal to one then unweighted regression will be carried out, but otherwise
the values s; will be assumed to be standard errors for the y; and weighted regression will be performed using
w; =1/ s%. Setting s = 0 suppresses corresponding rows of data but this is not recommended.

Analysis of these data then leads to the following tables of results using this model

y = Boxo + Bix1 + Boxo + -+ + Br-2Xk-2

where xo = 1 if B is to be estimated and a constant term is required, or Sy = 0 otherwise.
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Table 1: Parameter estimates
Number of parameters: 5, Rank: 5, Number of points: 13, Degrees of freedom: 8
Residual-SSQ: 47.864, Mallows’ C),: 5.0, R?%: 0.9824

Parameter Value Lower95%cl  Upper95%cl  Std. Error o]

Bo (Constant)  62.405 -99.179 223.99 70.071 0.3991 ***
Bi 1.5511 -0.16634 3.2685 0.74477 0.0708 *
B2 0.51017 -1.1589 2.1792 0.72379  0.5009 ***
B3 0.10191 -1.6385 1.8423 0.75471  0.8959 ***
Ba -0.14406 -1.7791 1.4910 0.70905 0.8441 ***

The stars shown against the parameter estimates in Table 1 are displayed when the parameter estimates are not
significantly different from zero, so this table indicates that none of the five parameters were well determined.

Table 2: Residuals
Number y-value Theory Residual Leverage Studentized

1 78500 78.495 0.0047604 0.55028  0.0029021
2 74300 72.789 1.5112 0.33324 0.75662
3 104.30 105.97 -1.6709 0.57694 -1.0503
4 87.600 89.327 -1.7271 0.29524 -0.84108
5 95.900 95.649 0.25076 0.35760 0.12791
6 109.20 105.27 3.9254 0.12416 1.7148
7 102.70 104.15 -1.4487 0.36708 -0.74445
8 72500 75.675 -3.1750 0.40854 -1.6878
9 93.100 91.722 1.3783 0.29431 0.67080

10 115.90 115.62 0.28155 0.70040 0.21029
11 83.800 81.809 1.9910 0.42551 1.0739
12 113.30 112.33 0.97299 0.26298 0.46335
13  109.40 111.69 -2.2943 0.30372 -1.1241

However Table 2 does show a good scatter of residuals about zero with no particular bias or runs indicated.

Table 3: Analysis of Variance

Source NDOF SSQO Mean SSQ  F-value p
Total 12 27158

Regression 4 2667.9 666.97 111.48 0.0000
Residual 8 47.864 5.9830

Table 3 is used in much the same way as for simple linear regression and is defined using §; for the best-fit
model as follows.

SSQZ()tal = Z(yt - y)Z
i=1
n

SSQregression = Z(yl - y)Z
i=1
n

SSQresiduul = Z(yt - yi)2
i=1

The F value is the ratio of mean regression SSQ to mean residual SSQ, and the significance level p is used
to test the null hypothesis
Hy: B;i =0foralli

against the alternative hypothesis
H, : B; # 0 for one or more i.
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Clearly it must be concluded that, although none of the individual parameters were well determined as judged
by the # tests on the ratios of estimates to standard errors, there is a significant overall reduction in the sum of
squares by some combinations of variables.

At this point it is customary to see if a satisfactory regression could be achieved with fewer parameters, and a
variety of techniques are available to perform such subset regression to find the best explanation of the data in
terms of the smallest number of variables. When this is done systematically with large data sets it generates an
enormous amount of analysis, which is not normally justified because usually the experimentalist would have
a good idea which subsets of variables to try. This is fairly easy to do interactively in SIMF]T by suppressing
variables until a fit is achieved where all the parameters are significantly different from zero with the two-tail
t test, and the fit is justified by the C,, values.

The way to interpret the Mallows’ C), values should be explained. Program linfit first fits a full model and the
results from this analysis are saved. This fit is assumed to be the best possible for estimating the variance and
the effect of suppressing any variable can then be seen by comparing the effect on the C, value. From fitting
the full model the C), value will be equal to the total number of parameters and subsequent subset regressions
can be judged by the ratio of the C), values to the number of parameters, where values much greater than the
number of parameters estimated suggest a deficient model.

The next table summarizes the results from fitting a constant only, followed by fitting subsets of the additional
1, 2, and 3 variables.

Table 4: C), values

Variables Cp Parameters
Constant only 442.9 1
+1,+2,+3,+4 202.5,142.5,315.2,138.7 2
+12, +13, +14 2.7,198.1,5.5 3
+23, +24, +34 62.4,138.2,22.4 3
+123, +124, +134, +234  3.0,3.0,3.5,7.3 4
+1234 5.0 5

In Table 4 the first column indicates the subscripts of the variables added to the constant term, column 2 holds
the corresponding C), variables, while column 3 contains the total number of parameters varied including the
constant term. Values where C), divided by the number of parameters in the regression are less than or equal
to one are highlighted, and it is perfectly clear that the combination of a constant plus variables 1 and 2 seems
to be strongly recommended.

Here, for example, are the results from suppressing variables 3 and 4.

Table 1A: parameter estimates with variables 3 and 4 suppressed
Number of parameters: 3, Rank: 3, Number of points: 13, Degrees of freedom: 10
Residual-SSQ: 57.904, Mallows’ C,,: 2.6782, R*: 0.9787

Parameter Value Lower95%cl  Upper95%cl  Std. Error p
Bo (Constant)  52.577 47.483 57.671 2.2862 0.0000
B 1.4683 1.1980 1.7386 0.12130 0.0000

B2 0.66225 0.56008 0.76442 0.045855 0.0000
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Table 2A: Residuals with variables 3 and 4 suppressed
Number y-value Theory Residual Leverage Studentized

1 78500 80.074 -1.5740 0.25119 -0.75590
2 74300 73.251 1.0491 0.26189 0.50745
3 104.30 105.81 -1.5147 0.11890 -0.67061
4 87.600 89.258 -1.6585 0.24225 -0.79175
5 95900 97.293 -1.3925 0.83616 -0.60451
6 109.20 105.15 4.0475 0.11512 1.7881
7 102.70 104.00 -1.3021 0.36180 -0.67732
8 72500 74575 -2.0754 0.24119 -0.99011
9 93.100 91.275 1.8245 0.17915 0.83687
10 11590 114.54 1.3625 0.55002 0.84405
11 83.800 80.536  3.2643 0.18402 1.5018
12 113.30 112.44 0.86276 0.19666 0.40002
13 10940 11229 -2.8934 0.21420 -1.3564

Table 3A: Analysis of Variance with variables 3 and 4 suppressed

Source NDOF SSQ Mean SSQ  F-value p
Total 12 2715.8

Regression 2 2657.9 1328.9 229.50 0.0000
Residual 10 57.904 5.7904

Comparing the results with all variables present to those with variables 3 and 4 suppressed leads to the
following conclusions.

1. Table 1 compared to Table 1A
With all variables present no parameters were well-determined by a two-tail 7 test, but with variables 3
and 4 suppressed all parameters were well-determined.

2. Table 2 compared to Table 2A
There are no differences to indicate a poorer fit with the simpler model.

3. Table 3 compared to Table 3A
There are no differences to indicate a poorer fit with the simpler model.

Sometimes it is useful to evaluate the best-fit model and, as variables 3 and 4 do not seem to be making an
important contribution prediction, this will be demonstrated using the model with variables 3 and 4 suppressed.
A vector of default values equal to 1 is supplied and this can be edited interactively to change the variables as
follows with variable 2.

Using the best-fit model to predict y given x
xo = 1.0, coeflicient = 52.577 (the constant term)
x1 = 1.0, coefficient = 1.4683

x3 = 1.0, coefficient = 0.66225

y(x) =54.708

xo = 1.0, coeflicient = 52.577 (the constant term)

x1 = 1.0, coeflicient = 1.4683

x2 =5.0, coefficient = 0.66225

y(x) =57.357

Of course, users cannot alter the value of xo which is always equal to 1, and included or excluded from the
regression depending on whether a constant (i.e. intercept) term is included.

Note that, for more advanced analysis of such data sets (including prediction and inverse prediction) the
SiMF[T partial least squares procedure should be used.
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Theory

Program linfit fits a multilinear model in the form

Y = Boxo + B1x1 + Boxo + -+ + BruXm,

where xo = 1, but you can choose interactively whether or not to include a constant term Sy, you can decide
which variables are to be included, and you can use a weighting scheme if this is required. For each regression
sub-set, you can observe the parameter estimates and standard errors, R-squared, Mallows C,, , and ANOV A
table, to help you decide which combinations of variables are the most significant. Unlike nonlinear regression,
multilinear regression, is based on the assumptions

Y=XB+e,
E(e) =0,
Var(e) = 0?1,

where X is the over-determined data matrix (e.g., the 13 rows and first 4 columns of test file 1infit.tf2), Y
is the observation vector (e.g., column 5 of test file 1infit.tf2), 3 is the parameter vector and € is the error
vector. This allows us to introduce the hat matrix

H=XXTx)"'xT,

then define the leverages h;;, which can be used to asses influence, and the studentized residuals
Jpp— i
which may offer some advantages over ordinary residuals r; for goodness of fit assessment from residuals

plots. In the event of weighting being required, Y, X and € above are simply replaced by W%Y, wix , and
w1 €, where W is the diagonal weighting matrix.

Note that examining parameter reliability using the 7 test as in Tables 1 and 1 A and also model discrimination
analysis using the F test is applicable for nested linear models as fitted by SIMF[T program linfit. So several
additional options are provide by linfit to perform such further investigations. For instance, to perform an F
test for excess variance note that, if WSSQ; with m; parameters is the previous (possibly deficient) model,
while WSSQ», with m, parameters is the current (possibly superior) model, so that WSSQ; > WSSQ», and
my1 < ma, then

_ (WSSQ, = WSSQ05)/(my —my)

WSSQ2/(N —ma)

should be F distributed with my — m and N — m; degrees of freedom, and the F test for excess variance can
be used. Alternatively, if WSSQ2/(N — m3) is equivalent to the true variance, i.e., model 2 is equivalent to
the true model, the Mallows’ C), statistic

F

~ WSSQ0,
" WSSQ2/(N - ma)

Cp - (N - 2m1)

can be considered. This has expectation m if the previous model is sufficient, so values greater than m, that
is C,/m1 > 1, indicate that the current model should be preferred over the previous one. In the linfit results
tables C, values refer to the full model being fitted as the reference case.

Finally it should be noted that, for successful analysis of data, the units used to provide values of X should
be such that the numerical values are of similar size. If categorical data are mixed with continuous data, or
the data set is ill-conditioned, or less than full rank for any reason, a linear model will still be fitted using the
singular value decomposition. However, in such cases linfit will issue a warning that the estimated parameters
are not independent, and the data should be re-scaled, or the number or variables should be reduced until
the columns of the X matrix are independent, i.e. the rank is at least as large as the number of parameters
estimated.
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8.3.6 Partial least squares (PLS)

Partial least squares is also known as regression by projection to latent structures, or simply PLS, and it is
sometimes useful when a n by r matrix of responses Y, with » > 1, is observed with a n by m matrix of
predictor variables X, with m > 1, and one or more of the following conditions may apply:

1. There is no deterministic model to express the r columns of Y as functions of the m columns of the
matrix X.

2. The number of columns of X is too large for convenient analysis, or the number of observations 7 is not
significantly greater than the number of predictor variables m, e.g. the rank of X is less than m.

3. The X variables may be correlated and/or the Y variables may be correlated.

The idea behind PLS is to express the X and ¥ matrices in terms of sets of k factors, with k < m, derived from
the matrices by projection and regression techniques. The X scores would have maximum covariance with the
Y scores, and the principal problem is to decide on a sufficiently small dimension /, with [ < k, that would be
needed to represent the relationship between Y and X adequately. Having obtained satisfactory expressions
for approximating X and Y using these factors, they can then be used to treat X as a training matrix, then
predict what new Y would result from a new n by m matrix Z that is expressed in the same variables as the
training matrix X. Hence the use of this technique in multivariate calibration, or quantitative structure activity
relationships (QSAR).

Data format

From the main SiMF]T menu choose [A/Z], open program linfit, then select [PLS] and inspect the two test
files. The file g021af. tf1 contains the following 15 by 15 matrix of X data

X Xo X3 Xy Xs X X7 X3 X9 Xio Xy X X3z Xiu X5
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 1.9607 -1.6324 0.5746 1.9607 -1.6324 0.5740 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 1.9607 -1.6324 0.5746 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 1.9607 -1.6324 0.5746 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 2.8369 1.4092 -3.1398 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 -4.7548 3.6521 0.8524 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 -1.2201 0.8829 2.2253
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 2.4064 1.7438 1.1057 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
2.2261 -5.3648 0.3049 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
-4.1921 -1.0285 -0.9801 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
-4.9217 1.2977 0.4473 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 2.2261 -5.3648 0.3049 2.2261 -5.3648 0.3049 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 -4.9217 1.2977 0.4473 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 -4.1921 -1.0285 -0.9801 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

while the test file g021af.tf2 contains the following 15 by 1 matrix with Y data.

Y|
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Choosing the number of factors

Select a maximum of 12 factors then plot the cumulative variance plot as in the next figure.

Cumulative Variance and Number of Factors X
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This graph shows that most of the variance in the Y data (green bars) can be explained by only two factors
while at least six to eight factors are required to account for a significant proportion of the variance in the X
data (red bars).

The main point of PLS analysis is to choose the number of factors that subsequently will be used in the
predictive procedures, as the number of factors will be the dimension of the subspace used in the projection
of the X data into a space of smaller dimension.

It must be stressed that these factors are like principal components in that every factor is a linear combination
of all the variables, and SIMF[T provides several ways to determine the influence of the original variables in
the factors.

Contribution of variables to the projection

For example, the next table shows the variable influence on projection (VIP) results which indicate that
variables 7, 8, 9, 10, and 11 seem to make the most significant contribution to the factors. That is because the
sum of squared VIP values equals the number of X variables and a large VIP (i) value indicates that variable
i has an important influence on projection.

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
VIP  0.611 0.318 0.751 0.504 0.272 0.359 1.577 2.435 1.132 1.223 1.180 0.884 0.213 0.213 0.213

* * * * *




378 Curve and surface fitting

Correlation between scores

Another way to assess the number of factors required to adequately represent the model is to examine the
correlation between the scores as, unlike with principal components which are select to maximize variance,
PLS factors are selected to maximize covariance between factors.

In the next figure are plotted the successive correlations between the X and Y scores. Each plot shows the best
fit linear regression for the u; i.e. Y scores on the #; i.e. X scores, and also the best fit linear regression of the

X scores on the Y scores, together with the correlation coefficients r and and significance levels p.

y=A+Bx, x=C+Dy, r= 0.9468, p <.0001

y=A+Bx, x=C+Dy, r= 0.8697, p <.0001
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Clearly the scores corresponding to the first two factors are highly correlated, but thereafter the correlation is
very weak.
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Predicting Y given new X

Once a model has been selected with an appropriate number of factors, a set of parameters can be calculated
to express Y as a function of the X matrix. In other words, the original X and ¥ matrices can be regarded as a
training set, then a new X data matrix can be input to predict a new Y matrix of responses.

For instance, select a model with 7 factors and then read in the default test file g021af.tf3 as a Z matrix
which has the following data.

Z Z Z3 Zy Zs Zs Z Zg Zy  Zio Zi_ Zp Ziz  Zui Zis
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 1.9607 -1.6324 0.5746 1.9607 -1.6324 0.574 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 1.9607 -1.6324 0.5746 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 1.9607 -1.6324 0.5746 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 2.8369 1.4092 -3.1398 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 -4.7548 3.6521 0.8524 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 -1.2201 0.8829 2.2253
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 2.4064 1.7438 1.1057 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
2.2261 -5.3648 0.3049 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
-4.1921 -1.0285 -0.9801 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
-4.9217 1.2977 0.4473 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 2.2261 -5.3648 0.3049 2.2261 -5.3648 0.3049 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 -4.9217 1.2977 0.4473 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398
-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 -4.1921 -1.0285 -0.9801 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

This can then be used to predict a new set of responses, say ¥, with the following values.

Y
0.1408592
0.2991056
0.1383467
0.2967188
0.1304868
2.6278021
0.1862098
1.4820439

-0.1140479
-0.4532927
0.4052814
0.2922055
-1.0294603
1.7814955
0.5962458

When using this technique it is important to realize that the training matrices and the prediction matrices
must be centered and scaled using exactly the same mean vectors and scaling factors otherwise biased
predictions will result. That is why it is best to submit the data without centering and scaling then StMF[T
will automatically use the centering and scaling from the training set with the prediction data and will map the
predicted results back into the original coordinates. This will be explained with more detail in the theoretical
section that follows.
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Theory

The idea behind PLS is to express the n by m matrix X and n by r matrix Y in terms of sets of k factors, with
k < m, derived from the matrices by projection and regression techniques. The X scores would have maximum
covariance with the Y scores, and the principal problem is to decide on a sufficiently small dimension /, with
I < k, that would be needed to represent the relationship between Y and X adequately.

If X, is the centered matrix obtained from X by subtracting the X column means, and Y; is obtained from
Y by subtracting the Y column means, then the first factor is obtained by regressing on a column vector of n
normalized scores 71, as in

% T
X1 =np)
?1 =t1€¥w
T
nhh= 1,

where the column vectors of m x-loadings p; and r y-loadings c; are calculated by least squares, i.e.

T _.T
Py =15 X

T _ T
c —t1Y1~

The x-score vector t; = X;w; is the linear combination of X; that has maximum covariance with the y-scores
uy = Yic1, where the x-weights vector w; is the normalized first left singular vector of X]T Yi. The further
k — 1 orthogonal factors are then calculated successively using

A

Xi=Xi-1 — Xi-1
Yi=Yi_l_?i_l, i=273""7k
tt;=0, j=1,2,...,0i- 1.

Once a set of k factors has been calculated, these can be used to generate the parameter estimates necessary
to predict a new Y matrix from a Z matrix, given the original training matrix X. Usually k would be an upper
limit on the number of factors to consider, and the m by r parameter estimates matrix B required for [ factors,
where [ < k, would be given by

B=w(PTw)~'cT.

Here W is the m by k matrix of x-weights, P is the m by k matrix of x-loadings, and C is the r by k matrix of
y-loadings. Note that B calculated in this way is for the centered matrices X; and Y;, but parameter estimates
appropriate for the original data are also calculated.

