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Introduction 11

1 Introduction

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

The SimFIT manual contains a description of all the procedures available to users including the necessary

background theory together with worked examples. However, the manual was constructed for users with

competence in mathematics and statistical understanding, so the worked examples were presented in a very

succinct form which sometimes proves difficult to understand for users without these skills.

This set of tutorials and worked examples has been written to keep the mathematics and statistics to a minimum,

and to present the worked examples in a simpler and more user-friendly form with more description and fewer

equations. It is important that the the document tutorials.pdf must be consulted before attempting to

follow instructions in the tutorials. However, it should be realized that the SimFIT reference can always be

consulted for more details, and it must be pointed out that the tutorials are written with the understanding

that users have installed the package and are aware of the following documents that are distributed with the

package and are available from the SimFIT website.

• tutorials.pdf
Must be read and understood before attempting to follow instructions in the tutorials

• w_examples.pdf
The collected tutorials

• w_manual.pdf
The comprehensive SimFIT manual with hyperlinks

• mono_manual.pdf
The comprehensive SimFIT manual in monochrome PDF

• install.pdf
Installation details

• configure.pdf
Configuration details

• speedup.pdf
Try these techniques when you are familiar with SimFIT and want to speed up execution by suppressing

advisory messages

• simfit_summary.pdf
Summary of the SimFIT package

• source.pdf
Details of how to compile the simfit package from source code downloaded from the SimFIT website

• pscodes.pdf
Tips for LATEX and/or PostScript users who want to employ several advanced plotting procedures

• ms_office.pdf
Description of how to interface SimFIT with suites such as MS Office, LibreOffice, and OpenOffice
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2 Data preparation

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

2.1 Introduction to data preparation

The format required to input data into SimFIT is extremely simple: all that is required is to read in a rectangular

table of numbers with no missing values, either as a file or from the clipboard.

Data tables

However there are four alternative ways to indicate separation of data values into columns that will be accepted

by SimFIT as now discussed.

1. Space separated variables

Here the columns are separated by spaces as in this example.

11 12 13

21 22 23

31 32 33

41 42 43

This is how results files are formatted by SimFIT, but this is not acceptable for table format using some

word processors which generally require columns to be separated by tabs.

2. Tab separated variables

Here the columns are separated by tabs (indicated by –>) as in this example.

11­>12­>13

21­>22­>23

31­>32­>33

41­>42­>43

This is acceptable for tables using word processors and SimFIT results tables can easily be transformed

into this format, e.g. reading into Excel as a text file then exporting as a table for use by Word.

3. Comma separated variables

Here the columns are separated by commas as in this example.

11, 12, 13

21, 22, 23

31, 32, 33

41, 42, 43

This is the most common format used for data archiving, for instance *.csv files exported by Excel,

and such tables can easily be transformed into tab format, e.g. reading into Excel as a *.csv file then

exporting as a table for use by Word.
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4. Semicolon separated variables

This is when the continental practise of using commas for decimal points is used so that *.csv files are

then exported from Excel in the following format

1,1; 1,2; 1,3

2,1; 2,2; 2,3

3,1; 3,2; 3,3

4,1; 4,2; 4,3

instead of this format which is universally used in scientific work.

1.1 1.2 1.3

2.1 2.2 2.3

3.1 3.2 3.3

4.1 4.2 4.3

Input and output formats

SimFIT does not distinguish between integers and floating point numbers in data sets supplied for analysis,

but does distinguish three data types of numbers in the files that are automatically created to archive results

from analysis.

1. Integers such as 1, 1000, 1000000

2. Probability estimates such as 0.0004, 0.000039

3. Floating point numbers such as 1.2345 or, in exponential format, 1.2345E+00.

Of course all numbers used by SimFIT are represented internally either as integers to full significance or

floating point numbers in 64-bit precision, but there are reasons for the way that SimFIT outputs floating point

numbers.

Probabilities calculated for significance tests are at best only approximations and, as the numbers must lie

between 0 and 1, four or sometimes six figures are output after the decimal point. More than this are for the

blind leading the blind.

Calculations done with 64-bit precision have up to fifteen significant figures and it could be argued that results

should be output with a similar number of significant figures. However experimental data rarely have more

than four or five significant figures, and most calculations involve iterative procedures or approximations in

any case so probably up to six significant figures should be sufficient.

Scientific notation

From version 8 users can configure SimFIT to use a selected number of significant figures in standard format

or to use exponential notation with exactly six significant figures as follows.

Exponential Standard

1.23456E+00 1.23456

1.23456E­01 0.123456

1.23456E­02 0.0123456

1.23456E­03 0.00123456

1.23456E­04 0.000123456

1.23456E+01 12.3456

1.23456E+02 123.456

1.23456E+03 1234.56

1.23456E+04 12345.6
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However, to avoid monstrosities like 0.0000000012345 in output tables, SimFIT always outputs very small or

very large numbers in exponential notation The advantage of exponential notation is that all output tables will

be neatly formatted irrespective of the size of the numbers, and orders of magnitude can be seen at a glance.

The disadvantage is that users not conversant with exponential notation may find confusing a notation that

even programs like Excel have to resort to for very large or very small numbers. Actually it is very easy to

replace exponential format by floating point format by importing a table formatted by SimFIT into Excel as a

text file and then changing inside Excel from [scientific] format to [number] format using the [cells format]

option. Such tables can then be imported into Word.

Row and Column labels

It has been explained that any rectangular data table with the same number of columns (i.e. variables) for each

row (i.e. cases) can be imported into SimFIT by clipboard or file. However sometimes, by design in the case

of multivariate data, or by accident otherwise, a full data matrix including row and column labels is submitted

to SimFIT for analysis.

There are two ways when this is acceptable.

1. All labels consist of a single word

In this example the interword spaces have been replaced by minus signs but any non-blank character

such as an underscore can be used. Note the use of * to indicate that this is neither a row or a column

label and so will be ignored.

* column­1 column­2 column­3

row­1 11 12 13

row­2 21 22 23

row­3 31 32 33

row­4 41 42 43

2. All labels are included within double quotes

This is done in the next example.

"*" "column 1" "column 2" "column 3"

"row 1" 11 12 13

"row 2" 21 22 23

"row 3" 31 32 33

"row 4" 41 42 43
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Conclusion

Any matrix with = ≥ 1 rows and< ≥ 1 columns can be submitted to SimFIT for analysis from file or clipboard

as long as two criteria are satisfied

1. All = rows have precisely < columns and there are no non-numerical or missing values.

2. If it is intended to use a data matrix with non-numerical data for row and column labels these must be

as single words or be quoted.

The columns can be space, tab, comma, or semicolon separated and labels are not limited to one or two words as

long as they are filled out with non-blank characters as in Time_of_Day, or surrounded by double quotes as in

"Score on a scale of 1 to 10". For Excel users the macro simfit6.xls in the C:\Program Files\Simfit\doc

folder can be used to transform arbitrary matrices into SimFIT format.

2.2 Simfit data files

It has been explained that all SimFIT requires to perform analysis is a rectangular table of numbers, with

or without row and column labels. So why is there a need for data files formatted according to the SimFIT

convention? There are two answers to this question.

1. It is very easy to create data files according to the SimFIT convention using any text editor, the programs

supplied by SimFIT, or the Excel macro simfit6.xls. Such files facilitate archiving and repeated analysis.

2. Many procedures used by SimFIT require additional information such as starting values and ranges of

parameter values for curve fitting, initial conditions from which to advance the solution of differential

equations, flags to indicate which variables are to be included in multivariate analysis, etc.