Before proceeding further it is important to emphasize a complication which can arise when predicting a new
Y matrix using the parameter estimates. In most multivariate techniques it is immaterial whether the data
are scaled and centered before submitting a sample for analysis, or whether the data are scaled and centered
internally by the software. In the case of PLS, the Y predicted will be incorrect if the data are centered and
scaled independently before analysis, but then the Z matrix for prediction is centered and scaled using its own
column means and variances.

So there are just two ways to make sure PLS predicts correctly.

1. You can submit X and Y matrices that are already centered and scaled, but then you must submit a Z
matrix that has not been centered and scaled using its own column means and standard deviations, but
one that has been processed by subtracting the original X column means and scaled using the original
X column standard deviations.

2. Do not center or scale any data. Just submit the original data for analysis, request automatic centering
and scaling if necessary, but allow the software to then center and scale internally.
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As the first method is error prone and will predict scaled and centered predictions, which could be confusing,
the advice to PLS users would be:

Do not center or scale any training sets, or Z-data for predicting new Y, before PLS analysis.
Always submit raw data and allow the software to perform centering and scaling.
That way predictions will be in coordinates corresponding to the original Y-coordinates.

Several techniques are available to decide how many factors / out of the maximum calculated k should be
selected when using a training set for prediction.

For instance, the previous figure displaying cumulative variance was obtained by using test file g021laf.tf1
with 15 rows and 15 columns as the source of X prediction data, and test file g021af.tf2 with 15 rows and
just 1 column as the source of Y response data, then fitting a PLS model with up to a maximum of k = 12
factors. It illustrates how the cumulative percentage of variance in X and a column of Y is accounted for the
factor model as the number of factors is steadily increased. It is clear that two factors are sufficient to account
for the variance of the single column of Y in this case but more, probably about 6 to 8, are required to account
for the variance in the X matrix, i.e. we should choose 6 <[ < 8.

Alternatively, the previous figures showing the successive correlations between the X and Y scores should be
inspected. Each plot shows the best fit linear regression for the u; i.e. Y scores on the #; i.e. X scores, and also
the best fit linear regression of the X scores on the Y scores, together with the correlation coefficients » and
and significance levels p. Clearly the scores corresponding to the first two factors are highly correlated, but
thereafter the correlation is very weak.

Note that the PLS model can be summarized as follows

X=X+TP" +E
Y=Y +UCT +F
U=T+H

where E, F, and H are matrices of residuals.

So the SIMF[T PLS routines also allow users to study such residuals, to see how closely the fitted model
predicts the original Y data for increasing numbers of factors before the number of factors to be used routinely
is decided. Various tests for goodness of fit can be derived from these residuals and, in addition, variable
influence on projection (VIP) statistics can also be calculated.
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8.4 Generalized linear models (GLM)
- Tutorials and worked examples for simulation,
2‘ curve fitting, statistical analysis, and plotting.

https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

8.4.1 Summary of GLM techniques

Generalized linear modeling (GLM) is used to fit statistical models to observations that have a known error
distribution, and where covariates can be assumed to contribute in a linear manner via a specified intermediate
link function.

Introduction

The GLM technique is intermediate between linear regression, which is trivial and gives uniquely determined
parameter estimates but is rarely appropriate, and nonlinear regression, which is very hard and does not
usually give unique parameter estimates, but is justified with normal errors and a known model.

To understand the motivation for this technique, it is usual to refer to a typical doubling dilution experiment
in which diluted solutions from a stock containing infected organisms are plated onto agar in order to count
infected plates, and hence estimate the number of organisms in the stock. Suppose that before dilution the
stock had N organisms per unit volume, then the number per unit volume after x = 0, 1, . .., m dilutions will
follow a Poisson dilution with p, = N/2*. Now the chance of a plate receiving no organisms at dilution x
is the first term in the Poisson distribution, that is exp(—uy), so if p, is the probability of a plate becoming
infected at dilution x, then

px=1—-exp(—uy), x=1,2,...,m.

Evidently, where the p, have been estimated as proportions from y, infected plates out of n, plated at dilution
x, then N can be estimated using

log[—log(1 — px)] =log N — xlog?2
considered as a maximum likelihood fitting problem of the type
log[—log(1 = px)] = Bo + Bix

where the errors in estimated proportions p, = y./n, are binomially distributed.

The SIMF[T generalized models interface can be used from gcfit, linfit or simstat as it finds many applications,
ranging from bioassay to survival analysis.

Basic theory

So, to fit a generalized linear model, you must have independent evidence to support your choice for an
assumed error distribution for the dependent variable Y from the following possibilities:

* normal
* binomial
* Poisson
* gamma
in which it is supposed that the expectation of Y is to be estimated, i.e.,

E(Y) = pu.
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The associated pdfs are parameterized as follows.

normal : fy =

L o[ G-w?
Voro P72

binomial: fy = (N)ﬂy(l - )Ny
y

y _
Poisson: fy = Lp'(,u)
y:
amma: fi ! (Vy)ve p( vy)l
D fy = —| exp[-——| -
£ I(v) \ u H)y

It is a mistake to make the usual unwarranted assumption that measurements imply a normal distribution,
while proportions imply a binomial distribution, and counting processes imply a Poisson distribution, unless
the error distribution assumed has been verified for your data. Another very questionable assumption that has
to made is that a predictor function 7 exists, which is a linear function of the m covariates, i.e., independent

explanatory variables, as in
m
= B
J=1

Finally, yet another dubious assumption must be made, that a link function g(u) exists between the expected
value of Y and the linear predictor. The choice for

g(u)=n

depends on the assumed distribution as follows. For the binomial distribution, where y successes have been
observed in N trials, the link options are the logistic, probit or complementary log-log

logistic: 7 = log (NL)
—H

. 1 (M
bit: n = ® ‘(—)
probit: i N

complementary log-log: n = log (— log (1 - %)) .
Where observed values can have only one of two values, as with binary or quantal data, it may be wished
to perform binary logistic regression. This is just the binomial situation where y takes values of 0 or 1,
N is always set equal to 1, and the logistic link is selected. However, for the normal, Poisson and gamma
distributions the link options are

exponent: n = u
identity: n = u
log: 17 =log(u)
square root: 1 = y/u

1
reciprocal: n = —.
o

In addition to these possibilities, you can supply weights and install an offset vector along with the data set,
the regression can include a constant term if requested, the constant exponent a in the exponent link can be
altered, and variables can be selected for inclusion or suppression in an interactive manner. However, note
that the same strictures apply as for all regressions: you will be warned if the SVD has to be used due to
rank deficiency and you should redesign the experiment until all parameters are estimable and the covariance
matrix has full rank, rather than carry on with parameters and standard errors of limited value.
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The simplified GLM interface

Although generalized linear models have widespread use, specialized knowledge is sometimes required to
prepare the necessary data files, weights, offsets, etc.

For this reason, there is a simplified SIMF[T interface to facilitate the use of GLM techniques in such fields as
the following.

* Bioassay, assuming a binomial distribution and using logistic, probit, or log-log models to estimate
percentiles, such as the LD50.

* Logistic regression and binary logistic regression.
* Logistic polynomial regression, generating new variables interactively as powers of an original covariate.

» Contingency table analysis, assuming Poisson errors and using log-linear analysis to quantify row and
column effects.

 Survival analysis, using the exponential, Weibull, extreme value, and Cox (i.e., proportional hazard)
models.

Of course, by choosing the advanced interface, users can always take complete control of the GLM analysis,
but for many purposes the simplified interface will prove much easier to use for many routine applications.

Warning

The GLM procedure involves an iterative technique to estimate parameters from starting estimates and, in this
respect, it is similar to nonlinear regression in that it will only succeed if the following conditions are satisfied.

1. The error type and link function (i.e. the model) must be chosen sensibly.

2. The data must be formatted in a specific manner depending on the error type and link function selected,
as will be explained in subsequent worked examples.

3. The data must be sufficiently accurate and cover a wide enough range to allow the parameters to be
estimated.

4. Error messages about failure to fit or poor parameter estimates must be interpreted sensibly, and then
appropriate action taken.

Only when all these conditions are satisfied will SIMF[T be able to fit a GLM model.
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8.4.2 GLM: Examples using standard formats

This section illustrates fitting generalized linear models (GLM) with various error types and link functions.
Test files and data formats

From the main SiMF[T menu choose [Statistics], [Generalized linear models], then [Comprehensive GLM
options], and after selecting an error and link type view the test file provided which will be one of these.

glm.tfl (= gO2gaf.tfl): normal error and reciprocal link

glm.tf2 (= g02gbf.tfl): binomial error and logistic link (logistic regression)
glm.tf3 (= g02gcf.tfl): Poisson error and log link

glm.tf4 (= g02gdf.tfl): gamma error and reciprocal link

Here the data format for k£ variables, observations y and weightings s is
X15X25 e v e s Xk Y5 S
except for the binomial error which has
X15X2y ooy Xk, Vs N, S
for y successes in N independent Bernoulli trials.

It is absolutely essential to have a final column of s values in the data as the number of columns is used to
indicate the number of covariates. In most cases these values would be s = 1, but note that the weights w
used are actually w = 1/s? if advanced users wish to employ weighting, e.g., using s as the reciprocal of the
square root of the number of replicates for replicate weighting, except that when s < 0 the corresponding data
points are suppressed. Also, observe the alternative measures of goodness of fit, such as residuals, leverages
and deviances. The residuals r;, sums of squares SSQ and deviances d; and overall deviance depend on the
error types as indicated in the examples.

GLM example 1: GO2GAF, normal errors and reciprocal link

The test file glm.tf1 contains the following data.

X y s
1.0 250 1
20 100 1
30 6.0 1
40 40 1
50 3.0 1

The next table has the results from fitting a reciprocal link with mean but no offsets to glm. tf1,

No. parameters = 2, Rank = 2, No. points = 5, Deg. freedom = 3
Parameter Value Lower95%cl Upper95%cl Std. error )2
Constant -0.0238725  -0.0327174  -0.0150276 0.00277926 0.0033
B(1) 0.0638107 0.0554160 0.0722054 0.00263782 0.0002
WSSO =0.387173,5 =0.129058, A = 1
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while the table of deviance residuals and leverages was as follows.

Number Y-value  Theory Dev-resid Leverage
25.0 25.0387 -0.038665 0.995407
10.0 9.63865 0.361348 0.457746
6.0 5.96802 0.031977 0.268103
4.0 4.32207 -0.322074 0.166606
3.0 3.38775 -0.387751 0.112138

a b wnNn =

Note that the scale factor (S = %) can be input or estimated using the residual sum of squares SSQ defined
as follows

For normal errors: d; = y; — (i;

Deviance residuals: r; = d;

SSQ = Zn: ri.
i=1

GLM example 2: G02GBF, binomial errors with logistic link

The next table shows the results from fitting a logistic link and mean but no offsets to test file glm.tf2 which
contains the following data for covariate x, number of successes y in N Bernoulli trials, with no weighting
(i.e.all s =1).

x oy N s
1.0 19 516 1
0.0 29 560 1
-1.0 24 293 1

No. parameters = 2, Rank = 2, No. points = 3, Deg. freedom = 1

Parameter Value Lower95%cl Upper95%cl Std. error p
Constant -2.86822 -4.41463 -1.32180 0.121705 0.0270
B(1) -0.42637 -2.45654 1.60380 0.159778 0.2283 ***

Deviance = 0.0735389

Number Y-value  Theory Dev-resid Leverage
1 19.0 18.4508 0.129596 0.768720
2 29.0 30.0984 -0.207027 0.422046
3 24.0 23.4508 0.117828 0.809234

The estimates are defined as follows

For binomial errors: d; = 2 {y,- log (&) + (t; — yi) log (l—)il)}
M ti— Hi
Deviance residuals: r; = sign(y; — ﬁi)\/d_[
n
Deviance = d;.
i=1

Note that, unlike the situation with normal errors as in Example 1, the deviance residuals in the column headed
as Dev-resid in the previous residuals table are not the same as the usual residuals from a regression.
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GLM example 3: GO2GCF, Poisson errors with a log link

This example illustrates using the choice for Poisson error and a log link to analyze a contingency table. and
the test file for this option is glm.t£3 which has columns for 8 variables x;, then a column y for the Poisson
variable, and a final column of weights s = 1. However, to understand the format for these data it must
be pointed out that this is a representation of a 3 by 5 contingency table contained in test file loglin.tf1.
Because there are 3 rows and 5 columns in the contingency table there will be 8 categorical variables with a
1 representing true and a O representing false. To clarify the situation consider the following table displaying
the contingency table along with equivalent data file

Test file loglin.tf1 Test file gIm.tf3
c1 €2 c3 €4 Cs
ri | 141 67 114 79 39
rp | 131 66 143 72 35
r3 36 14 38 28 16

Ra;

X2

=
W
=
IS
=
W
=
=N
=
Q
=
oo

Y
141

67
114
79
39
131
66
143
72
35
36
14
38
28
16

o

O OO OO0 O0OO0ODO0OO0 = = =4 a4
OO0 000 =+ = =2 4 4 00O0O0

- = 24 24 40 00000000 OoOo
OO0 00O 20000+ 0000 =
OO0 o0 -+~ 0000O 0000 =0
OO0 4+ 0000 0000 —+0O0
O 2 0000+ 0000~ 0O0O0
- 0O 00O+ 0000+ 00O O0oOOo
_ o el el e el e e e e e e g,

Hence, because cell 1,1 indicates 141 number of times that category 1,1 occurred then row 1 of the data file
will have a 0 everywhere except for x; = 1 and x4 = 1 indicating row 1 and column 1 of the contingency
table. In other words variables x1, x5, x3 represent rows 1, 2, 3 in the contingency table, while variables
X4,X5, X6, X7, X3 represent columns 1, 2, 3, 4, 5 in the contingency table.

To summarize. If a contingency table 7" has r rows and ¢ columns then the equivalent data file D will have rc
rows and r + ¢ +2 columns. The value in contingency table cell 7;; will be the value in data cell Dy; with
k=(G{—-1)c+jand [ =r+c+ 1. However, all the data cells Dy; will be zero for / < r + ¢ except for [ =i
and [ = j + r which will be one.

The next tables show the results from fitting a log link and mean but no offsets to glm. tf3.

No. parameters = 9, Rank = 7, No. points = 15, Deg. freedom = 8

Parameter Value Lower95%cl Upper95%cl Std. error )2
Constant  2.59766 2.53813 2.65719 0.0258152 0.0000
B(1) 1.26195 1.16091 1.36299 0.0438171 0.0000
B(2) 1.27773 1.17714 1.37833 0.0436224 0.0000
B(3) 0.05798 -0.09595 0.21190 0.0667511 0.4104 ***
B(4) 1.03069 0.90365 1.15773 0.0550913 0.0000
B(5) 0.29102 0.12229 0.45976 0.0731714 0.0041
B(6) 0.98757 0.85859 1.11654 0.0559316 0.0000
B(7) 0.48798 0.33224 0.64371 0.0675352 0.0001
B(8) -0.19960 -0.40795 0.00875 0.0903524 0.0582*

Deviance = 9.03788, A =1
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Number Y-value  Theory Dev-resid Leverage

1 141 132.993 0.68750 0.603533
2 67 63.4740 0.43857 0.513759
3 114 127.380 -1.20721 0.596285
4 79 77.2915 0.19363 0.531602
5 39 38.8616 0.02218 0.481976
6 131 135.109 -0.35531 0.608326
7 66 64.4838 0.18808 0.519638
8 143 129.406 1.17492 0.601167
9 72 785211 -0.74647 0.537265
10 35 39.4799 -0.72715 0.488239
11 36 39.8979 -0.62759 0.392649
12 14 19.0422 -1.21309 0.255123
13 38 38.2139 -0.03464 0.381546
14 28 23.1874 0.96754 0.282457
15 16 11.6585 1.20279 0.206435

The definitions are

For Poisson errors: d; =2 {y,- log (%) - (y;i — ,12,-)}
Hi
Deviance residuals: r; = sign(y; — ,uA,-)\/dT
n
Deviance = d;,
i=1

but note that an error message is output to warn you that the solution is over-determined, i.e., the parameters
and standard errors are not unique.

Thus, in order to obtain unique parameter estimates, it is necessary to impose constraints so that the resulting
constrained system is of full rank. Let the singular value decomposition (SVD) P* be represented, as in

GO2GKF, by
P = ( D_IPT ),

and suppose that there are m parameters and the rank is r, so that there need to be n. = m — r constraints, for
example, in a m by n. matrix C where
crp=o.

Then the constrained estimates /3. are given in terms of the SVD parameters 35,4 by
Be = ABsva
= (I = Po(CT Po)~'CT)Bysva
while the variance-covariance matrix V is given by
V=APD2PT AT,
provided that (CT Py 1) exists.

This approach is commonly used in log-linear analysis of contingency tables, but it can be tedious to first fit
the overdetermined Poisson GLM model then apply a matrix of constraints as just described. For this reason
SimMF[T provides an automatic procedure to calculate the dummy indicator matrix from the contingency table
then fit a log-linear model and apply the further constraints that the sum of row effects and sum of column
effects are zero.
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This simplified GLM log-linear analysis of contingency tables is available from the StMF[T main menu
[Statistics] option using either the [Standard statistical tests] sub-menu or the [Generalized linear models]
options.

For instance, the next table illustrates how this is done with 1oglin. tf1 using the GLM log-linear contingency
table analysis procedure to read in a contingency table, fit a Poisson model, then apply the correction to apply
the equations of constraint

ncol
Z Column parameter; = 0
i=1
nrow
Row parameter; = 0
i=1

to obtain well-defined parameter estimates.