Example 1

Consider a very simple example, namely the SimFIT default ANOVA test file anova1.tf1 shown below.

1-way ANOVA data from Zar: Biostatistics 3rd. edn. p-213

6 5

28.2 39.6 46.3 41.0 56.3

33.2 40.8 42.1 44.1 54.1

36.4 37.9 43.5 46.4 59.4

34.6 37.1 48.8 40.2 62.7

29.1 43.6 43.7 38.6 60.0

31.0 42.4 40.1 36.3 57.3

5

line 1: title for this data set

line 2: number of rows then number of columns

line 3: first row of data values

line 8: last row of data values

line 9: number of additional comment lines in the file

This data file has three sections as follows.

1. The Header

The first line is the title and this is very useful as many SimFIT procedures output results tables with

the titles to identify the data set. It is also very convenient to scan the first line of a data file to quickly

remind you about the contents. The second line is the size in the form of the number of rows (6 in this

case) and the number of columns (5 in this case). There are some SimFIT functions that must have

these two dimensions in order to make decisions about the type of data. For instance, some graphics

and curve fitting procedures.

Note that, although a header section is not always required, it is very useful to supply one.
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2. The Data

This is just the rectangular table of data values with no missing values.

3. The Trailer

In this example the first line of the trailer has the number of extra lines appended to the data. This value

is not always necessary but is useful for some SimFIT programs that edit data files. Also note that, in

this case, the only material contained in the trailer section is advisory information. However this is not

always the case. Although a trailer section is never vital and can always be omitted, nevertheless there

are many circumstances when extremely important information required by SimFIT can be conveniently

added to the trailer which greatly simplifies analysis. This will be clear after analyzing another test file.

Example 2

Now consider another typical SimFIT data file, namely kmeans.tf1, the default file to illustrate K-means

clustering. Note that line numbers have been included in the first column of the following table for reference

only and are not part of the actual data file.

Line 1 Data for 5 variables on 20 soils ...

Line 2 20 5

Line 3 77.3 13.0 9.7 1.5 6.4

Line 4 82.5 10.0 7.5 1.5 6.5

Line 5 66.9 20.6 12.5 2.3 7.0

Line 6 47.2 33.8 19.0 2.8 5.8

Line 7 65.3 20.5 14.2 1.9 6.9

Line 8 83.3 10.0 6.7 2.2 7.0

Line 9 81.6 12.7 5.7 2.9 6.7

Line 10 47.8 36.5 15.7 2.3 7.2

Line 11 48.6 37.1 14.3 2.1 7.2

Line 12 61.6 25.5 12.9 1.9 7.3

Line 13 58.6 26.5 14.9 2.4 6.7

Line 14 69.3 22.3 8.4 4.0 7.0

Line 15 61.8 30.8 7.4 2.7 6.4

Line 16 67.7 25.3 7.0 4.8 7.3

Line 17 57.2 31.2 11.6 2.4 6.5

Line 18 67.2 22.7 10.1 3.3 6.2

Line 19 59.2 31.2 9.6 2.4 6.0

Line 20 80.2 13.2 6.6 2.0 5.8

Line 21 82.2 11.1 6.7 2.2 7.2

Line 22 69.7 20.7 9.6 3.1 5.9

Lines numbered 1 to 2 are the optional header while lines 3 to 22 contain the data table as follows.

Line 1 This is the title of the data set

Line 2 This contains the size, i.e. the number of rows and columns

Line 3 to Line 22 contain the 20 by 5 data table
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Line 23 44 (i.e., Number of extra lines)

Line 24 Usage:

Line 25 Select statistics, then run program simstat, choose

Line 26 multivariate statistics, then go to K-means clustering

Line 27

Line 28 The next line defines the starting clusters for k = 3

Line 29 begin{values} <– token to flag start of appended values

Line 30 82.5 10.0 7.5 1.5 6.5

Line 31 47.8 36.5 15.7 2.3 7.2

Line 32 67.2 22.7 10.1 3.3 6.2

Line 33 end{values}

Lines 23 to 28 are simply advisory but lines 29 to 33 illustrates the technique to set default starting estimates

for the K-means clusters centroids. Note here how SimFIT data files and user-supplied model files define

various environments (in this case the environment is values) using flags as in

begin{values} . . . end{values}

The final part of the trailer section contains lines 34 to 67 as follows.

Line 34

Line 35 The next line defines the variables as 1=include, 0=suppress

Line 36 begin{indicators} <– token to flag start of indicators

Line 37 1 1 1 1 1

Line 38 end{indicators}

Line 39

Line 40 The next line defines the row labels for plotting

Line 41 begin{labels} <– token to flag start of row and column labels

Line 42 A

line 43 B

Line 44 C

Line 45 D

Line 46 E

Line 47 F

Line 48 G

Line 49 H

Line 50 I

Line 51 J

Line 52 K

Line 53 L

Line 54 M

Line 55 N

Line 56 O

Line 57 P

Line 58 Q

Line 59 R

Line 60 S

Line 61 T

Line 62 V1

Line 63 V2

Line 64 V3

Line 65 V4

Line 66 V5

Line 67 end{labels}



18 Data preparation

Here we see that two further environments are defined.

1. indicators

Lines 36 to 38 define the indicators, i.e. which variables are to be included in the analysis using the

scheme that a 1 indicates a variable to be included while a 0 indicates a variable to be suppressed. So

here the default position is to include all variables.

2. labels

Lines 41 to 67 define the labels. First the row labels in lines 42 to 61 then the column labels in lines

62 to 66. These labels can then be used to identify rows and/or columns when graphs are plotted. It is

recommended to use very short labels, as done here, to avoid confusion resulting from long labels.

Note that environments defining parameters such as values, indicators, and labels as illustrated in this test

file can be placed anywhere in the trailer section. SimFIT simply scans the trailer section of data files for

appropriate environments and, if none are found, it uses default settings which can be edited retrospectively as

required. However it should be pointed out that with many advanced SimFIT techniques, such as constrained

nonlinear regression or simulating and fitting differential equations, supplying starting estimates or initial

conditions is very much easier if these are appended to the individual data sets.

2.3 Creating and editing Simfit data files

It has been explained that data for analysis by SimFIT must be supplied in the form of a rectangular table of

numbers with no missing values. Further, row and column labels can be present as long as they either have

no spaces as in Time_of_Day or are double quoted as in "Time of Day".

So, for many purposes, it is adequate merely to copy the table to the clipboard from a spreadsheet program

such as Excel or Calc, and then use the [Paste] button on the SimFIT file opening control, which simply

makes a temporary file in SimFIT format from the clipboard data. There is nothing wrong with this way of

proceeding but two things must then be realized.

1. Archiving

Doing it this way using copy and paste means it has to be done every time you want to repeat the process,

for instance, to fit several models to the same data. Saving well-named data files with short meaningful

titles makes retrospective use so much easier. In addition, it permits the gathering of files together to fit

several data sets simultaneously, or plot multiple sets of coordinates, say using SimFIT library files.

2. Environments

Many analytical procedures require more than just the data table. For instance.

(a) Setting parameter starting estimates and limits for nonlinear model fitting.

(b) Providing initial conditions and range for numerical solution of differential equations, as well as

the limits and number of points for plotting trajectories.

(c) Defining starting clusters for K-means clustering.

(d) Indicating variables to include or suppress in multivariate analysis.

(e) Assigning variables to groups as in canonical correlation.