No. rows = 3, No. columns =5
Deviance (D) = 9.03788E+00, Deg. freedom = 8
P(x* > D) =0.3391

Parameter Value Lower95%cl Upper95%cl Std. error )2
Constant  3.98308 0.0395833 3.89180 4.07435 0.0000
Row 1 0.39606 0.0458291 0.29038 0.50175 0.0000
Row2 0.41185 0.0456995 0.30646 0.51723 0.0000
Row 3 -0.80791 0.0621905 -0.95132  -0.66450 0.0000
Col1 0.51116 0.0561557 0.38166 0.64065 0.0000
Col2 -0.22851 0.0727114 -0.39618 -0.06084 0.0137*
Col3  0.46804 0.0569148 0.33679 0.59933 0.0000
Col4 -0.03156 0.0675080 -0.18723 0.12412 0.6527 ***
Col5 -0.71913 0.0887225 -0.92373  -0.51454 0.0000
Data Model Delta Dev-resid Leverage

141 132.9931 8.0069 0.6875 0.6035
67 63.4740 3.5260 0.4386 0.5138
114 127.3798 -13.3798 -1.2072 0.5963
79 77.2915 1.7085 0.1936 0.5316
39 38.8616 0.1384 0.0222 0.4820
131 135.1089  -4.1089 -0.3553 0.6083
66 64.4838 1.5162 0.1881 0.5196
143 129.4063 13.5937 1.1749 0.6012
72 78.5211 -6.5211 -0.7465 0.5373
35 39.4799  -4.4799 -0.7271 0.4882
36 39.8979  -3.8979 -0.6276 0.3926
14 19.0422  -5.0422 -1.2131 0.2551
38 38.2139  -0.2139 -0.0346 0.3815
28 23.1874 4.8126 0.9675 0.2825
16 11.6585 4.3415 1.2028 0.2064
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GLM example 4: GO2GDF, gamma errors with a reciprocal link

The next tables show the results from fitting a reciprocal link and mean but no offsets to glm.tf4.

No. parameters = 2, Rank = 2, No. points = 10, Deg. freedom = 8

Parameter Value Lower95%cl Upper95%cl Std. error )4
Constant  1.44085 -0.08812 2.96981 0.663037 0.0615*
B(1) -1.28653 -2.82436 0.25131 0.666882 0.0898 *

Adjusted Deviance = 35.0344, S = 1.07418, A =1

Number Y-value  Theory Dev-resid Leverage

1 1.00 6.48000 -1.39085 0.2
2 0.30 6.48000 -1.92278 0.2
3 10.5 6.48000 0.52365 0.2
4 9.70 6.48000 0.43179 0.2
5 10.9 6.48000 0.56784 0.2
6 0.62 0.69404 -0.11071 0.2
7 0.12 0.69404 -1.32870 0.2
8 0.09 0.69404 -1.48152 0.2
9 0.50 0.69404 -0.31063 0.2
10 2.14 0.69404 1.36648 0.2

Note that with gamma errors, the scale factor (v‘]) can be input or estimated using the degrees of freedom, k,
and

n ~ ~.12
-1 = S L0 = A/
vT ; N -k
For gamma errors: d; = 2 {log(/iz) + (&)}
i

1 1
3(y] — ;3
Deviance residuals: r; = (yl—,ﬂl)
1i3
d;

n
Deviance: = Z
i=1
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8.4.3 GLM: Loglinear contingency table analysis

In addition to chi-square and Fisher exact analysis of contingency tables, using generalized linear models
(GLM) to perform loglinear analysis is often preferred as it provides more insight into the structure of the
table, and can be extended to contingency tables with more than two dimensions.

From the main SIMF|T menu select [Statistics], [Generalized linear models], [Contingency table analysis],
then observe the format of the default data file loglin. tf1 which contains the following contingency table.

c1 C c3 C4 Cs
r | 141 67 114 79 39
rn | 1831 66 143 72 35
r3 36 14 38 28 16

When these data are analyzed, SIMF]T creates a temporary data file formatted for GLM analysis using Poisson
error with a log link then applies the constraint that the sum of row coeflicients and also the sum of column
coeflicients add to zero to output the next tables of results.

No. rows = 3, No. columns =5
Deviance (D) = 9.03788E+00, Deg. freedom =8
P(x* > D) = 0.3391

Parameter Value Lower95%cl Upper95%cl Std. error p
Constant  3.98308 0.0395833 3.89180 4.07435 0.0000
Row 1 0.39606 0.0458291 0.29038 0.50175 0.0000
Row2 0.41185 0.0456995 0.30646 0.51723 0.0000
Row 3 -0.80791 0.0621905 -0.95132  -0.66450 0.0000
Col1 0.51116 0.0561557 0.38166 0.64065 0.0000
Col2 -0.22851 0.0727114 -0.39618 -0.06084 0.0137*
Col3 0.46804 0.0569148 0.33679 0.59933 0.0000
Col4 -0.03156 0.0675080 -0.18723 0.12412 0.6527 ***
Col5 -0.71913 0.0887225 -0.92373  -0.51454 0.0000
Data Model Delta Dev-resid Leverage

141 132.9931 8.0069 0.6875 0.6035
67 63.4740 3.5260 0.4386 0.5138
114 127.3798 -13.3798 -1.2072 0.5963
79 77.2915 1.7085 0.1936 0.5316
39 38.8616 0.1384 0.0222 0.4820
131 135.1089  -4.1089 -0.3553 0.6083
66 64.4838 1.5162 0.1881 0.5196
143 129.4063  13.5937 1.1749 0.6012
72 78.5211 -6.5211 -0.7465 0.5373
35 39.4799  -4.4799 -0.7271 0.4882
36  39.8979  -3.8979 -0.6276 0.3926
14 19.0422  -5.0422 -1.2131 0.2551
38 38.2139 -0.2139 -0.0346 0.3815
28  23.1874 4.8126 0.9675 0.2825
16 11.6585 4.3415 1.2028 0.2064
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Theory

A contingency table is an array of nonnegative frequencies with n rows and m columns, such as this table
contained in SIMFIT test file chisqd. tf4, for 15 observations carried out on two populations to test for equal
probabilities of success.

Success  Failure
Sample 1 3 3 6
Sample 2 7 2 9
10 5|15

Here, the cell frequencies f;; are (3, 3,7,2), the sum of row frequencies known as row marginals are (6, 9),
the sum of column frequencies known as column marginals are (10, 5), and obviously the row and column
marginals must separately both add up to the total number of frequencies (15). The null hypothesis is usually
to test for homogeneity or independence, which is the condition that the f;; only depend on row i and column
Jj, and there are no additional influences affecting frequencies in special cells.

To be precise, in the general case there will be frequencies f;; wherei =1,2,...,n,and j = 1,2,...,m, and
it is wished to test for homogeneity, i.e. independence, or no association between the variables, which can be
stated as the null hypothesis

H()Z/J[j = Hi+M+j, fori = 1,2,...,n,andj= 1,2,...,m

where each cell probability u;; is completely determined by the corresponding row marginal y;,, and the
column marginal u, ; probabilities.

To do this, SIMF[T defines dummy indicator variables for the rows and columns, then fits a generalized linear
model assuming a Poisson error distribution and log link, but imposing the constraints that the sum of row
coeflicients is zero and the sum of column coefficients is zero, to avoid fitting an over-determined model, and
to be consistent with an assumed loglinear model.

The advantage of this approach is that the deviance, predicted frequencies, deviance residuals, and leverages
can be calculated for the model

log(pij) = 0 +a; + Bj,

where u;; are the expected cell frequencies expressed as functions of an overall mean 6, row coefficients
@;, and column coeflicients §;. The row and column coeflicients reflect the main effects of the categories,

according to the above model, where
n m
Z a; = Z'Bj =0
i=1 Jj=1

and the deviance, which is a likelihood ratio test statistic, can be used to test the justification for a mixed term
vij in the saturated model

log(uij) = 0 +ai + Bj +vij,
which fits exactly, i.e., with zero deviance.
SiMF[T performs a chi-square test on the deviance to test the null hypotheses of homogeneity, which is the

same as testing that all y;; are zero, the effect of individual cells can be assessed from the leverages, and
various deviance residuals plots can be done to estimate goodness of fit of the assumed loglinear model.

Clearly, the chi-square test for data in test file loglin.tf1l presented in the previous table does not support
rejection of the null hypothesis of homogeneity.
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8.4.4 GLM: Logistic regression

Logistic regression is widely used to model experiments with only one of two outcomes such as success
or failure which, unlike the simple method for analysis of binomial proportions, depend on the values of k&
covariates x1, x2, . .., Xk, where k > 1.

Example 1: Alcohol and congenital abnormalities

From the main StMF]T menu choose [Statistics], [Generalized linear models], then [Logistic regression], and
examine the default test file logistic.tf3 containing the following data.

x oy N s
0.0 48 17066 1
0.5 38 14464 1
15 5 788 1

1
1

4.0 1 126
7.0 1 37

These data were taken from a study of the effects of consuming alcoholic drinks on congenital abnormalities
noted in infants after birth.

1. Column 1: x, alcoholic drinks consumed per day by mother

2. Column 2: y, infants born with abnormalities

3. Column 3: N, sample size

4. Column 4: s, weighting factors (s = 1 indicates unweighted analysis)

Logistic regression by was used to fit the GLM model

log[y/(N = y)] = Bo + B1x
which yielded the following parameter estimates, residuals, then observed and estimated frequencies.

Number of parameters = 2, Rank = 2, Number of points = 5, Degrees of freedom = 3

Parameter Value Lower95%cl Upper95%cl Std. error p exp(Br)
Constant  -5.95840 -6.32583 -5.59097 0.115454 0.0000
Bi 0.31927 -0.08038 0.71889 0.125574 0.0845* 1.37611

Deviance = 1.96760

Number Y-value  Theory Dev-resid. Leverage
48 43.9856 0.597220 0.584800
38 43.7119 -0.885127 0.476721
3.27338 0.886968 0.097194
1.15684 -0.149976 0.246568
0.87238 0.135174 0.594717

a b~ O =
—_ a o,

Observed Estimated
0.0028 0.0026
0.0026 0.0030
0.0064 0.0041
0.0079 0.0092
0.0270 0.0236
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Example 2: The symmetrical case with one variable

Logistic regression is frequently used to model the variation in binomial probability p as a simple linear
function of a variable x often without realizing that, because of the necessary symmetry of the logistic
function, this will usually lead to a biased fit.

For instance, consider the data file logistic.tf4 below

5
7
9
11
13
15

and its complement logistic.tf5

5
7
9
11
13
15

0
0
11
26
29
20

39
30
17
14
1
0

39
30
28
40
30
20

39
30
28
40
30
20

[ G G T I G ' Y

[ G G T T G Y

simulated by SIMF[T using a random choice from an integer uniform distribution for N (20 < N < 40)
followed by a random choice from a binomial distribution for y given N and p(x) which were then fitted as
indicated in the next graph.

Logistic Regression

1.0 /\ /\— . O
08 | .
< 1
> 06 | ) -
(2]
[
je)
£
2
O 04 » .
|
[a¥
02 } .
0.0 O ' 7\
5.0 75 10.0 125 15.0

Exact parameters were 8y = —10, 81 = 1 for p(x) and By = 10, B,

are in the next tables.

Independent Variable x

—1 for 1 — p(x) and the best fit parameters
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Number of parameters = 2, Rank = 2, Number of points = 6, Degrees of freedom = 4

Parameter Value Lower95%cl Upper95%cl  Std. error p exp(B1)
Constant -10.2573 -14.5246 -5.98991 1.53699 0.0026
Bi 1.01996 0.60551 1.43440 0.14927 0.0024 2.77307

Deviance = 7.07433

Number of parameters = 2, Rank = 2, Number of points = 6, Degrees of freedom = 4

Parameter Value Lower95%cl Upper95%cl Std. error p exp(Br)
Constant  10.2573 5.98391 14.5307 1.53915 0.0026
p1 -1.01996 -1.43498 -0.60494 0.14948 0.0024 0.360610

Deviance = 7.07433
Due to the symmetry of the logistic curves for p and 1 — p about their midpoints x; »

1 1 1

= =1l-p= ——M =
P=14 exp(-n) P=14 exp(n) 2
so that the mid point requires 7 = 0, that is x1 /2 = —B0/f1.

Moving a horizontal distance A to either side of the midpoint generates two vertical distances A and A, which
are equal as shown in this next graph.

Logistic Symmetry
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S 06 | -
a A
x
@
+
— 04 )\ i
S
A,
0.2 i
ol ’/ |
1 1 1 1 1
5.0 7.5 10.0 12.5 15.0
X
This is because
1 1 1 1
- = AZ =

A= —m—mm—— — B —
R exp(=p11) 2 2 1+exp(Bid).
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Theory

In a situation where the probability of success is a fixed constant p and Y is the number of successes in N
trials (N > 1), then the probability the ¥ equals any specific value y where 0 < y < N is

N _
P(Y=y)= ( )py(l -p)N
y
and p can be estimated as p where the estimate, expectation and variance are

p=y/N
E(y)=Np
V(y) =Np(l -p).

When the binomial parameter is a function of some variables x1, x3, ..., x, then a functional relationship
must be proposed to model p(x) and this must be fitted to estimate parameters accounting for the variation in
p. Itis usual to do this by fitting a generalized linear model (GLM) with assumed binomial error and logistic
link, but the reason for this model is not because it is the correct model but because of the following fact. In
the simple case of one variable x the log odds ratio from fitting a GLM model with y; at x and y, at x + 1 can
then be expressed as

<

1

]Og(N—yl) ~ o+ B1x

log( 2 )zﬂ0+ﬂ1(x+1)
-2

=

and hence the odds ratio can be estimated as

p2/(1 = po)

p1/(1-p1)
From this we could conclude that an increase of one alcoholic drink per day can be estimated to change the
odds ratio for congenital malformation by about 1.376.

~ exp(B1).

It is this seemingly easy method for interpreting the parameter estimates from logistic regression that has been
responsible for the widespread and often uncritical adoption of this technique and its extension into areas such
as

* Including multiple variables
* Analyzing cases with categorical variables.

So, in order to confirm goodness of fit, SIMF]T outputs the deviance and deviance residuals defined as follows

i Ni —yi
For binomial errors: d; =2 {yi log (yT) + (N; = yi)log (7{)}
A Ni — f;
Deviance residuals: r; = sign(y; — /ji)\/d_i
n
Deviance = d;.

i=1

where there are n observations and fi; = N; p;, and these should always be considered before accepting a fit.
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8.4.5 GLM: Binary logistic regression

Binary logistic regression is widely used to model experiments with only one of two outcomes such as success
or failure which, unlike the simple method for analysis of binomial proportions, depend on the values of k&

covariates x1, x2, . .., Xk, where k > 1.

Example 1: Fitting a binary logistic model

From the main SIMF]T menu choose [Statistics], [Generalized linear models], then [Binary logistic regression]
(with no strata), then examine the default test file logistic.tfl containing the following data.

X1

X2

N

3.70
3.50
0.75
1.25
0.80
0.70
0.60
1.10
0.90
0.90
0.80
0.55
0.60
1.40
0.75
2.34
3.20
0.85
1.70
1.80
0.40
0.95
1.35
1.50
1.60
0.60
1.80
0.95
1.90
1.60
2.70
2.35
1.10
1.10
1.20
0.80
0.95
0.75
1.30

0.825
1.090
1.500
2.500
3.200
3.500
0.750
1.700
0.750
0.450
0.570
2.750
3.000
2.330
3.750
1.640
1.600
1.415
1.060
1.800
2.000
1.360
1.350
1.360
1.780
1.500
1.500
1.900
0.950
0.400
0.750
0.030
1.830
2.200
2.000
3.330
1.900
1.900
1.625
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The format of this data file will now be explained. These are vasoconstriction data from Finney D. J. (1947)
Biometrika, 34, 320-34 with the following meanings.

e Column 1: x; (volume of air inspired)

e Column 2: x, (rate of air inspiration)

e Column 3: y = 1 (vasoconstriction), or y = 0 (no vasoconstriction)
e Column 4: N =1 (sample size)

e Column 5: s = 1 (unweighted)

It is important to note that for binary logistic regression, y must be 1 (e.g. for success) or 0 (e.g. for failure),
and N must be 1 because y is the outcome from a single Bernoulli trial, whereas for normal logistic regression,
y must be in the range 0 < y < N with N > 1 for the number of trials resulting in y (e.g. the number of
successful outcomes). The weighting factors would normally be s = 1 except for experienced users.

Fitting a generalized linear model with a mean, no offsets, binomial error and a logistic link leads to the
following results table and half-normal residuals plot.

Number of parameters = 3, Rank = 3, Number of points = 39, Degrees of freedom = 36
Parameter Value Lower95%cl Upper95%cl Std. error p exp(Bi)

Constant -9.51999 -16.0587 -2.98131 3.22405 0.0055
B 3.87719 0.986847 6.76753 1.42515 0.0100 48.2882
B2 2.64683 0.797466 4.49619 0.91187 0.0063 14.1092

Deviance = 29.7656

Half-Normal Plot: r = 0.9788
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Example 2: Predicting probabilities

Binary logistic regression seeks to find an approximation p(x) to a population binomial probability p(x) that
is not a constant probability but one that depends on covariates x as in the following model for the logodds

p(x) ) _
log(l —p(X)) ~ ()

where 17(x) = Bo + Bix1 + Baxa + - - - + Brxk
and where the approximation results from fitting a generalized linear model (GLM) with binomial error, using

a logistic link, when there are k covariates. The constant parameter Sy in this polynomial simply estimates
the logodds when all k covariates are zero, and can be included or omitted from the model.

Having estimated best-fit parameters and confirmed that the model is satisfactory it is often useful to predict
what the probability would be given a set of covariates using the best-fit parameters in the next expressions

7 = Bo+ Bix1 + foxa + - + Brxx
exp(7)

1 + exp(7)
1

" T+exp(—i)

>

So, after fitting has been completed, SIMF[T offers the possibility to do this either by inputting a set of
covariates from the terminal or from a data file containing a matrix of covariates. Here, for instance, are the
data contained in the test file logistic.tf2

X1 X2
04 1.0
06 1.0
0.8 1.0
1.0 1.0
1.0 0.8
1.0 0.6
1.0 04

which lead to these predictions after evaluation using the best-fit model from fitting logistic.tf1.

File: logistic.tf2

Data: Covariates to evaluate p after fitting logistic.tf1

Y (x) evaluated for x; to x,

Model includes a constant term

Binomial N = 1

y predicted Probability estimated Range of covariates
y1 = 4.85785E-03 Binomial p = 0.004858 x=04,...,1.0
y2 = 1.04893E-02 Binomial p =0.010489 x=0.6,...,1.0
y3 = 2.25015E-02 Binomial p = 0.022502 x=0.8,...,1.0
y4 = 4.76080E-02 Binomial p = 0.047608 x=1.0,...,1.0
ys5 = 2.85997E-02 Binomial p = 0.028600 x=1.0,...,0.8
ye = 1.70450E-02 Binomial p =0.017045 x=1.0,...,0.6
y7 =1.01099E-02 Binomial p =0.010110 x=1.0,...,0.4

As binary logistic regression is so widely used, often uncritically and without justification, to predict prob-
abilities given covariates it is as well to consider the basic principles behind this method which will now be
done.
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Theory

The ideas behind binary logistic regression will be explained under several headings, namely
1. definitions;
. one quantitative variable;

. several quantitative variables;

2
3
4. categorical variables;
5. fitting technique; then
6

. conclusion.