(f) Adding row and column labels to data files to use in multivariate analysis plots.

Evidently it would be extremely tedious to have to do this every time analysis is carried out using

the clipboard to copy and paste spreadsheet data data into SimFIT for analysis, as these additional

parameters would then have to be edited interactively each time for use by the calling program.
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Before proceeding any further an important point must be made about such data files.

SimFIT data files are simple ASCII text files which means that, given such a file, it is easy to edit it

retrospectively in any text editor, such as notepad, in order to add, remove, or edit any of the information in it.

However, if rows of numbers are added to the data table or removed from it, then the first integer on

the second line of the file which indicates the number of rows must be corrected.

There is also another matter which may cause concern if it is not understood.

Numbers in data files prepared by SimFIT are usually represented in scientific notation with a fixed number

of significant figures. So if you input 1, 2, 3 from the clipboard it will be written to file as 1.0000000E+00,

2.0000000E+00, 3.0000000E+00 or similar. Of course calculations by SimFIT are carried out to 64-bit

precision, so in the unlikely event that you do want to input data with more significant figures, just input in

CSV format.

These are the ways to create data files in the SimFIT format.

1. Paste in from the clipboard but then save the temporary file created with a new name.

2. Use a macro with your spreadsheet program. For instance simfit6.xls with Excel.

3. Read a spreadsheet export file into program maksim or paste a table in from the clipboard.

4. Create a data file using a text editor such as notepad, or better notepad++.

5. Create a data file using one of the SimFIT programs such as makfil for curve fitting files, or makmat

for arbitrary data tables.

Having created a data file then any environments that need to be added can be pasted in anywhere at the end

of the data table using a text editor.

For small data sets it may be convenient to create data files using the SimFIT file creating programs makmat

and makfil which guarantees correctly formatted data files. Then, for simple editing to correct, add, or deleet

a few values it is probably easiest to use a text editor like notepad. However, when it comes to serious editing

of data files the SimFIT data file editing programs editmt and editfl provide many procedures that are very

difficult if not impossible to perform using a text editor or spreadsheet program. So the following features of

the SimFIT data preparation and editing programs should be realized before the functionalities are discussed.

The SimFIT data preparation programs may only be useful when creating a file from relatively small data

sets, but do have some advantages that will be outlined. The SimFIT file editing programs read in a source

file and output a target file, but the source file will never be altered.

Standard data files

SimFIT program makmat

With this program you can simply type in numbers into an empty grid in the usual way. However, in order to

facilitate the creation of special data sets, matrices can be zeroed with selected numbers, which can be very

useful where diagonals have special significance. After filling in all the cells the matrix can be edited before

exit. If the file creation process is closed before all the cells are filled in then uncompleted cells are set to a

fixed number (1 or 1000000) which can only be changed by further editing.

SimFIT program editmt

Some of the functionality is summarized.
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• Patches of the matrix can be written to file and new patches can be added from files. This is a very

useful way to fuse multiple data sets that all have the same number of rows, or alternatively the same

number of columns.

• Individual rows or columns can be deleted or restored which is a convenient way to swap rows or

columns

• Individual rows or columns can be transformed by algebraic, probability, or trigonometric functions.

• Individual rows or columns can be set to fixed values.

• The total matrix can be edited to change selected values or for such processes as centering, scaling, or

centering and scaling rows or columns. Such editing can be aborted at any stage without overwriting

the current default matrix.

• On exit the title and trailer section of the data set can be edited.

Of course users must be aware of the need to proceed in an orderly and methodical fashion if these procedures

are to applied sensibly with the desired mathematical results.

Curve fitting Files

There are also several special considerations with curve fitting files that must be considered briefly here,

noting that there is much more detail on this subject in the SimFIT reference manual.

These have either two columns G and H, or three columns G, H, and B which have the following meanings.

X in column 1

The independent variable known with great accuracy, e.g. time, weight, concentration.

Usually G values are increasing order because of four reasons.

1. The first G8 , H8 pairs are used to obtain starting estimates for model parameters that have influence

at low G.

2. The last G8 , H8 pairs are used to obtain starting estimates for model parameters that have influence

at high G.

3. Numerical estimation of differential equations is best done sequentially onwards from the initial

conditions to avoid unnecessary re-calculations.

4. SimFIT parses the data first time and assigns logical variables to identify groups of replicates so

that the model error is only calculated for the first member of each group of replicates to avoid

unnecessary re-calculations.

Y in column 2

The measured response assumed to result from random experimental error added to a deterministic

effect.

S in column 3

The weights for fitting are calculated using F8 = 1/B28 .

There are five possibilities, all of them being controversial.
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1. All B8 = 1. Constant variance is assumed.

This is also the case when only two columns G the H are supplied. In other words, there is no such

thing as unweighted regression.

2. The B8 are investigated independently and are know accurately.

This is unquestionably the best method but is seldom used.

3. The B8 are estimated using the sample standard deviations based on replicates.

This is only acceptable if the sample sizes are sufficiently large, definitely ≥ 5.

4. The B8 are assumed to be functions of the data i.e., H8 .

This means that replicates will be weighted differently.

5. The B8 are assumed to be functions of the best-fit model.

Whatever functional dependence is assumed the weights will be different for each iteration and

only make sense if the fitted model is actually the correct one, the assumed functional dependence

is correct, and in addition the weights only become asymptotically reliable as the regression

converges to the solution point.

SimFIT program makfil

The user can choose to make a G, H or a G, H, B file and can choose whether to input G in increasing order or,

for special use where this is not necessary, in arbitrary order. Note that G can also be input for data such as

those from doubling dilution experiments as described in the information available when the program is run,

but this option is only to be used when it is properly understood. If the option to make a G, H file is chosen,

the output file will have a third column with B8 = 1.

As this program is designed to prepare data files for curve fitting you will be forced to only input G in increasing

order unless this option has been suppressed, and if you choose to make a G, H, B file, you will be forced to

input meaningful B8 values with B8 > 0.

Note that you can plot the G, H values when the data input phase has been completed, and this is a very valuable

way to check that sensible data have been input. So, if outliers are seen suggesting a typing error, this editing

can be done before exit.

SimFIT program editfl

Just as with editmt you specify a source file and a target file in case an undo functionality is required, and

you can fuse multiple curve fittng data files together. A valuable feature is to rearrange data so that G is in

nondecreasing order, and a check is provided to make sure that B8 , H8 pairs suggesting a sensible signal to noise

ration have been input. If replicates have been provided these can be used to calculate weights and error bars,

although some SimFIT programs can do this at run-time.

Before final exit the ability to edit the title and trailer section is provided in case environments such as

begin{limits} ... end{limits}

need to be added or updated.

The great advantage of using programs makfil and editfl is that the extensive checks for consistency, G order,

sensible signal to noise ratios for H8 , B8 pairs, and visual checking for accidental outliers during the data input

phase, greatly decreases the chance of a spurious result from trying to fit badly formatted data.

Missing values



22 Data preparation

Data tables used by SimFIT must have no missing values. So, if you are in the unfortunate situation of requiring

such dishonesty for the greater good, then you will have to use the Excel macro called simfit6.xls, or some

other program dedicated to cheating in (one hopes) the least objectional way.

However there are sometimes cases where analysis of a matrix with unequal length columns can proceed

and where missing values do not need to be replaced by estimates. For instance, 1-way ANOVA, analysis of

multiple samples for equality of variance, creating box and whisker plots, etc. Such situations can be handled

using individual column vectors, specifying data samples using a library file, or choosing individual samples

from your project archive. Note that now these procedures can also use incomplete matrix files which will be

described separately.