1. Definitions

A random integer variable Y can be formulated as taking a value depending on the result of an experiment
with only one of two possible outcomes, such as heads/tails in coin tossing, death/survival following a serious
illness, positive/negative of a value with respect to a baseline, etc. Arbitrarily calling one outcome a success
and the other a failure we can sometimes define Y as taking two possible values, 1 or 0, depending on a
probability p where 0 < p < 1 thatis

Probability(y = 1) = p
Probability(y =0) =1 — p.

When the certain and impossible outcomes are excluded (i.e. 0 < p < 1) the Odds can be defined as the ratio
of success to failure as can the Log Odds, its natural logarithm, that is

Odds = 1L

-p
L _ 14
og Odds =log (—) .
I-p
Given one trial with probability p; where 0 < p; < 1 and one with probability p» where 0 < py < 1 the
Odds Ratio and Log Odds Ratio are then given by

. _p2/(1=-p2)
Odds Ratio = ———=
pi/(1=p1)
Log Odds Ratio = log (M) .
p1/(1=p1)

At this point it should be emphasized that exponentials and logarithms to base e are used in theoretical
developments and computational implementation, but many users prefer to present results using logarithms
to base 10 in order to immediately clarify changes in orders of magnitude as powers of 10.

Of course such probabilities are never known exactly but must be estimated by sampling. In the case of N
successive Bernoulli trials which are independent with identical probability it is usual to define a binomial
variable W as

W=yi+y2+---+yn

so that the probability that W = w where 0 < w < N is

P(W=w)= (5)pW(1 -p)N v
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with expectation and variance given by

E(W)=Np
V(W) =Np(1-p).

From such a series of trials an estimate for the binomial parameter p is easily seen to be

A_W
P=7yN

and StMFT provides dedicated analysis of proportions routines to calculate p with unsymmetrical confidence
limits and plot these as a function of a parameter such as time, which only serves to order the observations for
plotting and does not enter into the calculations.

Logistic regression using GLM is an extension of this subject to the case where additional variables x affect
the probabilities under the assumption that each set of additional variables alters the binomial distribution
distribution, i.e. p = p(x), while binary logistic regression is just the special case where N = 1.

2. One quantitative variable

The GLM technique is used to adjust the two parameters B9 and [ until the best-fit values are located to
satisfy the approximation
h(x A A
log (L) ~ fo+ frx
1-px)
according to the maximum likelihood criterion.

A special case is where the continuous variable is used at just two levels differing by one unit, say x and x + 1,
for then we have that, since

Odds = 1L

= exp(n)

then for the two levels x and x + 1

Odds(x + 1)
Odds(x)

_exp(Bo+Bi(x+1))

~ exp(Bo+ i)

= exp(B1)

Odds Ratio =

so that the Odds multiply by the factor exp(/3;) for every one unit increase in the variable x or, alternatively,

ﬁ] = Log Odds Ratio.

3. Several quantitative variables

Now, for k variables we have
n=PBo+Lixi+Poxs+ -+ Prxi
which becomes difficult to fit as k increases, especially if the variables are not expressed in units so that the

values are of similar size. Further, the arguments about interpreting the estimated parameters in terms of Log
Odds Ratios, imply that only one variable is increased at a time with the others remaining fixed.
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4. Categorical variables

Frequently the covariates are qualitative variables which can be included in the model by defining appropriate
dummy indicator variables. For instance, suppose a factor has m levels, then we can define m dummy indicator
variables x, x2, . .., X, as in the next table.

Level | xq X2 | x3 Xm
1 1 0 0 0
2 0 1 0 0
3 0 0 1 0
m 0 0 0 |1

The data file would be set up as if to estimate all m parameters for the m factor levels but because only m — 1
of the dummy indicator variables are independent, one of them would have to be suppressed if a constant
were to be fitted, to avoid aliasing, i.e., the model would be overdetermined and the parameters could not be
estimated uniquely. Suppose, for instance, that the model to be fitted was for a factor with three levels, i.e.,

log {ﬂ} =apt+aix; +axxy +asxs
1-p(x)

but with any one of the x; suppressed, x; for instance, since
X1 +x +x3 =1
for every i.
Then the estimated parameters could be interpreted as log odds ratios for the factor levels with respect to level

1, the suppressed reference level. This is because for probability estimates p1, p» and p3 we would have the
odds estimates

— =exp(do) (x1=1,x=0,x3=0)
1-pi
P2__ exp(do+dz) (x1 =0,x2=1,x3=0)
1 —po
P3

— =exp(do+az) (x1=0,x2=0,x3=1)

and estimates for the corresponding log odds ratios involving only the corresponding estimated coefficients

log{ﬁz/(l —ﬁz); .
pi/(1—p1)

P/ =P _
log{m/(l —ﬁo} -

5. Fitting technique
The first thing to note about binary logistic regression is that we cannot fit the model
log (%) = Bo+Bixi + Baxz + - - + Brx”

directly as all the y values are O or 1. Instead starting estimates are generated and an iterative procedure is
used to find the maximum likelihood solution point and estimate the deviance and deviance residuals. In the
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event that the data matrix is not of full rank this will be reported and the singular value decomposition will be
used, so parameter estimates will still be generated but will not then be unique.

Note that, for standard logistic regression where w; is the i’th binomial variable for m samples of size N;, and
not either 0 or 1 with a sample size of 1 as with binary logistic regression, the deviance is

> deviwi ) =2 {w,- log (W—) + (N; - wy) log (—W)}
‘= ‘= Hi Ni — i

and the deviance residuals r; are
ri = sign(w; — f;)ydev(w;, d;).

Of course these expressions are corrected for the extreme cases w; = 0 or w; = N; which will happen from
time to time with standard logistic regression, but will happen all the time with binary logistic regression.

6. Conclusions

Binary logistic regression is widely used to analyze large data sets, sometimes even containing mixtures of
qualitative and quantitative variables, and often in order to estimate Log Odds Ratios. It is incumbent upon
users that any conclusions drawn about predicting probabilities are justified by taking account of the following
suggestions.

* Add a constant term to the regression unless it is clear that p = 0.5 when all the covariates are zero.
* Scale all the variables to similar orders of magnitude prior to regression.

 Take care about the need with categorical variables to suppress a variable if a constant is fitted.

* Check the deviance, deviance residuals, and leverages to make sure the model gives a sensible fit.

* Do not ignore warnings if the rank is less than full or iteration has not converged.

* Only using parameters to estimate log odds ratio if the number of variables is small and that a unit
change in a variable makes sense.

* Be careful not to confuse exponentials and logarithms to base e with powers of ten and logarithms to
base 10.
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8.5 Nonlinear regression: simple

(N
~

8.5.1 Fitting Michaelis-Menten enzyme kinetic models

Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.

https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

Michaelis—Menten models are used to analyze quasi steady state data when the enzymes concerned do
not exhibit substrate inhibition, substrate activation, or any other complicating features such as allosterism.
The one site version can be extended to cover the case of an enzyme with several kinetically differing but

independent sites, or mixtures of isoenzymes.

Example 1: Substrate varied mode

From the main StMF|T menu select [A/Z], open program mmfit, select the substrate-varied option, and view
the default test file mmfit.tf4 which has the following data.

S v se(v)
0.21759 0.20273 0.0054324
0.21759 0.20050 0.0054324
0.21759  0.19241 0.0054324
0.39440 0.31925 0.015018
0.39440 0.34123 0.015018
0.39440 0.31252 0.015018
0.71490 0.50336 0.011163
0.71490 0.48104 0.011163
0.71490  0.49241 0.011163
1.2958 0.67103 0.018464
1.2958 0.70535 0.018464
1.2958 0.67639 0.018464
2.3488 0.90847  0.015994
2.3488 0.93885 0.015994
2.3488 0.91501 0.015994
4.2575 1.1107 0.021537
4.2575 1.1439 0.021537
4.2575 1.1035 0.021537
7.7172 1.3639 0.048544
7.7172 1.2947 0.048544
7.7172 1.3882 0.048544
13.988 1.6565 0.042217
13.988 1.5894 0.042217
13.988 1.5785 0.042217
25.355 1.6468 0.078963
25.355 1.7954 0.078963
25.355 1.6748 0.078963
45.959 1.8712 0.029314
45.959 1.8568 0.029314
45.959 1.8148 0.029314

The columns contain data in the following format.

Column 1: S, the non—negative substrate concentration which must be in non-decreasing order.
Column 2: v, the non—negative initial rate measured for the concentration in column 1.
Column 3: se, the positive sample standard deviation of the replicate rate measurements.

Note that column 3 can be omitted or set to 1 if unweighted regression is required.
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To illustrate the functionality of the SIMF[T program mmfit we shall fit a one site model followed by a two
site model (or mixture of two isoenzymes) and see if any improvement in fit can be supported by statistical
analysis. The two models are as follows.

dexS
fi(S) = K, +5
fz(S) _ Vmaxls + Vmasz

Kn +S Kp, +S

To fit these two models choose to start fitting at order 1 and end fitting at order 2, using the further default
settings, to obtain the following results tables.

Table 1: For best-fit 1:1 Michaelis-Menten function f;

Number Parameter Value  Std. Error Lower95%cl Upper95%cl p
1 Vinax 1.7861 0.040866 1.7024 1.8698 0.0000
2 K 1.9734 0.097463 1.7738 21731 0.0000

Parameter correlation matrix for model f;
1
0.8185 1

Table 2: For best-fit 2:2 Michaelis-Menten function f>
Number Parameter Value  Std. Error Lower95%cl Upper95%:cl p

1 Vinax, 1.0254  0.10377 0.81211 1.2387 0.0000
2 Vinax, 1.0290 0.13352 0.75455 1.3035 0.0000
3 K, 9.7460 2.8652 3.8566 15.636 0.0022
4 K, 1.0433 0.11698 0.80283 1.2837 0.0000

Predicted maximum rate (i.e. apparent V,,,,x) = 2.0544
Predicted half saturation point (i.e. apparent K;,;) = 3.1811

Parameter correlation matrix for model f>

1
-0.9568 1

-0.8573 0.9638 1

-0.9631 0.9810 0.9088 1

In order to determine if a significant improvement in fit has resulted we need to consider the following
questions.

1. Are the parameters well-determined with both fits ?

2. Does the residuals analysis indicate satisfactory fits ?

3. Does the F test for excess variance support model f, in preference to fi ?
4. Can the best-fit curves be seen to differ when plotted against the data ?

5. Does the graphical deconvolution display convincing evidence that both components of f, are con-
tributing to the overall fit ?

The results displayed in Tables 1 and 2 show that both models fit well with parameters that differ significantly
from zero. Table 3 indicates that an excellent fit has resulted for model f, and Table 4 supports the conclusion
that there is statistical evidence that model f, should be accepted as explaining the data better than model f;.
This is then further emphasized by the graphical displays showing the data with best-fit curves for f; and f5,
and the deconvolution of the f> fit into the two contributing components.
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Table 3: Goodness of fit for model f,

Analysis of residuals: WSSO 28.293
P(x? > WSSQ) 0.3442
RZ, cc(theory, data)? 0.9963
Largest Absolute relative residual 5.88%
Smallest Absolute relative residual 0.25%
Average Absolute relative residual 2.28%

Absolute relative residuals in range 0.1-0.2  0.00%
Absolute relative residuals in range 0.2-0.4  0.00%
Absolute relative residuals in range 0.4-0.8  0.00%

Absolute relative residuals > 0.8 0.00%

Number of negative residuals () 13

Number of positive residuals () 17

Number of runs observed (r) 22

P(runs < r: given m and n) 0.9957

5% lower tail point 10

1% lower tail point 9

P(runs < r : given m plus n) 0.9959

P(signs < least number observed) 0.5847
Durbin-Watson test statistic 2.5008 »2.5, -ve serial correlation?
Shapiro-Wilks W statistic 0.9678
Significance level of W 0.4806

Akaike AIC (Schwarz SC) stats 6.2425 ( 11.847)

Verdict on goodness of fit: incredible

Table 4: F test results for model f, against fi

WSSQ previous 257.18

WSSQ current 28.293

Number of parameters previous 2

Number of parameters current 4

Number of x values 30

Akaike AIC previous 68.458

Akaike AIC current 6.2425, ER = 3.2346E+13
Schwarz SC previous 71.260

Schwarz SC current 11.847

Mallows’ C), 210.34,Cp, /2 =105.17
Numerator degrees of freedom 2

Denominator degrees of freedom 26

F test statistic (F'S) 105.17

P(F > FS) 0.0000

P(F < FS) 1.0000

5% upper tail point 3.3690

1% upper tail point 5.5263

Conclusion based on F test

Reject previous model at 1% significance level
There is strong support for the extra parameters
Tentatively accept the current best fit model
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Example 2: Isotope displacement mode

When there is no appreciable kinetic isotope effect, that is, the binding or kinetic transformation process is the
same whether the substrate is labeled or not, this allows experiments in which labeled ligand is displaced by
unlabeled ligand, or where the flux of labeled substrate is inhibited by unlabeled substrate. Since the ratios of
labeled ligand to unlabeled ligand in the bound state, free state, and in the total flux are equal, a modified form
of Michaelis-Menten equations can be used to model the binding or kinetic processes. For instance, suppose
that total substrate, S say, consists of labeled substrate, [ Hot] say, and unlabeled substrate, [Cold] say. Then
the flux of labeled substrate for k > 1 active sites will be given by

d[Hot] _ Vinax, [Hot] + Vinax, [Hot] - Vinax, [Hot]
dt  Kp, +[Hot) +[Cold] = K, + [Hot] +[Cold] K, + [Hot] + [Cold]’

So, if [Hot] is kept fixed and [Cold] is regarded as the independent variable, then program mmfit can be
used to fit the resulting data. In other words, cold substrate is being used as a competitive inhibitor of the flux
of hot substrate in such experiments.

Using the isotope displacement option in program mmfit with the default test file hotcold. tf1 establishes

that two sites is a statistically significant improvement over one site, and leads to the following deconvolution
plot to display the best-fit curve together with the separate components.
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Note that an important difference between using mmfit in this mode rather than in straightforward kinetic
mode is that the kinetic constants are modified in the following sense: the apparent V4, values estimated
are actually the true values multiplied by the concentration of labeled substrate, while the apparent K,,, values
estimated are the true ones plus the concentration of labeled substrate.

Where the actual concentration of [Hot] is known it is possible to fit such data in a more satisfactory and
discerning manner by using SIMF]T program qnfit, where the [Hot] can be input as a fixed constant term so
that the actual kinetic constants can be estimated rather than the apparent ones mentioned above.
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Theory

Quasi steady-state enzyme kinetics is actually based on the assumption that the substrate concentration remains
constant, i.e. dS/dt = 0, while the initial rate of product production dP/dt > 0 is measured. Although itis a
contradiction of nomenclature it is a widely used short hand convention nevertheless that an initial rate v(S)
can defined as a flux from substrate S into product P as follows

dP _ dS

=L -2
E e D

and, in the case of k > 1 independent active sites, the appropriate model equation is

Vmax1 S Vmasz Vmaka
+ + + —

S) = .
v(S) Kn +S Kmn, +S K, +S

In bygone times before the advent of computers, experimentalists had to fit such equations by plotting in
transformed spaces, such as the Lineweaver-Burke double reciprocal plot, and then extrapolating to estimate
slopes and intercepts, but thankfully this era is long since gone. However, this does not mean that fitting such
an equation by constrained weighted least squares is a simple process. It is not. In fact the case with k = 1 is
trivial, the case with k = 2 is reasonable, but the cases k > 2 require data that is very extensive and accurate,
and where the parameters are sufficiently distinct to allow model discrimination. For this particular model
that requires Va4, values to be similar, but K,,,; to be distinct.

Program mmfit performs the following steps.
1. The v values are first weighted using w; = 1/se%, or used unweighted if all se; = 1.
2. Using the ranges of S; and v; the data are transformed into internal coordinates of order unity.

3. Possible starting estimates are calculated for the parameters based on the internal coordinates, and then
these are altered by adding pseudo-random perturbations until an approximate minimum value for the
weighted sum of squares is located.

4. The parameters are then transformed into internal coordinates that will hopefully be of order unity to
stabilize the optimization.

5. From these random starting estimates the lowest and highest possible limits are calculated, then con-
strained optimization is performed by the quasi-Newton technique.

6. The internal parameters are transformed back into user-space, and the Hessian is estimated at the
solution point then inverted to calculate the parameter covariance matrix.

7. The order of parameters is permuted so that the subscripts fori = 1,2, ..., k refer to best-fit parameters
in the order Viuax, < Vimax, < ... < Vinax,. This is to allows retrospective comparison of fits to
alternative data sets.

8. The apparent (overall) V4 is calculated as the sum of the V,,4x, and the apparent (overall) K,,, is
calculated numerically.

9. Analysis of the residuals is performed together with numerous statistical procedures to ascertain good-
ness of fit, parameter reliability, and model discrimination.

10. Results tables and graphs are then provided.

Program mmfit allows users to control the random search for starting estimates and the technique to be used
for calculating the gradient vector, and should the cases with k > 2 be required, users can perform extensive
random searches to obtain starting estimates that can be input retrospectively for manual starts. If these steps
do not succeed it is time to try the SIMF[T advanced curve-fitting program gnfit.
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8.5.2 Fitting High—Low affinity ligand binding models

Ligand binding curves can be fitted by one binding site models or multiple binding sites with different affinity.
A distinction has to be made between high/low affinity receptor sites that are independent and can only show
negative cooperativity, and allosteric and other site-site interactions that can also give positive cooperativity.