2.4 Incomplete matrices with missing values

Many procedures require sets of data with possibly unequal sample sizes, and the standard ways to deal with

such situations in SimFIT has been to use one of the following three techniques.

1. Opening a library file to reference sample files, e.g., anova1.tfl.

2. Opening individual files like column1.tf1, column1.tf2 such as are specified in anova1.tf1.

3. Opening collections of files like column1.tf1, column1.tf2 from your vector project archive.

There is now also the possibility of using an incomplete matrix file with missing values where the columns

are padded out with non-numeric character strings like blanks, X, NA, etc. However, note that this technique

is not intended for situations where a value is missing because an observation was not recorded, or because

an outlier is suspected, and an estimate is to be used in order to allow statistical analysis to proceed. For this

the Excel macro simfit6.xls can be used. Rather it is simply designed so that a single matrix can be used

for convenience whenever the numbers of numeric data are not the same in every column of a matrix.

The format for incomplete matrix files

Here are the rules.

• In order for such data to be interpreted correctly the matrix columns must be separated in an unambiguous

way, for example, using commas, semicolons, or tabs.

• The separators used cannot occur elsewhere in the file except as column separators.

• Down any given column the missing values can occur at the level of any row.

• Unambiguous non-numeric character strings must be used to pad out the cells with missing values.

• Headers and trailers can be added as long as they do not contain the column separators.

• If labels are required for plotting they cannot be added to the trailer but must be added from the

configuration files, or interactively, e.g. from a separate labels file.

Example 1: comma separated variables

The SimFIT test file incomplete.tf1 uses commas as separators as follows.

23, 29, 38, 30, 31

27, 25, 31, 27, 33

26, 33, 28, 28, 31

19, 36, 35, 22, 28
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30, 32, 33, 33, 30

, 28, 36, 34, 24

, 30, , 34, 29

, 31, , 32, 30

Such a file is just a normal comma separated file such as a *.csv file exported from any spread sheet program.

Of course this format cannot be used if continental notation is used for non-integer values, such as using 1,234

for 1.234. Cells can use scientific notation for 1.234 such as 1.234E+00 or 0.1234E+01, 1.234e0, etc.

Example 2: semicolon separated variables

The SimFIT test file incomplete.tf2 uses semicolons as separators as follows.

23; 29; 38; 30; 31

27; 25; 31; 27; 33

26; 33; 28; 28; 31

19; 36; 35; 22; 28

30; 32; 33; 33; 30

; 28; 36; 34; 24

; 30; ; 34; 29

; 31; ; 32; 30

Such a file would be output as a *.csv file from a spreadsheet program set up to use commas instead of the

decimal points used in standard scientific documents.

Example 3: tab separated variables

This how test file incomplete.tf3 will look in Notepad

23 29 38 30 31

27 25 31 27 33

26 33 28 28 31

19 36 35 22 28

30 32 33 33 30

28 36 34 24

30 34 29

31 32 30

while here is how it would look in Notepad++ if the option to display tabs is switched on.

23­>29­>38­>30­>31

27­>25­>31­>27­>33

26­>33­>28­>28­>31

19­>36­>35­>22­>28

30­>32­>33­>33­>30

­>28­>36­>34­>24

­>30­> ­>34­>29

­>31­> ­>32­>30



24 Data preparation

This is usually the default format to copy to the clipboard or export to files with many spreadsheet programs,

as it allows either continental or scientific notation to be used for non-integer values. However, considerable

care must be taken when editing such files in a simple editor like Notepad which does not display tabs, and

the more advanced editior Notepad++ must be used to prevent accidental deletion of tabs, when it would no

longer be recognized by SimFIT as an incomplete matrix file. Here are some of the graph plotting styles that

can be used with both incomplete and complete SimFITdata files.
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Plot 1: Means as symbols with error bars calculated from individual samples
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Plot 2: A bar chart plot with added error bars calculated as for Plot 1
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Plot 4: Showing all the sample values as clusters
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Plot 5: A box and whisker plot with added data
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Plot 6: Connecting the percentiles by straight line segments
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3 Results files

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

3.1 Options for the number of significant digits in tables

Floating–point numbers (i.e., numbers with a decimal point) are stored by computers in binary form but data

files for input into SimFIT and tables output with results are in text format. Given a number G, the range of

values allowed by SimFIT for the absolute value of G to 3 significant digits (i.e., 3 digits not counting the

decimal point) is

2.25 × 10−308 ≤ |G | ≤ 1.79 × 10308

and the maximum number of significant digits allowed in this range is approximately 15.

SimFIT will accept data within such limits and performs calculations to double precision but, because all

calculations are subject to rounding and truncation errors, only a lower number of significant digits, say 12, is

required especially given that most calculations SimFIT performs involve iterative procedures like nonlinear

optimisation. Further, scientific instruments are seldom accurate at this level of accuracy and in many cases

it is not reasonable to accept results with more significant digits than used to represent the data. Because of

the difficulty of reading and writing extremely large numbers there is a format called scientific notation to be

explained next.

All floating–point numbers can be written concisely using powers of ten as multiplication factors as follows

1000000.0 = 1.0 × 106

0.0000001 = 1.0 × 10−6

where the value and convenience of using powers of ten will be clear at a glance. To avoid superscripts and

also to limit the number of characters required to represent numbers, scientific notation simply uses the idea

of one digit in front of the decimal point and a fixed number of digits after the decimal point with the code

E+ab for ×1001 and E-ab for ×10−01. Here for example is the number −1.23456 that unquestionably has

6 significant digits but multiplied by powers of ten as they would be displayed by SimFIT using Option 6

(scientific notation) and Option 7 (standard notation).

Option 6 Option 7

­1.23456E+09 ­1.23456E+09

­1.23456E+08 ­1.23456E+08

­1.23456E+07 ­12345600.0

­1.23456E+06 ­1234560.0

­1.23456E+05 ­123456.0

­1.23456E+04 ­12345.6

­1.23456E+03 ­1234.56

­1.23456E+02 ­123.456

­1.23456E+01 ­12.3456

­1.23456E+00 ­1.23456

­1.23456E­01 ­0.123456

­1.23456E­02 ­0.0123456

­1.23456E­03 ­0.00123456

­1.23456E­04 ­0.000123456
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­1.23456E­05 ­0.0000123456

­1.23456E­06 ­1.23456E­06

­1.23456E­07 ­1.23456E­07

It will be clear that the scientific format has a fixed width with the numbers aligned at the decimal point

whereas the numbers in standard notation are of variable width and, when the numbers become rather large

or very small, SimFIT Option 7 resorts to scientific notation.

The options for results

SimFIT releases up to version 7 always displayed numbers in scientific notation with a field width and

significant digits appropriate for the analysis being employed. To many analysts this is by far the most

valuable way to display numbers as the field width is fixed, all numbers are aligned at the decimal points and

orders of magnitude can be seen at a glance, but some SimFIT users find this difficult to understand so from

version 8 SimFIT provides an interface that users can employ to change number format interactively. This is

done using the following sequence of steps starting from the [Configure] option from the SimFIT main page

[Configure] ­­> [Advanced] ­­> [Change number of significant digits in results tables]

which takes immediate effect after choosing the format required without requiring the [Apply] button to be

pressed.

The ten options are

Option 1: Up to 12 significant digits

Option 2: Up to 11 significant digits

Option 3: Up to 10 significant digits

Option 4: Up to 9 significant digits

Option 5: Exactly 7 significant digits

Option 6: Exactly 6 significant digits (scientific notation)

Option 7: Exactly 6 significant digits (standard notation: recommended)

Option 8: Exactly 5 significant digits

Option 9: Exactly 4 significant digits

Option 10: Exactly 3 significant digits

which all use a field width of 13 characters. For this reason the number of significant digits in options 1 to 4

cannot be exact but are upper limits.

To illustrate the difference between Scientific notation and standard notation consider the results created by

SimFIT after fitting one then two exponentials using SimFIT program exfit to analyse the test file exfit.tf4

(which has six significant digits) in order to decide if fitting two exponentials after one exponential justifies

the higher order model with extra parameters.

Option 6: Scientific notation

For best­fit 1­exponential function

Parameter Value Std.Error Lower95%cl Upper95%cl p

A(1) 1.69443E+00 2.67006E­02 1.63974E+00 1.74912E+00 0.0000

k(1) 1.46094E+00 5.77654E­02 1.34261E+00 1.57926E+00 0.0000

AUC 1.15982E+00 3.78135E­02 1.08237E+00 1.23728E+00 0.0000

AUC is the area under the curve from t = 0 to t = infinity

Initial time point (A) = 3.59830E­02
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Final time point (B) = 1.61100E+00

Area over range (A,B) = 9.90210E­01

Average over range (A,B) = 6.28698E­01

For best­fit 2­exponential function

Parameter Value Std.Error Lower95%cl Upper95%cl p

A(1) 8.52553E­01 6.77105E­02 7.13372E­01 9.91734E­01 0.0000

A(2) 1.17644E+00 7.47538E­02 1.02278E+00 1.33010E+00 0.0000

k(1) 6.79334E+00 8.54540E­01 5.03681E+00 8.54987E+00 0.0000

k(2) 1.11206E+00 5.10959E­02 1.00703E+00 1.21709E+00 0.0000

AUC 1.18339E+00 1.47096E­02 1.15316E+00 1.21363E+00 0.0000

AUC is the area under the curve from t = 0 to t = infinity

Initial time point (A) = 3.59830E­02

Final time point (B) = 1.61100E+00

Area over range (A,B) = 9.38322E­01

Average over range (A,B) = 5.95754E­01

F test results

WSSQ­previous (WSSQ1) = 2.24923E+02

WSSQ­current (WSSQ2) = 2.43970E+01

Number of parameters­previous (M1) = 2

Number of parameters­current (M2) = 4

Number of data points (NPTS) = 30

Akaike AIC­previous = 6.44368E+01

Akaike AIC­current = 1.79794E+00

Evidence ratio (ER) = 3.99818E+13

Schwarz SC­previous = 6.72392E+01

Schwarz SC­current = 7.40273E+00

Mallows Cp = 2.13701E+02

Mallows ratio (Cp/M1) = 1.06851E+02

Numerator degrees of freedom = 2

Denominator degrees of freedom = 26

F test statistic (FS) = 1.06851E+02

p = P(F >= FS) = 0.0000

1 ­ p = P(F =< FS) = 1.0000

5% upper tail point = 3.36902E+00

1% upper tail point = 5.52633E+00

Conclusion based on F test

Reject previous model at 1% significance level

There is strong support for the extra parameters

Tentatively accept the current best fit model

You will observe that all floating point numbers in these results tables have exactly six significant digits and

all the numbers are lined up at the decimal point but use exponential notation for powers of ten.

Option7: Standard notation

Now performing the same analysis after selecting the default Option number 7 leads to the following analysis

in which all the floating point numbers are still displaying six significant digits but now in standard format.

Note however that, even in standard format, it is necessary to swap to scientific notation when the absolute

value of the numbers become very large (> 107) or very small (< 10−6). This is necessary to maintain a

maximum width of 13 characters per number in multi–column tables.
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For best­fit 1­exponential function

Parameter Value Std.Error Lower95%cl Upper95%cl p

A(1) 1.69445 0.0267064 1.63974 1.74915 0.0000

k(1) 1.46101 0.0578035 1.3426 1.57941 0.0000

AUC 1.15978 0.0378344 1.08228 1.23728 0.0000

AUC is the area under the curve from t = 0 to t = infinity

Initial time point (A) = 0.035983

Final time point (B) = 1.611

Area over range (A,B) = 0.990184

Average over range (A,B) = 0.628681

For best­fit 2­exponential function

Parameter Value Std.Error Lower95%cl Upper95%cl p

A(1) 0.852548 0.0677272 0.713332 0.991763 0.0000

A(2) 1.17645 0.0747742 1.02275 1.33015 0.0000

k(1) 6.79344 0.854289 5.03743 8.54946 0.0000

k(2) 1.11206 0.0511103 1.007 1.21712 0.0000

AUC 1.18339 0.0147092 1.15316 1.21363 0.0000

AUC is the area under the curve from t = 0 to t = infinity

Initial time point (A) = 0.035983

Final time point (B) = 1.611

Area over range (A,B) = 0.938323

Average over range (A,B) = 0.595754

F test results

WSSQ­previous (WSSQ1) = 224.923

WSSQ­current (WSSQ2) = 24.397

Number of parameters­previous (M1) = 2

Number of parameters­current (M2) = 4

Number of data points (NPTS) = 30

Akaike AIC­previous = 64.4368

Akaike AIC­current = 1.79794

Evidence ratio (ER) = 3.99818E+13

Schwarz SC­previous = 67.2392

Schwarz SC­current = 7.40273

Mallows Cp = 213.701

Mallows ratio (Cp/M1) = 106.851

Numerator degrees of freedom = 2

Denominator degrees of freedom = 26

F test statistic (FS) = 106.851

p = P(F >= FS) = 0.0000

1 ­ p = P(F =< FS) = 1.0000

5% upper tail point = 3.36902

1% upper tail point = 5.52633

Conclusion based on F test

Reject previous model at 1% significance level

There is strong support for the extra parameters

Tentatively accept the current best fit model
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3.2 Introduction to results file

Each time a procedure outputs a table of results to the display, a copy is written to a results file for archive

purposes. So there is no need to copy the results at run-time, but it is important to appreciate the steps needed

to retrieve this information for retrospective use. The way this SimFIT scheme works will now be explained,

noting that the files are saved in the folder C:\...ProgramData\user name\Simfit\res.

1. File names of the results files

The 101 results files are named in sequence as follows.

f$result.txt

f$result.001

f$result.002

...

f$result.100

2. Action taken each time a program starts

The last file f$result.100 is deleted and the list of saved files is renamed so that f$result.099

becomes f$result.100 all the way down to f$result.txt which becomes f$result.001, then a

new file f$result.txt is opened ready to receive the anticipated results.

3. The format of results files

The results files are standard ASCII text files which, using a monospaced font like Courier, will be lined

up as rectangular tables with associated header and trailer sections. They can be edited and printed

using any text editor, such as program notepad.

4. Notation used for numbers in the results files

These may be in scientific notation using decimal points as follows

5.4321E­03 0.0054321

5.4321E+00 5.4321

5.4321E+03 5432.1

where the number of significant digits is determined by the analytical technique being used. However,

from SimFIT Version 8 users can choose to output results in standard notation with a chosen number

of significant digits. Of course all numbers are stored in the computer to full 64-bit precision, but the

number output to tables is designed to reflect the number that would be meaningful. So, for instance,

parameter estimates from curve fitting are usually only meaningful up to about six significant digits,

while four decimal places is probably sufficient for probability estimates and significance tests.