Example 1: Ligand varied mode

From the main StMF]T menu select [A/Z], open program hilfit, select the ligand-varied option, and view the
default test file h1fit.tf4 which has the following data.

x y se(y)
0.021759 0.19832 0.0091144
0.021759 0.19438 0.0091144
0.021759 0.18094 0.0091144
0.039440 0.30473  0.0047306
0.039440 0.29537 0.0047306
0.039440 0.29883 0.0047306
0.071490 0.46465 0.015273
0.071490 0.49460 0.015273
0.071490 0.48484 0.015273
0.12958  0.71278 0.048762
0.12958  0.67885 0.048762
0.12958  0.61663 0.048762
0.23488  0.87238 0.048295
0.23488  0.80269 0.048295
0.23488  0.89546 0.048295
0.42575 1.0246  0.044998
0.42575  1.1137  0.044998
0.42575 1.0806  0.044998
0.77172  1.4145  0.062457
0.77172  1.2934  0.062457
0.77172  1.3806  0.062457
1.3988  1.3619  0.13387
1.3988  1.6295  0.13387
1.3988  1.4897  0.13387
25355  1.7047  0.19446
25355  1.4435  0.19446
25355  1.8236  0.19446
45959  1.7486  0.043681
45959  1.7613  0.043681
45959  1.8298  0.043681

The columns contain data in the following format.
1. Column 1: the non—negative ligand concentration x which must be in non-decreasing order.

2. Column 2: the non—negative response y presumed to be dependent on fractional saturation of receptor
or binding site at the concentration in column 1.

3. Column 3: the positive sample standard deviation of the replicate response measurements.
Note that column 3 can be omitted or set to 1 if unweighted regression is required.
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To illustrate the functionality of the SIMF[T program hlfit we shall fit a one site model followed by a two site
model (or mixture of two receptor types) and see if any improvement in fit can be supported by statistical
analysis. The two models are as follows.
AK,x
filx) = Tekx c
A1Ky x ArK 4, x
1+Kgx 1+K4x

fa(L) =

To fit these two models, choose to start fitting at order 1 and end fitting at order 2, using the further default
settings but with C = 0 as there is no background signal with these data. This leads to the following results
tables.

Table 1: For best-fit order 1 saturation function f;
Number Parameter Value Std. Error  Lower95%cl  Upper95%cl )2
1 A 1.7482  0.038529 1.6693 1.8271 0.0000
2 K, 5.2161 0.17513 4.8574 5.5749 0.0000
Apparent Yy,qx (.. A1+ Az + ...+ Ay) = 1.7482
Apparent K, (i.e. xo where f(xg) — C = Y;uax/2) = 0.19171

Parameter correlation matrix
1
-0.8715 1

Table 2: For best-fit order 2 saturation function f>
Number Parameter Value Std. Error  Lower95%cl  Upper95%cl p

1 Ay 0.91175  0.24512 0.40790 1.4156 0.0010
2 Ar 1.0625 0.30555 0.43439 1.6905 0.0018
3 K, 0.97501  0.68571 -0.43449 2.3845 0.1669 *
4 K, 8.5829 2.0044 4.4629 12.703 0.0002

Apparent Yy,qx (.. A1+ Az + ... + Ay) = 1.9742
Apparent K, (i.e. xo where f(xg) — C = Yuax/2) = 0.31272

Parameter correlation matrix
1

-0.9770 1
0.9019 -0.9685 1
0.9845 -0.9936 0.9385 1

In order to determine if a significant improvement in fit has resulted we need to consider the following
questions.

—_—

. Are the parameters well-determined with both fits ?
Does the residuals analysis indicate satisfactory fits ?
Does the F test for excess variance support model f> in preference to f; ?

Can the best-fit curves be seen to differ when plotted against the data ?

A

Does the graphical deconvolution display convincing evidence that both components of f, are con-
tributing to the overall fit ?

The results displayed in Tables 1 and 2 show that both models fit well with parameters that differ significantly
from zero. Table 3 indicates that an excellent fit has resulted for model f>, and Table 4 supports the conclusion
that there is statistical evidence that model f, should be accepted as explaining the data better than model f;.
This is then further emphasized by the graphical displays showing the data with best-fit curves for f| and fs,
and the deconvolution of the f, fit into the two contributing components. The concentration is often plotted
on a logarithmic scale which is then proportional to chemical potential.
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Table 3: Goodness of fit for model f,

Analysis of residuals: WSSQ

P(x? > WSSQ)

RZ, cc(theory, data)?

Largest Absolute relative residual

Smallest Absolute relative residual
Average Absolute relative residual
Absolute relative residuals in range 0.1-0.2
Absolute relative residuals in range 0.2-0.4
Absolute relative residuals in range 0.4-0.8
Absolute relative residuals > 0.8

Number of negative residuals (m)

Number of positive residuals (n)

Number of runs observed (r)

P(runs < r : given m and n)

5% lower tail point

1% lower tail point

P(runs < r : given m plus n)

P(signs < least number observed)
Durbin-Watson test statistic

Shapiro-Wilks W statistic

Significance level of W

Akaike AIC (Schwarz SC) stats

Verdict on goodness of fit: incredible

29.952
0.2696
0.9834
14.25%
0.26%
4.42%
6.67%
0.00%
0.00%
0.00%
14

16

21
0.9820
11

9
0.9879
0.8555
3.1269 > 2.5, -ve serial correlation?
0.9754
0.6948
7.9520 (13.557)

Table 4: F test results for model f, against fi

WSSQ previous

WSSQ current

Number of parameters previous
Number of parameters current
Number of x values

Akaike AIC previous

Akaike AIC current

Schwarz SC previous

Schwarz SC current

Mallows’ C),

Numerator degrees of freedom
Denominator degrees of freedom
F test statistic (F'S)

P(F > FS)

P(F < FS)

5% upper tail point

1% upper tail point

Conclusion based on F test

86.634

29.952

2

4

30

35.815

7.9520, ER = 1.1230e+06
38.617

13.557

49.203, Cp/2 =24.602
2

26

24.602

0.0000

1.0000

3.3690

5.5263

Reject previous model at 1% significance level
There is strong support for the extra parameters
Tentatively accept the current best fit model
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Example 2: Isotope displacement mode

When there is no appreciable kinetic isotope effect, that is, the binding and response process process is the
same whether the ligand is labeled or not, this allows experiments in which labeled ligand is displaced by
unlabeled ligand. Since the ratios of labeled ligand to unlabeled ligand in the bound state, and free state are
equal, a modified form of high-low affinity sites equations can be used to model the binding processes. For
instance, suppose that total ligand, L say, consists of labeled ligand held constant, [Hot] say, and unlabeled
ligand varied, [Cold] say. Then the response of labeled substrate for n > 1 active sites will be given by

A1Kq4, [Hot) AxK g, [Hot] A, K, [Hot]

HACold) = [Horl + [Cotd]) ¥ T+ Koy ([Hotl + [Cold]) * " T4 K, ([Hot] + [Cold])

So, if [Hot] is kept fixed and [Cold] is regarded as the independent variable, then program hlfit can be
used to fit the resulting data. In other words, cold substrate is being used as a competitive inhibitor of the
saturation by hot ligand in such experiments. Note that the parameters estimated will be clear when writing
the saturation with [Hot] = u and [Cold] = v as follows

AK,u
=k
AK,u
gu,v) = 1+ K, (u+v)
__p
1+ By
a=Au
Ka
p= 1+Kau

This is how the estimated parameters displayed by program hlfit as in Table 5 must be interpreted, that is, A
estimated is really an estimate for Au and K, estimated is really an estimate for K, /(1 + K,u).

Using the isotope displacement option in program hlfit with the default test file hotcold. tf1 establishes that
two sites is a statistically significant improvement over one site, and leads to the following deconvolution plot
to display the best-fit curve together with the separate components.

Table 5: For best-fit order 2 isotope displacement function

Number Parameter Value Std. Error  Lower95%cl  Upper95%cl p

1 B 10.485 2.4284 5.5380 15.431 0.0001
2 B> 239.06 46.121 145.11 333.00 0.0000
3 K 1.0124 0.19498 0.61521 1.4095 0.0000
4 K> 0.021593 0.0063982  0.0085604 0.034626 0.0019

Apparent Y4 (i.e. B1K| + B2K> + ... + B,K,) = 15.776
Apparent K, (i.e. xo where f(xg) — C = Yiuax/2) = 2.5163

Parameter correlation matrix
1

0.5405 1
-0.9799  -0.4559 1
-0.7615  -0.9450 0.6712 1

Note that an important difference between using hlfit in this mode rather than in straightforward binding mode
is that the binding constants are modified in the following sense, as previously described.

Where the actual concentration of [Hot] is known it is possible to fit such data in a more satisfactory and
discerning manner by using SIMF[T program qnfit, where the [Hot] can be input as a fixed constant term
so that the actual amplitudes A; and binding constants K,, can be estimated, rather than the apparent ones
mentioned above.



Fitting High—Low affinity ligand binding models 415

X-semilog Plot of the Deconvolution of Model 2

20.0 F g
0 Overall Best-Fit
S sl 8.7 ]
[ O \\\
3 s
: S
O 10.0 | 8 g
©
C
IS
L?
0 50 f .
m
Components
0.0 | g
102 101 10° 10t 102 10° 10* 10°
Ligand X
Theory

SiMF[T program hlfit assumes that a response is measured that depends on the fractional saturation of binding
sites with possibly differing affinity. The amplitude factors A; can be interpreted as being proportional to the
population of the receptor types, possibly complicated by the situation where the fractional receptor occupancy
does not give the same response for the different receptor types. Program hlfit also allows for the situation
where there is background noise at level C that has to be estimated then substracted from the data so that the
response is zero at zero ligand concentration.

The first thing to point out is that this model does not have a standard binding polynomial to act as a
partition function, as it is a weighted sum of individual independent sites and can therefore only show negative
cooperativity. To understand the meaning of the parameters being estimated by program hlfit consider the
binding of a single ligand X to a protein P at equlibrium so that this is the binding process

P+X=PX
with the association constant K, defined as
_[PX]
‘T IPIX]

and the fractional saturation of the protein with ligand X is 0 < y < 1 defined as

K, [X]
YEIYRX

However the response measured will be the fractional saturation multiplied by an arbitrary amplitude factor
A, unless fractional saturation is measured when the individual amplitude factors would be nonnegative and
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would have sum one. Some versions of programs hlfit and gnfit provide this feature as an additional option. In
addition, in some experiments there is an unavoidable background level C which can be estimated during the
fitting, or better estimated independently and then subtracted from the measured response, so that ¥ (0) = 0.

In bygone days before the advent of computers, experimentalists had to fit binding equations by plotting
in transformed spaces, such as the Scatchard plot, and then extrapolating to estimate slopes and intercepts,
but thankfully this era has long since gone. However, this does not mean that fitting such an equation by
constrained weighted least squares is a simple process. It is not. In fact the case with k = 1 is trivial, the
case with k = 2 is reasonable, but the cases k > 2 require data that is very extensive and accurate, and where
the parameters are sufficiently distinct to allow model discrimination. For this particular model that requires
amplitudes A; values to be similar, but binding constants K; to be distinct.

Program hilfit performs the following steps.
1. The y; values are first weighted using w; = 1/se%, or used unweighted if all se; = 1.
2. Using the ranges of x; and y; the data are transformed into internal coordinates of order unity.

3. Possible starting estimates are calculated for the parameters based on the internal coordinates, and then
these are altered by adding pseudo-random perturbations until an approximate minimum value for the
weighted sum of squares is located.

4. The parameters are then transformed into internal coordinates that will hopefully be of order unity to
stabilize the optimization.

5. From these random starting estimates the lowest and highest possible limits are calculated, then con-
strained optimization is performed by the quasi-Newton technique.

6. The internal parameters are transformed back into user-space, and the Hessian is estimated at the
solution point then inverted to calculate the parameter covariance matrix.

7. The order of parameters is permuted so that the subscripts fori = 1,2, ..., k refer to best-fit parameters
in the order A} < Ay < ... < A,. This is to allows retrospective comparison of fits to alternative data
sets.

8. The apparent (overall) A is calculated as the sum of the A; (or A; K, for isotope displacement) and the
apparent (overall) K, is calculated numerically.

9. Analysis of the residuals is performed together with numerous statistical procedures to ascertain good-
ness of fit, parameter reliability, and model discrimination.

10. Results tables and graphs are then provided.

Program hlfit allows users to control the random search for starting estimates and the technique to be used
for calculating the gradient vector, and should the cases with £ > 2 be required, users can perform extensive
random searches to obtain starting estimates that can be input retrospectively for manual starts. If these steps
do not succeed it is time to try the SIMF]T advanced curve-fitting program qgnfit.

Although hlfit can be used to fit more than two classes of sites it must be stressed that this requires extremely
accurate data over a large range of ligand concentration, and the automatic estimation of suitable starting
estimates may have to be replaced by user-supplied estimates. In any case it will be extremely difficult to
interpret binding data in terms of more than two classes of binding sites by curve-fitting alone unless there is
additional experimental evidence.
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8.5.3 Fitting allosteric and cooperative ligand binding models

Cooperative ligand binding models are used in the situation where a protein or receptor has more than one type
of binding site and these are linked in such a way as to display deviations from normal hyperbolic binding. If
areceptor has n > 1 binding sites that differ in binding constants but are independent this can only give rise to
apparent negative cooperativity. If the sites are linked in that the binding to one site influences the subsequent
binding of further ligands then positive or mixed cooperativity can be exhibited. These terms will be defined

subsequently.

From the main SIMF[T menu choose [A/Z] then open program sffit and examine the default test file sffit. tf4

which contains the following data.

X y se
0.085504 0.10022 0.0026739
0.085504 0.10533 0.0026739
0.085504 0.10142 0.0026739
0.11434  0.14319 0.010065
0.11434  0.16178 0.010065
0.11434  0.14578 0.010065
0.15291 0.24510 0.012043
0.15291 0.22191 0.012043
0.15291 0.22786 0.012043
0.20449  0.30735 0.019939
0.20449  0.32957 0.019939
0.20449  0.28978 0.019939
0.27346  0.43824 0.0071355
0.27346  0.43342 0.0071355
0.27346  0.44746 0.0071355
0.36569  0.57197 0.014359
0.36569  0.56004 0.014359
0.36569  0.58863 0.014359
0.48903 0.64381 0.030621
0.48903 0.63820 0.030621
0.48903 0.69382 0.030621
0.65398  0.75455 0.017667
0.65398  0.78973 0.017667
0.65398  0.77504 0.017667
0.87456  0.81456 0.030889
0.87456  0.82605 0.030889
0.87456  0.76774 0.030889
1.1695 0.95153 0.029772
1.1695 0.89315 0.029772
1.1695 0.91216 0.029772

The columns contain data in the following format.

1. Column 1: the non—negative ligand concentration x which must be in non-decreasing order.

2. Column 2: the non—negative response y presumed to be dependent on fractional saturation of receptor
or binding site at the concentration in column 1.

3. Column 3: the positive sample standard deviation of the replicate response measurements.
This column can be omitted or set to 1 if unweighted regression is required.
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The model f(x) fitted by SIMF[T program sffit for n binding sites in the presence of ligand at concentration x
is based on a binding polynomial p(x) and fractional saturation function y(x) expressed using overall binding
constants K; as follows

px) =1 +K1x+K2x2+---+Knx”
_ ldlogp(x)
y(x) = n dlogx
_1w'®
n p(x)
f(x)=Zy(x) +C.

Here Z is an arbitrary factor relating the observed response to fractional saturation, while C is a possible
background noise in the absence of any ligand. It is supposed that the number of sites n would be known in
advance while the arbitrary scaling factor Z and background noise C would be estimated in a preliminary run
and used to normalize the data so that 0 < f(x) < 1 forx > 0.

Before proceeding to discuss the results from analyzing the test data two things should be noted.

1. When the data have been normalized so that Z = 1 and C = 0, as with the data in test file sffit.tf4,
program sffit begins by scaling the data internally, performing a L; norm fitting procedure for starting
estimates followed by a refinement by random searching. For low order models with accurate data over
a large range of x this will often mean that the starting estimates are very close to the best-fit parameters,
and the quasi-Newton constrained regression program will draw attention to the fact that only a small
percentage reduction in the objective function WSSQ has been achieved. This simply indicates how
good the sffit algorithm has been in calculating starting estimates.

2. Users are given the option to fit several values of n in sequence with statistical tests for model discrim-
ination and goodness of fit. This facility is provided for preliminary analysis in the case where Z is
estimated and/or n is not known in advance, and also so that sffit can be used as an empirical model for
data smoothing

Proceeding to start optimization at n = 2 and end optimization at n = 2 with Z = 1 and C = 0 means that the
following model was fitted
1 ) Kix +2Kyx?2

fx) = (5 1+ Kix + Kpx2

leading to this table of results.

For best-fit order 2 function (f for fixed parameter)

Number Parameter Value Std. error Lower95%cl Upper95%cl )2
1 K 1.0734 0.063088 0.94414 1.2026 0.0000
2 K> 10.042 0.17298 9.6881 10.397 0.0000
3 Z 1.0000 0.0000 1.0000 1.0000 f
4 C 0.0000 0.0000 0.0000 0.0000 f

Apparent V4« (i.e. Z or f(o0) — C) = 1.0000
Apparent K, (i.e. x where f(x) — C = Z/2) = 0.31554

Parameter correlation matrix (f for fixed parameter)
1

-0.5562 1
f f f
f f f f

The excellent fit will be clear from the analysis of residuals and plot of data and best-fit curve as shown next.
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Goodness of fit for model with n = 2

Analysis of residuals: WSSQ

P(x* > WSSQ)

R2, cc(theory, data)?

Largest Absolute relative residual

Smallest Absolute relative residual
Average Absolute relative residual
Absolute relative residuals in range 0.1-0.2
Absolute relative residuals in range 0.2-0.4
Absolute relative residuals in range 0.4-0.8
Absolute relative residuals > 0.8

Number of negative residuals (m)

Number of positive residuals (n)

Number of runs observed (r)

P(runs < r: given m and n)

5% lower tail point

1% lower tail point

P(runs < r : given m plus n)

P(signs < least number observed)
Durbin-Watson test statistic

Shapiro-Wilks W statistic

Significance level of W

Akaike AIC (Schwarz SC) stats

Verdict on goodness of fit: incredible

33.100
0.2321
0.9928
10.87%
0.04%
3.47%
3.33%
0.00%
0.00%
0.00%
17

13

22
0.9957
10

9
0.9959
0.5857
2.441
0.9781
0.7729
6.9509 (9.7529)

Data and Best-Fit Curve

0.0

Fitting a Cooperative Binding Model with n =2

0.0

0.2 0.4 0.6

0.8

1.0

12
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At this point various options are available for further study of the best fitting order two saturation function.
Choosing cooperativity analysis we first observe the percentage saturation points given the K; values, which
allows users to see at a glance the range of saturation spanned by the range of the data.