5. Extracting tables

The results files are available for viewing, printing, saving with new names, and for extracting tables as

tabbed-text, html, xml, or LATEX from the [Results] button on the main SimFIT menu.

Advice

Finally, it should be obvious that any results that may be useful retrospectively must be saved before the file

is rolled off the end of the list. Another issue is that when SimFIT starts it checks that all results file that are

effectively empty are deleted with subsequent rolling and renaming, which can sometimes cause a delay when

SimFIT starts. Such empty files are created when a program is started but not then used to create results.
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Each time a data set is analyzed the results are written to a file called f$result.txt, and the current files

are renamed so that the existing f$result.txt becomes f$result.001 while f$result.001 becomes

f$result.002 and so on. These can be viewed using the [Results] option from the main SimFIT menu.

These SimFIT results files are formatted so that the numbers displayed only contain the number of significant

digits that are meaningful in context. For instance, probabilities will usually only have four digits after the

decimal point, which indicates that it does not make any sense to consider any subsequent digits for purpose

of statistical testing, and in any case probability estimates will not be accurate for more than about four digits.

Furthermore, as experimental data are rarely more accurate than about three or four significant digits anyway,

it may be wishful thinking to ever consider more than say six. In addition, the tables are formatted using a

fixed font with scientific notation to line up column entities irrespective of absolute size, and many users do

not want this in a thesis or published document. Naturally, these arguments do not apply to integers.

As an example consider the following case with the title Table 1.

Table 1

1­Way Analysis of Variance: 1 (Grand Mean 43.16)

Transformation:­ x (untransformed data)

Source SSQ NDOF MSQ F p

Between Groups 2193.0 4 548.4 56.15 0.0000

Residual 244.1 25 9.765 ... ...

Total 2438.0 29 ... ... ...

Actually, most users would want to import such a table formatted as tabbed-text, html, xml, or LATEX into

documents such as a report, thesis, or publication looking something like Table 2.

Table 2

1-Way Analysis of Variance: 1 (Grand Mean 43.16)

Transformation:- x (untransformed data)
Source SSQ NDOF MSQ F p

Between Groups 2193.0 4 548.4 56.15 0.0000

Residual 244.10 25 9.765

Total 2438.0 29

Or even, for those with artistic leanings, possibly something like Table 3.

Table 3

1-Way Analysis of Variance: Grand Mean 43.16

Transformation: G (untransformed data)

Source SSQ NDOF MSQ � ?

Between Groups 2193.0 4 548.4 56.15 0.0000

Residual 244.10 25 9.765

Total 2438.0 29
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This article explains the procedures required to export tables from from SimFIT results files into forms suitable

for inclusion into word processors, spreadsheet programs, website scripts, or even professional document

preparation systems such as LATEX. Also, decimal points can be replaced by commas as in continental notation

if required.

The procedure

It is important to realize that the [Results] option from the SimFIT main menu gives access to all the currently

saved results files.

• Choosing a results file.

Early versions of SimFIT allowed users to name results files individually to avoid anything being lost.

However, now that up to 100 results files are saved and users have the option [Results] from the main

SimFIT menus from which to view, print, save, edit, or make tables, this is no longer usually necessary.

Clearly, if results are always required for retrospective use, regular back-up or saving will be necessary.

• Extracting a table.

From the [Make tables] option view the file to make sure it is the one required then copy to the clipboard

only the table required along with any associated header and trailer sections ... but nothing else.

• Preliminary editing.

Sometimes editing of the file is required to make sure that every row of the table has exactly the same

number of columns. So note that, for extracting a table there can be no empty cells, and each cell

must contain precisely one word. Any column titles must be edited so that they consist of one word,

for instance changing Time of Day to Time_of_Day for instance, or filling empty cells by three dots.

Added underscores and sets of three contiguous dots can be removed when the final table is written to

file. A pre-processing option is provided for editing before attempting to create a table.

Note that often tables have cells with added comments relating to goodness of fit or results of statistical

testing, and these no not need to be underscored. There are also special tables with only two columns

containing several words in some cells, and Example 1 later will make this clear.

• Viewing the hashtag table.

The algorithm attempts to identify cells in a table by inserting a hashtag between every column. If the

algorithm succeeds there would be no need to view this hashtag table. However this option should be

switched on until the process of the algorithm is understood, or if it fails and you need to see why.

The hashtag table is clarified in Example 1.

• Headers and trailers.

Frequently tables have header and trailer sections that are descriptive and not part of the table itself. As

these can have strings of word and numbers that would confuse the algorithm checking that every row

must have the same number of columns, they must be identified. This is done by using buttons on a

window that allows the header and trailer lines to be highlighted. If this is not done the table creating

algorithm will fail.

Selecting headers and trailers is clarified in Example 2.

• Saving the table.

For programs that produce Windows quality hardcopy the table should be saved as html or xml as these

will import directly into word processors or spreadsheets. Tabbed-text is also available but is much less

versatile than html or xml, and LATEX is available for those up to it.

• Fine tuning.

Inevitably there will often be the need for dealing with details. For instance, users will sometimes want

to replace alpha by U or Chisd by j2 and this can be done for html, xml, and LaTeX output but not for
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tabbed-text. On the other hand html, xml, and LATEX have reserved letters and these must be dealt with

retrospectively.

For instance, consider the transformation of the following expressions which can be done in html, xml,

and LATEX but not in tabbed text.

Original Transformed

>= ≥
=< ≤
alpha U

beta V

P(Chisqd >= TS) = 0.2037 %(j2 ≥ )() = 0.2037

p_0 + p_1x + p_2x2̂ ?0 + ?1G + ?2G
2

In cases where ambiguity could arise in LATEX using underscores or similar special characters they will

be replaced by question marks. So LATEX users should search for ? characters that will need replacing

in the final table.

• Padding with zeros.

As the [Make tables] option will never remove significant digits a problem arises if users wish to replace

numbers in scientific notation by floating point representation. In order to extend the range over which

this can be done, padding zeros can be introduced as illustrated in this next table.

Scientific notation Padding Floating point representation

1.234E-01 0 .1234

1.234E+00 0 1.234

1.234E+01 0 12.34

1.234E+02 0 123.4

1.234E-02 2 0.01234

1.234E-01 2 0.12340

1.234E+00 2 1.23400

1.234E+01 2 12.3400

1.234E+02 2 123.400

1.234E+03 2 1234.00

1.234E+04 2 12340.0

1.234E-04 4 0.0001234

. . . . . . . . .

1.234E+06 4 1234000.0

Evidently increasing the number of padding zeros increases the range over which transformation from

scientific to floating point representation can be achieved, and the default is two which allows a wide

range, but four ensures that a mixture of transformed and untransformed numbers will occupy the same

width in the columns of a table.

However, there is here a problem because adding padding zeros could suggest all trailing zeros are

meaningful. For instance, the number 1.2341213179 stored in the computer could be written as

1.234E+00 in SimFIT output because the analysis in question only justifies accuracy or meaning for up

to four significant digits. However, 1.23400 could be mistaken for indicating the internal representation

with six significant digits. So users may wish to suppress trailing zeros in such cases, noting that this

could result in numbers with different widths in a column. In any case, setting the number of padding

zeros to -1 switches off the transformation from scientific notation to floating point.