Overall association constants and % saturation points

K 1.0734

K> 10.042

X start atx = 0.085504

X stop atx =1.695

y=0.05 atx=0.0051378 The 5% saturation point
y=0.10 atx =0.084086 The 10% saturation point
y=0.50 atx=0.31556 The 50% saturation point
y=090 atx=1.1843 The 90% saturation point
y=0.95 atx=1.9381 The 95% saturation point

Evidently the range of these experimental data spans the range from around 10% saturation to just over the
point of 90% saturation. Perhaps it will not be often that experimentalists will be able to achieve such a wide
span.

The next table displays the values of the association constants and reciprocals for overall association constants
K;, Adair constants A; and Adair constants corrected for statistical factors B; so that the results can be
compared between alternative computer packages. Note that SIMF]T program qnfit can be used to fit these
alternative model formulations if confidence limits on parameter estimates and parameter correlation matrices
are required. All other goodness of fit and model discrimination results are the same irrespective of the model
formulation.

Alternative expressions for binding constants

Number K 1/K A 1/A B 1/B
1 1.0734 0.93165 1.0734E+00 0.93165 0.53668  1.8633
2 10.042 0.099577 9.3560E+00 0.10688 18.712  0.053442

Intrinsic cooperativity coefficient  Value  Sign
B, — B 18.175 +

Intrinsic cooperativity coefficients are particularly easy to interpret in molecular terms. For instance, if
B; > B;_; this indicates that when ligand is bound to i — 1 sites the affinity increase for when the the next
ligand binds, whereas when B; < B; the affinity decreases. So, when there are only two binding sites, the
condition B, > B; is equivalent to positive cooperativity and the condition B < B; is correctly referred to as
negative cooperativity. Unfortunately, for more than two sites this argument breaks down due to the additional
complication of species fractional populations S; defined as

_ Kix;
Ko+ KX+ Ko X2+ -+ Kpx

i

fori =0,1,2...,n. Here Ky =1, 0<S5; <1, Sop+S+S2+---+S8, =1 and the S; measure the
proportion of the macromolecule with i ligands bound as the concentration of ligand x varies. A similar
measure, the species fraction S¢;, defined as

Sri=1iSi/n

fori = 1,2,...,n takes account of the stoichiometry and measures the contribution of the species with i
ligands attached to the overall fractional saturation y(x) as

Sf] +Sf2+...,+an =y(x).

The next plot displays the population fractions for the current best-fit model showing that all the macromolecule
is free from ligand at x = 0, then the macromolecule with one ligand appears then disappears as x increases
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until eventually as x — oo all the binding sites are occupied. It is this fact that makes the interpretation of
the sign of cooperativity ambiguous when the order exceeds 2 which is where the Hill plot slope is a less
ambiguous measure of the sign and extent of cooperativity when viewed as a function of ligand activity.

Species Population Fractions forn =2
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The Hill plot slope shown next is very simple to interpret in the case of fitting an order n = 2 saturation
function but, as will be discussed subsequently, the situation is not so simple for order n > 2, and this is an
area of unnecessarily great confusion.
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Hill Plot for n = 2 Saturation Function

log;o[y/(1-y)]

2 F

2 -1 0 1
log;o[x]
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Theory

Ligand binding theory will be presented under the following headings.
1. Historical introduction
2. Binding polynomials
3. Definition of cooperativity

Factorability of the binding polynomial

Statistical interpretation of saturation functions

AN U

Cooperativity analysis

Historical Introduction

In 1910 Hill [1] proposed that the sigmoid binding curve for oxygen binding to haemoglobin could be
analyzed in terms of the binding of n ligands in one step with no appreciable intermediates, i.e. the mass
action description

Hb+nX = HbX,.

This leads to the Hill equation describing the fractional saturation y as a function of concentration x, and the
Hill plot of log[y/(1 — y)] as a function of log x as follows

_ Kx"

T 1+ Kxn

y
log (IL) =nlogx +logk.
-y

It is now realized that the Hill equation is simply an empirical equation that is at best a poor approximation to
any real binding situation since:

1. itis only an appropriate representation for a one-site binding process, i.e. forn =1 ;
2. when n < 1 it has an infinite slope at the origin and cannot model any realistic binding situation;
3. when n > 1 it has zero slope at the origin and cannot model any realistic binding situation;

4. when n is not a positive integer it is pure nonsense; and

e

using it to discuss the effect of cooperativity on graphical features such as sigmoidicity in the y(x)
curve, or convexity in Lineweaver-Burke or Scatchard space, has resulted in considerable confusion.

Of course, before the days of computers and nonlinear regression, fitting a straight line to a Hill plot to get a
non-integer value for the estimated slope was all that could be done, and this non-integer value was correctly
taken to mean that this was a result of the model being incorrect.

Nowadays no one would dream of discussing cooperative binding in terms of the Hill equation or fitting a
straight line to a Hill plot but, by a serendipitous coincidence, it turns out that the variable slope of the curve
obtained by transforming a saturation curve into Hill space still provides an unambiguous definition of the
sign and magnitude of cooperativity that has got nothing at all to do with the Hill equation. That is because,

to use receptor terminology,
y [Bound]

1-y  [Free]
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Binding polynomials and their Hessians

In 1925 Adair [2] improved the description of binding isotherms by defining binding constants for the
individual binding events, and later it came to be appreciated that these have to be normalized by statistical
factors in order to discuss the affinity of receptor for ligand in adjacent binding events. In 1967 Wyman [3]
rationalized the situation by pointing out that, for a non-aggregating macromolecule with # binding sites and
only one ligand x varied, there would be binding polynomial which would act like a partition function in that
successive terms of degree i in the polynomial are proportional to the amount of macromolecule with 7 ligands
attached.

So now the binding of ligands to receptors can be defined for all possible cooperative binding schemes in
terms of a binding polynomial p(x) in the free ligand activity x, as follows

p(x) =1+ Kix+Kox> + -+ Kyx

=1+A1x+A]A2x2+---+l_[A,~x”
i=1

n
_ n n 2, .. n on
_1+(])le+(2)Blex + +(n)l;[B,x,

where the only difference between these alternative expressions concerns the meaning and interpretation of
the binding constants. The fractional saturation is just the scaled derivative of the log of the polynomial with
respect to log(x), and an important auxiliary function is /(x), the Hessian of the binding polynomial defined
as follows

1) dlog p(x)

y() = (Z dlogx

_ (1) xp’(x)
n) p(x)

h(x) =npp” = (n—1)p”.

Definition of cooperativity

Given a binding polynomial of degree n there are n — 1 cooperativity coefficients ¢; defined as
C; = B[‘+1 —B[ fori = ],2,...,11— ],

or alternatively as log(B;+1/B;), and the interpretation of these is perfectly clear: in a situation where ¢; > 0
the macromolecule has greater affinity for binding the i + 1th ligand after the ith ligand has been bound and it
is perfectly reasonable to describe this as mechanistic positive cooperativity. Hence every binding situation
for n ligands can be summarized by a succession of n — 1 signs and it might be thought that during the
actual saturation of macromolecule with ligand there would be a succession of phases with possibly differing
cooperativity. For instance, the sequence + — + might be supposed to give a saturation curve with positive,
then negative, then positive cooperativity. Unfortunately the cooperativity coefficients cannot be interpreted
in this way and they are not a unique indicator of the sign and magnitude of the type of cooperativity exhibited
during the saturation process. The reason for this is simply that binding does not occur in a succession of
isolated steps and at every stage for 0 < x < oo every species that is possible is present, that is no ligands
bound, one ligand bound, two ligands bound, etc. up to n ligands bound.

At every point in the range 0 < x < oo there is a one site binding curve y,,, with a uniquely defined apparent
binding constant K, ,, according to the scheme

[Free sites] + X = [Occupied sites]
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a p(;c) appx .
y P 1 + Kapp.x

Surely all would agree that the sign and magnitude of cooperativity at that point in the saturation curve would
depend on whether K, is increasing or decreasing as a function of x. It turns out that

p'(x)
K,,, = ———— and
PP p ) —xp ()
dKapp _ h(x)

dx  (np(x) - xp’(x))?

so that increasing affinity (i.e. positive cooperativity) requires i(x) > 0, decreasing affinity (i.e. negative
cooperativity) requires /(x) < 0 while at a point where /#(x) = 0 cooperativity changes sign. Bardsley and
Wyman [4] emphasized that the magnitude of the Hill slope with respect to 1 is the unambiguous indicator of
cooperativity which also depends on the sign of the Hessian as follows

dlogly/(1-y)] 14 xh(x)

dlogx P (p(x) —xp’(x)’

and Wood and Bardsley [5] proved that the Hessian can have at most n — 2 positive zeros.
Zeros of the binding polynomial

If the n zeros of the binding polynomial are @; then the fractional saturation y can be expressed as

X\ v 1
yz(;)zx—a/i’

but further discussion depends on the nature of the zeros.

First observe that, for a set of m groups of receptors, each with n; independent binding sites and binding
constant k;, then the zeros are all real and

m

p(o) =[]0+ kix)™,

i=1
m
1 n[k,-x
m b
D N i1+ kix

andy =

so y is just the sum of simple binding curves, giving concave down double reciprocal plots, etc.

Actually Bardsley et al [6] and [7] proved that, if a binding polynomial factorizes into m polynomials p; with
positive coefficients according to

p(x) = p1(x)pa(x) ... pm(x)

then the Hill plot slope cannot exceed that of the Hill plot slope for any of the individual factors. As a binding
polynomial can always be factorized into a product of linear factors with real negative zeros and complex
conjugate pairs forming quadratic factors it might be supposed that the Hill slope can never exceed two.
However, if a binding polynomial of degree > 2 has complex conjugate zeros, the Hill slope may exceed two
and there may be evidence of strong positive cooperativity. That is why Hill plot slopes up to a maximum of
the degree of the binding polynomial can be achieved if there are quadratic factors with negative coefficients,
corresponding to a group of at least three linked binding sites.

For instance, the binding polynomial for a four site Monod-Wyman-Changeux model is

p(@) = —— ((1+ @)+ L(1 + ca)")
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and this can factorize into the form
gx)=(1+ax+ b1x2)(1 — arx + byx?)

with a; > 0,a2 > 0,b; > 0, b2 > 0 under certain constraints so that the meaningless quadratic factor with a
negative term allows Hill slopes greater than two.

Edelstein and Bardsley [8] subsequently explored the relationship between the Hill slope at half-saturation
and the Hessian of the binding polynomial.

Statistical interpretation of saturation functions

The species fractional populations s; which are defined fori =0, 1,...,n as

Kixi
Ko+ Kix+ Kox?2 + -+ 4+ Kyx"

Si

with Ky = 1, are interpreted as the proportions of the receptors in the various states of ligation as a function
of ligand activity. The species fractions defined as y; = is;/n fori = 1,2, ..., n are the contributions of the
species to the overall saturation. Note that

n

Zs,- = 1,, while

i=0

Zy[ = (1/n)dlog p/dlogx.

i=1

Such expressions are very useful when analyzing cooperative ligand binding data and they can be generated
from the best fit binding polynomial after fitting binding curves with program sffit, or by interactive input of
binding constants into program simstat. At the same time other important analytical results like factors of
the Hessian and minimax Hill slope are also calculated.

The species fractional populations can be also used in a probability model to interpret ligand binding in several
interesting ways. For this purpose, consider a random variable U representing the probability of a receptor
existing in a state with i ligands bound. Then the the probability mass function, expected values and variance
are

PU=i)=s;(i=0,1,2,...,n),

n

E()= ) isi
i=0

E(U%) = Z i2si,
i=0
V(U) = E(U» - [E(U))?
=x(p’(x>+xp"<x))__(xp'(x))2
p(x) p(x)

dy
=n N
dlogx

as fractional saturation y is E(U)/n. In other words, the slope of a semi-log plot of fractional saturation data
indicates the variance of the number of occupied sites, namely; all unoccupied when x = 0, distribution with
variance increasing as a function of x up to the maximum semi-log plot slope, then finally approaching all
sites occupied as x tends to infinity. You can input binding constants into the statistical calculations procedure
to see how they are mapped into all spaces, cooperativity coefficients are calculated, zeros of the binding
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polynomial and Hessian are estimated, Hill slope is reported, and species fractions and binding isotherms are
displayed, as is done automatically after every n > 1 fit by program sffit.

Cooperativity analysis

After fitting a model, program sffit outputs the binding constant estimates in all the conventions and, when
n > 2 it also outputs the zeros of the best fit binding polynomial and those of the Hessian of the binding
polynomial A(x). The positive zeros of i(x) indicate points where the theoretical one-site binding curve
coinciding with the actual saturation curve at that x value has the same slope as the higher order saturation
curve, which are therefore points of cooperativity change. The SIMF[T cooperativity procedure allows users
to input binding constant estimates retrospectively to calculate zeros of the binding polynomial and Hessian,
and also to plot species population fractions.

For instance, for 4 sites with K1 = 100,K; = 10,K3 = 1,and K4 = 0.1, the Hessian has a positive zero
at x = 5.86139, the minimum Hill slope in the range plotted is 0.0842,at x = 0.28607, the maximum is
1.44479, at x = 17.059, and the slope at half saturation is 1.0847, at x = 6.5808.

The next graph shows how the Hill plot slope varies with the maximum and minimum slopes indicated along
with the point where the positive zero of the Hessian occurs.

Hill Plot Slope with Maximum and Minimum Points
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The following graph shows the sort of complicated Hill plots that can be obtained when there are more than
two cooperatively linked sites. The asymptotes are for the equation

B kx
T 1+ kx

y

with k = Ky /nasx — Oand k = nk, /K, asx — oo.
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Hill Plot for K;=100, K,=10, K3=1, K, =0.1
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8.5.4 Fitting deviations from Michaelis-Menten kinetics

When accurate initial rate data are obtained over an extended range of substrate concentration then deviations
from Michaelis-Menten kinetics such as substrate inhibition, substrate activation, sigmoidicity, and other
types of cooperativity are often encountered. If artifacts such as aggregation, failing to correct for pH or ionic
strength, etc. are not responsible, then the appropriate model would be positive rational function. The most
important thing is to determine the degree of such a rational function, because this can be used to select a
possible kinetic scheme and rate equation.

From the main SIMF[T menu select [A/Z], then open program rffit and study the default test file rffit.tf6
which has the following data set.

S v(S) se(v)
0.01000  0.02100 0.00157
0.01624  0.03409 0.00256
0.02637 0.05533 0.00415
0.04281 0.08975 0.00673
0.06952 0.14532 0.01090
0.11288 0.23421 0.01757
0.18330  0.37301 0.02798
0.29764 0.57659 0.04324
0.48329 0.83187 0.06239
0.78476 1.04968 0.07873
1.27427 1.09824 0.08237
2.06914 0.98829 0.07412
3.35982  0.87359 0.06552
5.45559 0.86246 0.06468
8.85867 0.96350 0.07226
14.38450 1.08641 0.08148
23.35721 1.07355 0.08052
37.92690 0.87789 0.06584
61.58482 0.62001 0.04650

100.00000 0.40461 0.03035

The columns contain data in the following format.
1. Column 1: the non—negative substrate concentration S which must be in non-decreasing order.
2. Column 2: the non—negative initial rate v(S) presumed to be dependent on substrate in column 1.

3. Column 3: the positive sample standard deviation of the replicate rate measurements.
This column can be omitted or set to 1 if unweighted regression is required.

SiMF[T program rffit fits positive rational functions of the following form

g+ a1S + @S+ - + @, S"
ﬂ0+ﬂ]S+ﬂ252+--'+,3nSn
which will be referred to as a n:n function. This has 2n+ 1 independent nonnegative parameters ; > 0, 3; > 0

so we define By = 1. In addition, it is is usually the case that ap = 0 so that v(0) = 0 and, if dead-end enzyme-
substrate complexes are assumed, it will also be convenient to set «;,, = 0 to model the case where v(o0) = 0.

v(S) =
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Some observations on curve fitting n:n functions

Program rffit scales the data provided into internal coordinates and, by default, sets all parameters to one
or to user-supplied values. For very difficult problems with widely spaced parameters, the program can
estimate approximate starting parameters from the extremes of the data set, undertake a random search
in an attempt to improve these, then perform a preliminary fit in the constrained L; to refine the starting
estimates. It scales the model fitted so that the internal parameters will be of order unity at the start of
the optimization, then performs weighted nonlinear regression by the quasi-Newton method with parameters
constrained to be nonnegative. Even so, it must be realized that distinguishing order 2 from order 1 will
usually be straightforward, distinguishing order 3 from order 2 will demand very accurate data over a wide
range, and distinguishing order 4 from order 3 will usually only succeed if the data have special features.

The test files

Many of the test files distributed with the SIMFT package contain exact data. There are two reasons for this.

1. Exact data sets generated by program makdat have known parameters so, by fitting these it is possible
to observe how accurately SIMF[T can estimate the known parameters.

2. Such exact data sets can be corrupted by adding random error using program adderr to simulate
experimental data.

The recommended procedure for analyzing your own data is to simulate using the suspected model and
anticipated error, then fit to see how likely it will be for the fitting program to support your working hypothesis.

Example 1

In particular rffit.tf6 contains exact data for a 4:4 rational function, and fitting 3:3 then 4:4 yields these
parameter estimates.