Sometimes, for instance with numerical analysis where more significant digits are justified than with

data analysis, eight significant digits are output, and some procedures can optionally allow more. In

addition special DLLs dedicated for particular routines can be supplied for this purpose.
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Example 1

This example shows the transformationof a special type of SimFIT table containing just two columns separated

by equals signs (i.e., = ) and containing cells with multiple words. As long as the equals signs are perfectly

lined up and there is no header or trailer section, this type of table can always be transformed. Here is the

table with no header or trailer sections as extracted using the [Results] then [Make tables] options from the

main SimFIT menu using the results file f$result.txt following the exhaustive analysis of a vector process

used to analyze data contained in the default test file normal.tf1.

Sample size = 50

Minimum value = ­2.20820E+00

Maximum value = 1.61750E+00

Coefficient of skew = ­1.66905E­02

Coefficient of kurtosis = ­7.68395E­01

Lower Hinge (25th percentile) = ­8.55015E­01

Median value (50th percentile) = ­9.73615E­02

Upper Hinge (75th percentile) = 7.85965E­01

Sample mean = ­2.57897E­02

Sample standard deviation = 1.00553E+00

Coefficient of variation (CV%) = > 100%

Standard error of the mean = 1.42203E­01

Upper 2.5% t­value = 2.00958E+00

Lower 95% con lim for mean = ­3.11558E­01

Upper 95% con lim for mean = 2.59978E­01

Sample variance = 1.01109E+00

Lower 95% con lim for variance = 7.05519E­01

Upper 95% con lim for variance = 1.57006E+00

Shapiro­Wilks W statistic = 9.62693E­01

Significance level for W = 0.1153

Conclusion = Tentatively accept normality

This is the corresponding intermediate hashtag table.

Sample size # 50

Minimum value # ­2.20820E+00

Maximum value # 1.61750E+00

Coefficient of skew # ­1.66905E­02

Coefficient of kurtosis # ­7.68395E­01

Lower Hinge (25th percentile) # ­8.55015E­01

Median value (50th percentile) # ­9.73615E­02

Upper Hinge (75th percentile) # 7.85965E­01

Sample mean # ­2.57897E­02

Sample standard deviation # 1.00553E+00

Coefficient of variation (CV%) # > 100%

Standard error of the mean # 1.42203E­01

Upper 2.5% t­value # 2.00958E+00

Lower 95% con lim for mean # ­3.11558E­01

Upper 95% con lim for mean # 2.59978E­01

Sample variance # 1.01109E+00

Lower 95% con lim for variance # 7.05519E­01

Upper 95% con lim for variance # 1.57006E+00

Shapiro­Wilks W statistic # 9.62693E­01

Significance level for W # 0.1153

Conclusion # Tentatively accept normality
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The hashtag table is very useful for detecting the source of errors. The table making algorithm attempts

to locate the position separating columns and writes a hashtag there. If every row has the same number of

columns then every row will have the same number of hashtags and the algorithm has succeeded. Observing

this hashtag table when the algorithm has failed will allow you identify then correct the error.

Here is the selected table as it would be written to the output file.

Sample size 50

Minimum value -2.2082000

Maximum value 1.6175000

Coefficient of skew -0.0166905

Coefficient of kurtosis -0.7683950

Lower Hinge (25th percentile) -0.8550150

Median value (50th percentile) -0.0973615

Upper Hinge (75th percentile) 0.7859650

Sample mean -0.0257897

Sample standard deviation 1.0055300

Coefficient of variation (CV%) > 100%

Standard error of the mean 0.1422030

Upper 2.5% t-value 2.0095800

Lower 95% con lim for mean -0.3115580

Upper 95% con lim for mean 0.2599780

Sample variance 1.0110900

Lower 95% con lim for variance 0.7055190

Upper 95% con lim for variance 1.5700600

Shapiro-Wilks W statistic 0.9626930

Significance level for W 0.1153

Conclusion Tentatively accept normality

Here it is with a few minor cosmetic changes.

Exhaustive analysis of a vector

Sample size 50

Minimum value -2.2082000

Maximum value 1.6175000

Coefficient of skew -0.0166905

Coefficient of kurtosis -0.7683950

Lower Hinge (25th percentile) -0.8550150

Median value (50th percentile) -0.0973615

Upper Hinge (75th percentile) 0.7859650

Sample mean -0.0257897

Sample standard deviation 1.0055300

Coefficient of variation (CV%) > 100%

Standard error of the mean 0.1422030

Upper 2.5% t-value 2.0095800

Lower 95% confidence limit for mean -0.3115580

Upper 95% confidence limit for mean 0.2599780

Sample variance 1.0110900

Lower 95% confidence limit for variance 0.7055190

Upper 95% confidence limit for variance 1.5700600

Shapiro-Wilks, statistic 0.9626930

Significance level for, 0.1153

Conclusion: Tentatively accept normality
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Example 2

From fitting a two-exponential model to data in the test file exfit.tf4 using program exfit with scientific

notation the following results can be extracted from the results file.

For best­fit 2­exponential function

Parameter Value Std.Error Lower95%cl Upper95%cl p

A(1) 8.5255E­01 6.7731E­02 7.1332E­01 9.9177E­01 0.0000

A(2) 1.1765E+00 7.4779E­02 1.0227E+00 1.3302E+00 0.0000

k(1) 6.7935E+00 8.5386E­01 5.0383E+00 8.5486E+00 0.0000

k(2) 1.1121E+00 5.1128E­02 1.0070E+00 1.2172E+00 0.0000

AUC 1.1834E+00 1.4714E­02 1.1531E+00 1.2136E+00 0.0000

AUC is the area under the curve from t = 0 to t = infinity

Initial time point (A) = 3.5983E­02

Final time point (B) = 1.6110E+00

Area from t = A to t = B = 9.3832E­01

Average over range (A,B) = 5.9575E­01

Now the file has an additional head and trailer section so, if the full table is selected, it will have to be

highlighted as follows in the header and trailer selection control as shown next, where the header is colored

magenta and the trailer colored cyan.

For best­fit 2­exponential function

Parameter Value Std.Error Lower95%cl Upper95%cl p

A(1) 8.5255E­01 6.7731E­02 7.1332E­01 9.9177E­01 0.0000

A(2) 1.1765E+00 7.4779E­02 1.0227E+00 1.3302E+00 0.0000

k(1) 6.7935E+00 8.5386E­01 5.0383E+00 8.5486E+00 0.0000

k(2) 1.1121E+00 5.1128E­02 1.0070E+00 1.2172E+00 0.0000

AUC 1.1834E+00 1.4714E­02 1.1531E+00 1.2136E+00 0.0000

AUC is the area under the curve from t = 0 to t = infinity

Initial time point (A) = 3.5983E­02

Final time point (B) = 1.6110E+00

Area from t = A to t = B = 9.3832E­01

Average over range (A,B) = 5.9575E­01

Using two padding zeros this leads to the following table.

For best-fit 2-exponential function

Parameter Value Std.Error Lower95%cl Upper95%cl p

A(1) 0.852550 0.067731 0.713320 0.991770 0.0000

A(2) 1.176500 0.074779 1.022700 1.330200 0.0000

k(1) 6.793500 0.853860 5.038300 8.548600 0.0000

k(2) 1.112100 0.051128 1.007000 1.217200 0.0000

AUC 1.183400 0.014714 1.153100 1.213600 0.0000

AUC is the area under the curve from t = 0 to t = infinity

Initial time point (A) = 3.5983E-02

Final time point (B) = 1.6110E+00

Area from t = A to t = B = 9.3832E-01

Average over range (A,B) = 5.9575E-01
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However, note that, with this example, three points emerge.