Number Parameter Value Std. Error  Lower95%cl  Upper95%.cl )4
1 o 1.0982E-05 6.0976E-06 -2.4385E-06 2.4403E-05 0.0991 ~*
2 aq 2.0997E+00 3.8507E-04 2.0988E+00 2.1005E+00 0.0000
3 a; 2.4562E-04 1.4423E-03 -2.9289E-03 3.4201E-03 0.8679 *
4 a3 1.0493E-01 7.4973E-05 1.0476E-01  1.0509E-01  0.0000
5 a4 1.0982E-13 9.3838E-08 -2.0654E-07 2.0654E-07 1.0000 *
6 B 4.0251E-04 7.3125E-04 -1.2070E-03 2.0120E-03 0.5930 ~
7 B2 1.0022E+00 1.5814E-03 9.9868E-01 1.0056E+00 0.0000
8 B3 1.0000E-11  1.2096E-05 -2.6623E-05 2.6623E-05 1.0000 *
9 Ba 2.4982E-03 1.9153E-06 2.4940E-03 2.5024E-03 0.0000

Now this test data was generated as the sum of two dead-end substrate inhibition models namely

28 0.1
+
1+82  1+0.002552
2.15 +0.10583
1 +1.002552 + 0.002554

v(S)

50, pointing out that numbers less than about 10~# of the largest parameter estimate are effectively zero, the
estimates are almost identical to the values used to generate the data, which supports the fact that program
rffit is capable of determining the parameters of a 4:4 function given highly accurate and extensive data. The
next table illustrates the strong support for the extra parameters in the 4:4 fit compared to the 3:3 fit, while the
graph illustrates the reason: a positive rational function of order n:n can have at most n — 1 positive turning
points so the 3:3 function can never model the three positive turning points of the 4:4 function.
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12

1.0

0.8

0.6

v(S)

0.4

0.2

0.0

WSSQ-previous

WSSQ-current

Number of parameters-previous
Number of parameters-current
Number of S-values

Akaike AIC-previous

Akaike AIC-current

Schwarz SC-previous

Schwarz SC-current

Mallows C,,

Numerator degrees of freedom
Denominator degrees of freedom
F test statistic (F'S)

P(F > FS)

P(F < FS)

5% upper tail point

1% upper tail point

Conclusion based on F test

7.8928E+01
7.2902E-05
7

9

20
4.1456E+01
-2.3244E+02
4.8426E+01
-2.2348E+02
1.1909E+07
2

11
5.9546E+06
0.0000
1.0000
3.9823E+00
7.2057E+00

Reject previous model at 1% significance level
There is strong support for the extra parameters
Tentatively accept the current best fit model

ER =2.9947E+59

C,/M; =1.7013E+06

Best Fit 3:3 and 4:4 Functions

4:4 Function

3:3 Function

102 101

10°
S

10t

10?

Note that the data are in a geometrical progression, that is, for k points x; distributed equally on a log scale

between end points A and B we would have x; = A,x; = Axj,x3 = Axa,..

Xk = Axgog = A = B
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where A = (B/A)"/(k=1) When fitting models like saturation functions, exponentials, or rational functions, a
logarithmic scale is optimal for model discrimination and parameter determination [1].

Example 2

Test file rffit.tf7 was obtained from rffit.tf6 using adderr to generate triplicates with 7.5% relative
error and standard errors calculated from replicates. Using starting estimates equal equal to one, but with g
and a,, suppressed gives reasonable parameter estimates as shown by the next table and graph.

Number

2

© 0ONOO W

v(S)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Parameter

ay
(¢%)
as
Bi
B2
B3
Ba

Value
2.1330E+00
2.1863E-01
1.0866E-01
0.0000E+00
1.2320E+00
1.1784E-03
2.5835E-03

Std. Error
2.7697E-02
3.1074E-01
2.0534E-02
0.0000E+00
3.3648E-01
1.2893E-02
3.5474E-04

Lower95%cl
2.0775E+00
-4.0464E-01
6.7470E-02
0.0000E+00
5.5711E-01

-2.4682E-02
1.8719E-03

Upper95%:cl
2.1886E+00
8.4189E-01

1.4984E-01

0.0000E+00
1.9069E+00
2.7039E-02
3.2950E-03

Best Fit 3:3 and 4:4 Functions

p
0.0000

0.4848 *
0.0000
1.0000 f
0.0006
0.9275 *
0.0000

102

101

10°

S

10t

In general for n:n functions with n > 2 the following conclusions should be noted.

1. The data must be very accurate and span a large range of substrate concentration.

2. Data should be collected using a geometric progression between end points.

10?

3. Program rffit must be run many times to compare the fit with random starting estimates with the fit
from user-supplied starting estimates, or with all equal to one as with this example fitting rffit.tf7.

4. Model discrimination may work for n < 3 but parameter estimates may be poor for n > 3.
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Theory

All kinetic schemes that can be devised for non-aggregating enzymes that have zero rate at zero substrate
concentration lead to the following quasi steady state rate equation

1S+ @S% + -+ @, S
Bo+B1S +P2S2+ -+ B, S"

where @; > 0 and B; > 0, and the only difference between models is the way that the coeflicients «;, 8; are
expressed as functions of the rate constants. Some simple facts about this function are as follows.

v(S) =

* The order n can be as large as the subscript k in any enzyme substrate complexes E Sk.

* Given any order n with any nonnegative values for «;, 8; it is possible to define a possible enzyme
scheme with these values [2].

* The v(S) curve is only sigmoidal if a8y > @181 [3].

* A order n positive rational function can have at most n — 1 turning points and 2n — 2 points of inflexion
in the first quadrant [4].

* If @, = 0 the v(S) curve descends asymptotically to zero from a final turning point.
* If @, > 0 the v(S) curve approaches a horizontal asymptote v(co) = @, /Bn.
o If @, > 0 the v(S) curve descends from a final turning point if @, 8,-1 < @n-1Bn.

As the main idea in fitting such a rational function to experimental data is to fix a minimum order » to suggest
a possible enzyme mechanism, some facts about parameter estimation and discrimination should be noted.

* Any attempt to fit higher order models requires accurate data over a large range.
» Experimental points should have the S values in a geometric progression.

* Statistical techniques for model discrimination perform very well when distinguishing the case n = 2
from n = 1 but rapidly deteriorate for n > 2 [S],[6],[7].

» Fitting cases with n > 2 should be investigated by comparing the results with all starting estimates
equal to one with those from several random searches.

* When the order n has been decided and good starting estimates have been located it is time to use the
more advanced program gnfit.

Limiting cases

Before nonlinear regression became accepted as the only meaningful way to fit enzyme kinetic data, much use
was made of fitting straight lines to extreme substrate concentrations in order to estimate parameter values.
This has given rise to much confusion.

It might be thought that a satisfactory approximation to a n:n function at low substrate concentration would

be the 1:1 Michaelis-Menten function S
aj

Bo+pB1S
However this cannot be sigmoidal and v(S) curves can be sigmoidal, so the best 1:1 function to approximate
low substrate values is

v(S) =

2
a

@1Bo + (181 — a2B0)S’

as this is the equation of the asymptotes approached at low substrate concentration in all the transformed plots
such as double-reciprocal, Scatchard, etc. used in enzyme kinetics [8].

v(S) =
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Irrespective of which technique is used to fit the data for low S the only parameters that can be estimated are
the apparent kinetic constants

Vinax = @7 /(@11 — @2B0), and K, = a1 o/ (@181 — a2f0).

Again, it might be thought that a satisfactory approximation to a n:n function at high substrate concentration
would be the n:n Hill equation

a,S"

V()= —-—"7—.
Bo + BnS"

However v(S) curves can have turning points and the Hill equation is monotonic, so the best 1:1 function to
approximate high substrate values is

2
@,

V(S) - (a'nﬂn—] - an—lﬂn) + an,BnS,

as this is the equation of the asymptotes approached at high substrate concentration in all the transformed
plots such as double-reciprocal, Scatchard, etc. used in enzyme kinetics [8].

Irrespective of which technique is used to fit the data for high S the only parameters that can be estimated are
the apparent kinetic constants

Vinax = a’n/ﬂn» and K,,, = (anﬂn—] - a’n—]ﬁn)/(anﬂn)-

Another issue concerns reduction in degree by cancelation of common factors between numerator and de-
nominator which can occur with some enzyme mechanisms containing cycles which, after using the principle
of microscopic reversibility, lead to zero values for one or more of the Sylvester eliminants [9]. In the extreme
case of factorization down to order 1:1, one possible expression for the reduced equation would be

a1y

" G RraBs

To the extent that fitting a Michaelis-Menten equation to a n:n function is justified because statistical evidence
does not support n > 1, the two parameters that can be estimated are the apparent kinetic constants

Vmax = a’n/IBn, and Km = a'nﬂO/(a'hBl)-

Sigmoidicity
A positive rational function will be sigmoid if
8% — a1Bof1 — @oPofz + @it > 0,

but in the usual case @p = 0 it is possible to define satisfactory measures of sigmoidicity, which can be
explained by reference to the next figure [10].
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Sigmoidicity of Positive Rational Functions
1 . .

f(S)/a(S)

VvV =

The point labeled C is the first positive root of
S(dv/dS)-v=0

and the point labeled T = v(C) is the v coordinate where the tangent from the origin touches the curve.
Consider then the expressions

T
Ay =
max(v), for§ >0
Area(ABC)
A=

S v(s) ds

where A and A, both increase as sigmoidicity increases. It can be shown that, for fractional saturation
functions of order n, the following inequality applies

n—1
T < ,
n

while, at least for the cases n = 2, 3, and n = 4 with some qualification, the positive rational function curve of
maximum sigmoidicity is the equation
Sn
AV a—
1+5”

shown in the next graph for the normalized functions x2/(1 + x2), (3/2)x3/(1 + 2x%), and 2x*/(1 + 3x%).
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v(S) Curves with Maximum Sigoidicity

0.80 . : :
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0.0 0.5 1.0 15 2.0

Substrate inhibition

Characterization of the shapes of rational functions in the first quadrant has been achieved for n < 3, and the
most distinctive feature is the number of turning points [11]. All that can be said is that analysis depends on
the signs and magnitudes of determinants such as

@ @i-1

D= Bi PBi-1

leading to the necessary and sufficient condition D,, < O for a final turning point, but only the necessary but
not sufficient condition D;D;_; < 0 for the maximum number.

It is possible to establish a criterion for the maximum steepness of descent from a final maximum, which is
the most commonly encountered type of substrate inhibition, and to present maximal examples for low degree
cases. Unfortunately this is, like sigmoidicity, only possible for n < 4 and, with some reservations for n = 4.
That is because, for n > 4 the number of possible curve shapes due to multiple turning points creates an
intractable situation.

At least for the cases n = 2,3 and n = 4 with some qualification, the positive rational function curve showing
maximum substrate inhibition is the equation

shown in the next graph for the normalized functions 150x/(1 + x2), 225x/(2 + x3), and 300x/(3 + x*) [12].
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V(S) Curves with Maximum Substrate Inhibition

80.0 T T T

60.0

—
9D a0
>
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8.5.5 Fitting exponential functions

Exponential functions have wide applications in data analysis and the SIMF|T package has a dedicated utility
to fit six main categories of multi-exponential functions as illustrated below.

Simple exponential decline to zero (Type 1) or to a baseline (Type 2).

Exponential Function Type 1 Exponential Function Type 2
W T T T T ™ -
08 1 18 F
06 1 16 |
04 f E 14 F
02 1 12 f
00 F E 10 F
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Monomolecular rise to a horizontal asymptote from zero (Type 3) or a baseline (Type 4).

Exponential Function Type 3 Exponential Function Type 4
W T T T T ™ ol
08 1 18 F
06 1 16 |
04 | 4 14 F
02 1 12 f
00 F E 10 F
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Up-down (Type 5) or Down-up (Type 6) with at least two exponential terms.

Exponential Function Type 5 Exponential Function Type 6
25 F j j j j j j E 30 F !
20 4 25k
15 | E 20 F
s;/ 10 | E s;/ 15 F
05 E 10}
00 F X . . . . . E 05 F
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In fact all of the exponential types are special cases of the following model
f(t) = Ay exp(=k1t) + Ay exp(—kat) + -+ -+ Ay exp(—knt) + C

where the decisions facing the user are to define the category, i.e. the Type, and the number n of exponentials
required.

There are three distinct SIMF[T programs provided for fitting exponentials to data.

1. exfit
This is a simple user-friendly interface to automatically scale the data, locate sensible starting estimates,
and perform unconstrained weighted least squares fitting with goodness of fit analysis and model
discrimination. It requires the data to be nonnegative, i.e. f(¢) > 0 for r > 0, and also the time to start
must be zero, i.e. t = 0, and ¢t must be in nondecreasing order, as this is assumed when scaling and
finding starting estimates. Additional parameters like the area under the curve (AUC) are calculated.

Normally you should fit one then two exponentials, but in the case of Type 5 and Type 6 the lowest order
to fit is two exponentials. After fitting Type 5 or Type 6 it is recommended to do a further relaxation fit
to allow for variations in the starting and asymptotic values in order to fit data such as pharmacokinetics
after a bolus ingestion. It is possible to fit models with more than two exponentials but this may require
several random starts or user-defined starting values for success. In any case, model discrimination
with more than two exponentials is somewhat unpredictable as explained in the following publication.

The F test for model discrimination with exponential functions.
Bardsley,W.G., McGinlay,P.B. & Wright,A.J. (1986) Biometrika 73, 501-508

2. qnfit
This is a quasi-Newton constrained nonlinear regression program for more experienced analysts which
requires user-defined starting estimates and parameter limits. It has the advantage that fitting does not
necessarily require f(z) > 0,7 > 0 or ¢ in nondecreasing order and provides many options for setting
starting estimates and parameter limits as well as numerous fine tuning possibilities.

3. deqgsol
This simulates and fits systems of nonlinear differential equations.

Example 1: Simple exponential decay (Type 1)

This will illustrate fitting the most frequently used exponential model, namely exponential decay from a
positive value at ¢ = 0 to a final zero asymptote as t — oo.

From the main SIMF|T menu choose [A/Z] then open program exfit and read the default test file provided
which is exfit.tf4. If you choose to start with a model with one exponential the program will first fit the
equation

fi (r) = Aq exp(—kﬂ)

giving goodness of fit criteria, and if you select to fit up to order 2 the program will then fit the model
fa(t) = Apexp(=kit) + Ay exp(—kat)

giving information to compare these two fits, followed by the option for graphical deconvolution of f>(¢) to
illustrate the relative contribution of the two exponential terms.

The data, results tables, and graphs follow but note that the subscripts in equation f,(¢) are arbitrary so,
to preserve uniformity, parameters are rearranged if necessary after fitting so that the amplitudes A; are in
nondecreasing order.
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t
0.035983
0.035983
0.035983
0.054896
0.054896
0.054896
0.083750
0.083750
0.083750
0.12777
0.12777
0.12777
0.19493
0.19493
0.19493
0.29739
0.29739
0.29739
0.45370
0.45370
0.45370
0.69217
0.69217
0.69217
1.0560
1.0560
1.0560
1.6110
1.6110
1.6110

The columns contain data in the following format.

1. Column 1: the non—negative time ¢ which must be in non-decreasing order.
2. Column 2: the non—negative response f(¢) presumed to be dependent on time in column 1.

3. Column 3: the positive sample standard deviation of the replicate response measurements.

f()
1.7440
1.8367
1.8164
1.7028
1.6480
1.7075
1.6290
1.5359
1.6490
1.3919
1.3676
1.3702
1.1454
1.2240
1.3237
0.99897
0.94038
0.91466
0.80103
0.70902
0.73507
0.53660
0.50323
0.58501
3.8157
3.4769
3.9221
1.8573
1.9103
2.0697

se
0.048730
0.048730
0.048730
0.033089
0.033089
0.033089
0.060314
0.060314
0.060314
0.013361
0.013361
0.013361
0.089321
0.089321
0.089321
0.043211
0.043211
0.043211
0.047423
0.047423
0.047423
0.041121
0.041121
0.041121
0.023248
0.023248
0.023248
0.011054
0.011054
0.011054

Note that column 3 can be omitted or set to 1 if unweighted regression is required.

The results from fitting two exponentials are as follows.

Parameter Value Std. error  Lower95%cl  Upper95%cl
Ay 0.85255 0.067715 0.71336 0.99174
Ar 1.1764  0.074759 1.0228 1.3301
ki 6.7934 0.85439 5.0372 8.5496
ko 1.1121  0.051102 1.0070 1.2171

AUC 1.1834  0.014710 1.1532 1.2136

AUC is the area under the curve from ¢t =0to ¢t = oo

Initial time point (A) = 0.035983
Final time point (B) = 1.6110

Area (fromt = Atot = B) =0.93832

Average over range (A, B) = 0.59

575

p
0.0000

0.0000
0.0000
0.0000
0.0000
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Parameter correlation matrix
1

-0.8757 1

-0.5963 0.8996 1

-0.8479 0.9485 0.8199

Analysis of residuals: WSSQ

P(x? > WSSQ)

R?, cc(theory,data)?

Largest absolute relative residual

Smallest absolute relative residual

Average absolute relative residual
Absolute relative residuals in range 0.1-0.2
Absolute relative residuals in range 0.2-0.4
Absolute relative residuals in range 0.4-0.8
Absolute relative residuals > 0.8

Number of negative residuals (1)

Number of positive residuals (n5)

Number of runs observed (r)

P(runs < r: given ny and ny)

5% lower tail point

1% lower tail point

P(runs < r: given nj plus ny)

P(signs < least number observed)
Durbin-Watson test statistic

Shapiro-Wilks W statistic

Significance level of W

Akaike AIC (Schwarz SC) statistics

Verdict on goodness of fit: incredible

24.397
0.5533
0.9934
11.99%
0.52%
3.87%
3.33%
0.00%
0.00%
0.00%
15

15

16
0.5759
11

9
0.6445
1.000
1.8061
0.9387
0.0841
1.7979 (7.4027)

WSSQ-previous 224.9

WSSQ-current 24.4

Number of parameters-previous 2

Number of parameters-current 4

Number of x-values 30

Akaike AIC-previous 64.44

Akaike AIC-current 1.798, ER = 3.998EF + 13
Schwarz SC-previous 67.24

Schwarz SC-current 7.403

Mallows C,, 213.7, Cp/my = 106.9
Numerator degrees of freedom 2

Denominator degrees of freedom 26

F test statistic (FS) 106.9

P(F > FS) 0.0000

P(F < FS) 1.0000

5% upper tail point 3.369

1% upper tail point 5.526

Conclusion based on the F test

Reject the previous model at 1% significance level
There is strong support for the extra parameters

Tentatively accept the current best fit model
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The fit with two exponentials is clearly better than the fit with one exponential as show in the next graph.

Data, Best-Fit Curve and Previous Fit

2.0 T T T

15 B
= g One Exponential
2 1o} 1
@
= .
o

05 4

Two Exponentials
00 1 1 1
0.0 0.5 1.0 15 2.0

From the next plot it is evident that both components make a significant contribution to the best fit double
exponential curve.

Deconvolution: 2 Exponentials

2.0 T T T

15

Components, Best-Fit, and Data
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Example 2: sequential kinetics (Type 5)

Another scheme that is frequently encountered is with an irreversible chemical reaction such as
x8y8z

with rate constants k| and k, and initial conditions X (0) = Xy, Y (0) = ¥y, Z(0) = Zj leading to

X (1) = Xoexp(—kit)

Xoki
ko — ki

Xoki

Y() =
(1) -

exp(—kit) + | Yo —

] exp(—kat)

Xoko
ko — ky

Z(t)=Xo+Yo+Zp —

exp(—kit) — [Yg - kzo—kl

ki ] exp(—kat).

In the special case Xy > 0, Yy = 0, Zp = 0 the expression for Y (¢) reduces to

Xoki
ko — ki
= Xokt exp(—kt) it k = k| = k».

Y(t) =

[exp(—kit) — exp(kat)]

A similar expression is often encountered in pharmacokinetics, for instance if Y (¢) is the concentration of a
substance in the blood after it ingested at # = 0, then absorbed from the stomach with rate constant k; but
eliminated from the system with rate constant k,. However several complications of this simple scheme are
often encountered.

1. There may be insufficient data to characterize the early data points.

2. There may be insufficient time to record the final data points.

3. Data may arise from a repeated experiment with insufficient time for complete washout.
Y (0) and/or Z(0) may not be zero.

There may be additional steps requiring additional exponential terms.

AN U

Instead of rising then falling as in Type 5 the observed response may be a decrease followed by an
increase as with Type 6.

Program exfit can attempt to deal with such issues by allowing additional exponential terms to be added and
by allowing a relaxation phase to follow an initial fitting phase. For instance, this simplified three parameter
model g(7) can be fitted first

g(t) = Alexp(—kit) — exp(kat)]

followed by using the parameter estimates from this fit as starting estimates to fit the richer four parameter
model A(r)
h(t) = Ay exp(—k1t) + Ay exp(—kat)

which will attempt to retain the up-down character supposed in the data. This relaxation method should be
used when fitting Type 5 and Type 6 exponential models. However, in order to deal with models such as these
it is best to use the greater versatility of program qnfit.

To illustrate fitting such a model the exact data in test file exfit.tf5 was input into SIMF[T program adderr
and five replicates per point were generated with 7.5% relative error with weights calculated from the sets of
five replicates at each time point.
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The simulated data and best-fit Type 5 curve from program exfit was as follows.

Type 5 Model

60.0

50.0

40.0

30.0

20.0

10.0

0.0

Experimental Data and Best-Fit Curve

0.0 1.0 2.0 3.0 4.0

The graphical deconvolution of the best fit Type 5 model is shown next.

Data, Best-Fit Curve, and Components

100.0

50.0

0.0

-50.0

-100.0

Deconvolution: 2 Exponentials

5.0

A, exp(Kkyt)

A exp(-kyt)

0.0 1.0 2.0 3.0 4.0

5.0
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Theory

SIMF[T program exfit will attempt to fit the multi-exponential model
n

Fry =) Arexp(=kit) + C
i=1

by scaling the data, calculating starting estimates, then performing unconstrained nonlinear regression. It
will only succeed if the data are extensive and accurate over a wide time range, the absolute values of the
amplitudes A; are similar, the rate constants k; are sufficiently distinct, and the value of n modest, say n < 3.
For more extreme conditions it may be necessary to input starting estimates interactively, or preferably use
the advanced programs qnfit or degsol.

The reason why users have to choose which of the six exponential types to fit is that the scaling, calculation of
starting estimates, and parameterization of the model has considerable influence on the success of optimization
and model discrimination. To appreciate this, consider a system where several irreversible first order processes
are taking place as in this scheme.

k
X, > Y

k>
X2 i Y2

kn
Xy, = Y,.
For each independent component we would have the solutions

Xi = X0 exp(—k;1)
Y; = Y0 + Xio(1 — exp(—kt))

so that fitting a model to }."" | X; () would require a Type 1 model, while fitting };" | Y;(¢) would require a
Type 4 model or a Type 3 model if Y;o = 0.

As explained in Example 2, a consecutive scheme like

ki ko ky,
X1 X-X3...0X,

would also lead to a different type of solution with n exponentials of Type 5 or Type 6.

The actual experimental situation could be further complicated for these reasons.
* Most processes fitted by exponential models are not irreversible but also involve backward flux.

* Reversible consecutive processes require n > 2 but here the exponential terms are not simple but involve
calculating the eigenvalues for the system at each iteration.

* Cyclical consecutive processes can also lead to complex eigenvalues and oscillating solutions.

In such situations it is far better to model the situation as a set of differential equations and simulate then fit
these using SIMF[T program deqsol.
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8.5.6 Fitting growth, decay, or survival models

Nonlinear growth, decay, and survival models are fitted to data in order to estimate parameters that can be
used to compare the effects of treatments and/or different groups. The parameters that are usually estimated
are the initial and final sizes and rates of change and meaningful numbers such as the half life and maximum

rates of change.

Example 1: Growth data

From the main SIMF[T menu choose [A/Z], open program gcfit, select the option to fit growth curves then
browse the default test file gcfit.tf2 containing the following data.

Time

0.0000
0.0000
0.0000
1.0000
1.0000
1.0000
2.0000
2.0000
2.0000
3.0000
3.0000
3.0000
4.0000
4.0000
4.0000
5.0000
5.0000
5.0000
6.0000
6.0000
6.0000
7.0000
7.0000
7.0000
8.0000
8.0000
8.0000
9.0000
9.0000
9.0000
10.000
10.000
10.000

Size
0.090501
0.085148
0.096621
0.20400
0.21300
0.21763
0.42858
0.45530
0.42261
0.71832
0.64283
0.70118
0.84408
0.76262
0.79382
0.91559
0.86060
0.88937
0.98545
0.95853
0.98738
1.0552
0.94115
1.0452
1.0433
0.96285
1.0130
0.99185
1.0452
1.0856
1.0226
0.98858
0.99220

Standard Error
0.0057406
0.0057406
0.0057406
0.0069302
0.0069302
0.0069302
0.017410
0.017410
0.017410
0.039573
0.039573
0.039573
0.041097
0.041097
0.041097
0.027506
0.027506
0.027506
0.016132
0.016132
0.016132
0.063158
0.063158
0.063158
0.040631
0.040631
0.040631
0.047010
0.047010
0.047010
0.018664
0.018664
0.018664

Column 1 contains the time values ¢ which must be nonnegative and in nondecreasing order.

Column 2 contains the size estimates S(¢) which must be nonnegative.

Column 3 contains the sample standard deviations for the triplicates to use for weighting, but this column can
be set to one or omitted if weighting is not required.
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Program gcfit can fit sequences of nonlinear growth, decay, or survival models giving statistics for goodness
of fit and model discrimination but, before proceeding further, the definition of S(#) must be explained.

If the data are for longitudinal measurements on the same individual or subjects they will be correlated so that
fitting nonlinear models by weighted least squares will generate biased fits instead of maximum likelihood
fits. One way to circumvent this is to fit flexible models such as polynomials or splines by techniques that
attempt to estimate the autocorrelation. However it is only possible to estimate approximate correlations and
polynomials cannot capture the shape of actual growth data or be used to estimate meaningful parameters to
characterize growth profiles.

Ideally, gcfit should be used where observed S(¢) values are obtained in such a way as to make successive
observations independent, e.g. sampling without replacement to estimate growth of bacterial colonies. Users
will have to balance the usefulness of growth curve models with possible bias induced by fitting a deterministic
model against the model-free data smoothing approach.

First of all note that most simple growth curve models are special cases of differential equations such as the
Von Bertalannfy allometric equation
ds/dt = AS® — BSP

which can be simulated and fitted using program deqsol, and it usual to explore the type of model required
by fitting the first three models provided by program gcfit in a preliminary investigation. When a model has
been selected there will be no further need to fit sequences of models.

Three typical growth curve shapes are shown in the next figure.

Model 1: Unlimited Exponential Growth Model 2: Limited Exponential Growth Model 3: Sigmoidal Growth
2 1 1
2 1 ) e
0 04 0
0 1 2 3 0 1 2 3 0 2 a 6 [
t t t
* Model 1

This is exponential growth S; () which is only encountered in the early phase of development.

S1(t) = Ay exp(kit)

* Model 2
This is limited exponential growth S»(7), concave down to an asymptote fitted by the monomolecular
model
S2(1) = Az[1 — exp(—kat)]
* Model 3

This is the logistic equation S3(#) which can fit sigmoidal profiles.

Aj

S3(t) = —————
3(0) 1 + Bexp(—kst)

Proceeding to fit these three models sequentially leads to the following conclusions and results table for model
three, then a plot of data and all three best fit curves.
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Model

WSSQ/NDOF P(x*>>W) P(R<r)

152 0.000 0.000
18.1 0.000 0.075
1.32 0.113 0.500

29
20
0

N > 10%

N > 40%
17
0
0

Av.r%

40.03
12.05
3.83

In this table WSSQ/NDOF is the weighted sum of squares divided by degrees of freedom and P(y? > W)
is the significance level for this parameter in a chi-square test. P(R < r) is the probability of runs less than
or equal to the number observed given the number of positive and negative residuals, while N > 10% and
N > 40% are the number of absolute residuals exceeding the stated percentage, and Av.r% is the average
absolute residual. The conclusions in the last column are based on these results along with several other
goodness of fit measures, and clearly model 3 is the preferred model with the estimated parameters shown

next.

Data and Best Fit Curves

Results for model 3

Parameter Value Std.error
A 0.99891 0.0078551
B 9.8901 0.33300
k 0.98814  0.026785
t 2.3190 0.045070

Parameter correlation matrix
1
-0.0167 1
-0.4388 0.7192 1

Fitting Alternative Growth Models

1.254

Lower95%cl
0.9828 7
9.2100
0.93344
2.2270

Upper95%cl
1.0150
10.570
1.0428
2.4111

p
0.0000

0.0000
0.0000
0.0000
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Example 2: Decay data

It is often useful to fit growth models to data that are decreasing as a function of time instead of increasing.
For instance, the Gompertz model growth data in the next table are contained in test file gcfit.t£5 while the
same data are arranged into decay form in test file gcfit.t£f6.

Growth data Decay data

t S(1) t S(1)
0.0000 0.0048 | 0.0000 97.3685
1.1110  0.3044 1.1110  96.4062
22220 3.4696 | 2.2220 82.1162
3.3330 14.5225 | 3.3330 74.1991
4.4440 40.8277 | 4.4440 52.6928
5.5560 52.6928 | 5.5560 40.8277
6.6670 74.1991 | 6.6670 14.5225
7.7780 82.1162 | 7.7780  3.4696
8.8890 96.4062 | 8.8890  0.3044
10.0000 97.3685 | 10.0000 0.0048

What happens in program gcfit when data in gcfit.t£6 are analyzed is that the data are rearranged into the
order of gcfit.tf5 and then fitted by growth models as normal, except that some of the results and graphs
are displayed in the original decay order with the original time scale.

First consider the parameters estimated for data in test file gcfit. t£5.

Parameter Value Std.error  Lower95%cl  Upper95%cl )4
A 105.87 4.6415 94.898 116.85 0.0000
B 9.1665 1.9138 4.6412 13.692 0.0020
k 0.48054 0.052253 0.35698 0.60410 0.0000
t1)2 5.3733 0.20578 4.8867 5.8599 0.0000
Now consider the parameters estimated for data in test file gcfit.tf6 and the best fit curves.
Parameter Value Std.error  Lower95%cl  Upper95%cl )4
A 105.87 4.6415 94.898 116.85 0.0000
B 9.1665 1.9138 4.6412 13.692 0.0020
k 0.48054 0.052253 0.35698 0.60410 0.0000
t)2 4.6267 0.20578 4.1401 5.1133 0.0000
Fitting Gompertz Growth Data: gcfit.tf5 Fitting Gompertz Decay Data: gcfit.tf6
100.0 777777777777777777777777777777777777777;) 77777 woo b~ é 777777777777777777777777777777777777777
; 60.0 ; 60.0
40.0 [®) 40.0 o
0.0 20 4.0 e 6.0 8.0 10.0 0.0 20 4.Aoctua| Timseo 8.0 10.0

What has happened is that the following model was fitted to both of these data sets
S(t) = Aexp[-Bexp(—kt)]

but the only difference in the parameter estimates and graphs is that the data are presented in the original time
scale for 7, for the decay data and not using the transformed time T = t;4x + tmin — 1.
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A similar situation is encountered when comparing the maximum and minimum slopes evaluated at the data
points with the maximum and minimum values evaluated along the coordinates of the best fit curves. This is
illustrated by the results displayed for extreme gradients in the extracts from the results log files and further
clarified by the gradient plots.

Results for growth data

Maximum observed growth rate  18.655 Best fit curve maximum  18.716
Time when max. rate observed  4.4440 Best fit curve time 4.6107
Minimum observed growth rate  0.048725  Best fit curve minimum  0.048725
Time when min. rate observed 0.0000 Best fit curve time 0.0000
Results for decay data
Minimum observed growth rate  -18.655 Best fit curve minimum  -18.716
Time when min. rate observed  5.5560 Best fit curve time 5.3893
Maximum observed growth rate  -0.048725 Best fit curve maximum  -0.048725
Time when max. rate observed  10.000 Best fit curve time 10.000
Maximum Gompertz Growth Slope at 4.623, 18.72 Minimum Slope at 5.377,-18.72
200 | 0.0
% 15.0 | 4 = -5.0 |
g 7
% 10.0 5 10.0
£ g
e [
O] 50 o -15.0
0.0 ) -20.0 ) ) ) ) ) )
0.0 2.0 4.0 6.0 8.0 10.0 0.0 2.0 4.0 6.0 8.0 10.0
Time Actual Time

The conclusion is simply that, if S(MF]T program gcfit is supplied with decay data, the data will be reversed
and fitted by the growth models, but the output tables and graphs will use the original decay coordinates.

Example 3: Nonlinear survival curves

In mode 2, gcfit fits a sequence of survival curves for data smoothing where it is assumed that the data are
uncorrelated estimates of fractions surviving 0 < S(#) < 1 as a function of time ¢ > 0, e.g. such as would
result from using independent samples for each time point. However, as normalizing data to S(0) = 1 can
introduce bias, mode 2 allows an amplitude factor to be estimated.

It is important to realize that, if any censoring has taken place, the estimated fraction should be corrected for
this. In other words, you start with a population of known size and, as time elapses, you estimate the fraction
surviving by any sampling technique that gives estimates corrected to the original population at time zero.

The test files weibull.tfl and gompertz.tfl contain some exact data, which you can fit to see how mode
2 works. Then you can add error to simulate reality using program adderr. Note that you prepare your own
data files for mode 2 using the same format as for program makfil, making sure that the fractions are between
zero and one, and that only nonnegative times are allowed. It is probably best to do unweighted regression
with this sort of data unless the variance of the sampling technique has been investigated independently.

In survival mode the time to half maximum response is estimated with 95% confidence limits and this can
used to estimate LD50. The survivor function is S(¢) = 1 — F(¢), the pdf is f(¢), i.e. f(t) = —dS/dt, the
hazard function is () = f(#)/S(¢), and the cumulative hazard is H(¢) = —log(S(¢)). Plots are provided for
S(1), f(2), h(t),log[h(?)] and, as in mode 1, a summary is given to help choose the best fit model from the
models provided, all of which decrease monotonically from S(0) = 1 to S(c0) = 0 with increasing time.
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The test file weibull. tf1 has the following data

Time

0.000
1.000
2.000
3.000
4.000
5.000

Fraction

1.000

0.9048
0.6703
0.4066
0.2019

0.08208

simulated by program makdat using the Weibull model

S(t) = p1exp[—p2t?]
= Soexp[—(An?]

S.e.

)
1
1
1
1
1

for p; =1, p2 = 0.1, p3 = 2.0 which, in the nomenclature used by gcfitis So = 1.0, A = 0.362, B = 2.0. Then
7.5% relative error was added for five replicates using program adderr to generate test file weibull.tf2
which was analyzed using the option to estimate So giving the following table of parameter estimates and the
best fit curve plot. Of course, if the starting fraction were known exactly, as in actual survival data, there
would be no values for # = 0 since it would be assumed that Sy = 1. However, allowing the = 0 value to be
estimated should perhaps always be used for data smoothing to avoid bias.

Parameter ~ Value Std.error  Lower95%cl  Upper95%cl p

A 0.30648 0.0056521 0.29489 0.31808 0.0000

B 2.0879 0.11926 1.8432 2.3326 0.0000

So 0.95465 0.015961 0.92190 0.98740 0.0000

t2 2.7375  0.063837 2.6065 2.8685 0.0000

Fitting a Weibull Survival Model
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Growth and Survival Models available in program gcfit

1. Exponential model dS/dt = kS
S(t) = Aexp(kt), where A = S
2. Monomolecular model dS/dt = k(A - S)
S(t) = A[1 — Bexp(—kt)], where B=1- Sy/A
3. Logistic model dS/dt = kS(A - S)/A
S(t) = A/[1 + Bexp(—kt)], where B = A/Sy — 1
4. Gompertz model dS/dt = kS[log(A) —log(S)]
S(t) = Aexp[-Bexp(—kt)], where B =log(A/Sp)
5. Von Bertalanffy 2/3 model dS/dt = nS§** — S
S(t) = [A' - Bexp(—k1)]?
where A3 = n/k, B=n/k - S(l)/3, k=«/3
6. Model 3 with constant f () = S(t) - C
df dt = dS]di = kf(1)(A - (1)) /A
S(t) = A/[1 + Bexp(—kt)] +C
7. Model 4 with constant f(¢) = S(t) — C
df /dt = dS/dt = k f(1)[log(A) —log(f(1))]
S(t) = Aexp[-Bexp(—kt)] +C
8. Model 5 with constant f (1) = S(t) — C
df /dt = dS/dt = nf()*? - kf (1)
S(r) = [A'3 - Bexp(—kt)]* + C
9. Richards model dS/dt = nS™ — kS
S(t) = [A"™™ — Bexp(—kr)]11/U-m]
where A'™™ = /k, B =n/Kk — S(l)_m,k = k(1 —m)
if m < 1 thenn,x, Aand B are >0
ifm>1thenA >0butn,xand Bare <0
10. Preece and Baines model f(t) = exp[ko(t — 6)] +exp[k; (¢t — 6)]
S(t) = h1 =2(h1 — he)/ f(1)
1. Exponential survival model S(¢) = exp(—At)
F(0) = AS()
h(t) = A
2. Weibull survival model S(7) = exp[—(Ar)5]
f() = AB[(An®7']S(1)
h(r) = AB(Ar)B!
3. Gompertz survival model S(1) = exp[—(B/A){exp(At) — 1}]
f(t) = Bexp(Ar)S(1)
h(t) = Bexp(At)
4. Log-logistic survival model S(r) = 1/[1 + (Ar)®]
f(1) = AB(ANP (1 + (An*)?
h(t) =