1. Numbers outside the main table may not be transformed into floating point numbers.

2. Equals signs lined up the trailer may not lead directly to secondary tabulation.

3. Some special words, like infinity, may not be recognized.

So, because a certain amount of fine tuning will be required, the possibilities for handcrafting are endless.

Here, for example, the header is enlarged by adding a formula, while the trailer is added in the form of a

footnote to the main table.

For the best-fit 2-exponential function

5 (C) = �1 exp(−:1C) + �2 exp(−:2C)

Parameter Value Std.Error Lower95%cl Upper95%cl ?

�1 0.852550 0.067731 0.713320 0.991770 0.0000

�2 1.176500 0.074779 1.022700 1.330200 0.0000

:1 6.793500 0.853860 5.038300 8.548600 0.0000

:2 1.112100 0.051128 1.007000 1.217200 0.0000

�*� 1.183400 0.014714 1.153100 1.213600 0.0000

Area under the curve �*� =

∫ ∞

0

5̂ (C) 3C

Initial time point (A) = 3.05983

Final time point (B) = 1.61100

Area from t = A to t = B = 0.93832

Average over range (A,B) = 0.59575

Example 3

A special situation exists with symmetric matrices where just a lower or upper triangle is displayed, and also

some other related situations. For instance, following on from the previous example we have the parameter

correlation matrix expressed in the following form.

Parameter correlation matrix

1.0000

­0.8758 1.0000

­0.5964 0.8996 1.0000

­0.8480 0.9485 0.8200 1.0000

Clearly, the algorithm to count the number of columns per row in order to insert hashtags will fail because all

the rows have different numbers of columns, unless editing is performed like this.

Parameter correlation matrix

1.0000 ... ... ...

­0.8758 1.0000 ... ...

­0.5964 0.8996 1.0000 ...

­0.8480 0.9485 0.8200 1.0000
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Now transformation would be possible leading to a table such as the following.

Parameter correlation matrix

1

-0.8758 1

-0.5964 0.8996 1

-0.8480 0.9485 0.8200 1

Another example to consider is from correlation analysis which leads to A values in the strict upper triangle

and significance levels in the strict lower triangle as shown next followed by the extracted table.

Pearson correlation results

Upper triangle = r, Lower = corresponding two­tail p values

..... 0.5295 0.2874 0.0662 0.1941 0.6255 ­0.5876 0.3010

0.0766 ..... 0.3285 ­0.0219 0.7930 0.5338 ­0.4230 0.3006

0.3650 0.2971 ..... ­0.2833 0.2165 0.0264 0.2314 ­0.0304

0.8381 1.0000 1.0000 ..... 0.2787 0.2837 ­0.5238 ­0.1166

0.5455 0.0021 0.4992 0.3804 ..... 0.2029 ­0.1949 0.2144

0.0296 0.0738 0.9351 1.0000 0.5271 ..... ­0.4532 0.1360

1.0000 1.0000 0.4694 1.0000 1.0000 1.0000 ..... ­0.1696

0.3418 0.3424 1.0000 1.0000 0.5035 0.6735 1.0000 .....

Test for absence of any significant correlations

H0: correlation matrix is the identity matrix

Determinant = 2.476E­03

Test statistic (TS) = 4.501E+01

Degrees of freedom = 28

P(chi­sq >= TS) = 0.0220 Reject H0 at 5% sig.level

Pearson correlation results

Upper triangle = A, Lower = corresponding two-tail ? values

..... 0.5295 0.2874 0.0662 0.1941 0.6255 -0.5876 0.3010

0.0766 ..... 0.3285 -0.0219 0.7930 0.5338 -0.4230 0.3006

0.3650 0.2971 ..... -0.2833 0.2165 0.0264 0.2314 -0.0304

0.8381 1.0000 1.0000 ..... 0.2787 -0.2837 -0.5238 -0.1166

0.5455 0.0021 0.4992 0.3804 ..... 0.2029 -0.1949 0.2144

0.0296 0.0738 0.9351 1.0000 0.5271 ..... -0.4532 0.1360

1.0000 1.0000 0.4694 1.0000 1.0000 1.0000 ..... -0.1696

0.3418 0.3424 1.0000 1.0000 0.5035 0.6735 1.0000 .....

Test : for absence of any significant correlations

�0 : correlation matrix is the identity matrix

Determinant = 0.002476

Test statistic()() = 45.01

Degrees of freedom = 28

%(j2 ≥ )() = 0.0220 Reject �0 at 5% significance level

Here the five dots (.....) denote that the diagonal elements have no meaning and this is just a convenient way

to conserve space by having one matrix instead of two. Note that the option to blank out three dots (...) used

as temporary column separators does not blank out groups with less three or more than three contiguous dots.

A summary of the options available and procedure to be used comes next.
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Summary

• Up to Version 8 the default notation for numbers in results files was scientific notation, but from Version

8 users can decide whether to use standard notation or scientific notation and can also select the number

of significant digits required. The default is six digits in standard notation.

• The first step is to select just one table from the results file.

• This can be followed by an optional pre-processing step to edit the table so that every row has exactly

the same number of columns.

• Empty cells must be denoted by three dots (...) and cells containing words must have them joined by

underscores or similar.

• There is an option to remove all three dot symbols from the output file.

• The input table can have optional header and trailer sections if required, but these must be highlighted

by the control to select headers and trailers.

• There is an option to transform scientific numbers into floating point format by specifying the number

of padding zeros required. Setting this parameter to -1 switches off this transformation.

• Numbers in the header and trailer may not be transformed in this way.

• If it is required, decimal points in floating point numbers can be replaced by commas.

• If transformation fails then the option for pre-processing should be switched on, and also the hashtag

table should be requested. By viewing the hashtag table most errors can easily be diagnosed, then

rectified by a re-run using pre-process editing.

• If tabbed-text output is selected the resulting file will have to be input into a spreadsheet program for

formatting before importing into a word processing program.

• Both html and xml output can allow a certain number of further changes, like changing alpha into U, or

adding cell borders.

• LATEX output will have question marks (?) inserted to replace forbidden character such as underscores

which must be edited retrospectivelydepending the intention, e.g., linking words, or denoting subscripts.

Three further things should be emphasized.

1. Some tables have specialized features such as lined up equals signs that allow multiple words in a

column and, as long as every row in the table has an equals sign in exactly the same position, this feature

will be recognized.

2. Some SimFIT results files output tables to the display without three dot separators (...) to create a more

pleasing effect, but add them to the results files to assist the processing described in this document.

3. There are several widely used tables that can have empty cells and multi-word titles that the parsing

routine will recognize and format automatically.

Finally, should you require further worked examples, you can browse the SimFIT tutorials, or the document

w_examples.pdf, where a large number of alternative display styles are demonstrated.
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3.3 Extracting tables to include in documents

Each time a data set is analyzed the results are written to a file called f$result.txt, and the current files

are renamed so that the existing f$result.txt becomes f$result.001 while f$result.001 becomes

f$result.002 and so on. These can be viewed using the [Results] option from the main SimFIT menu.

These SimFIT results files are formatted so that the numbers displayed only contain the number of significant

digits that are meaningful in context. For instance, probabilities will usually only have four digits after the

decimal point, which indicates that it does not make any sense to consider any subsequent digits for purpose

of statistical testing, and in any case probability estimates will not be accurate for more than about four digits.

Furthermore, as experimental data are rarely more accurate than about three or four significant digits anyway,

it may be wishful thinking to ever consider more than say six. In addition, the tables are formatted using a

fixed font with scientific notation to line up column entities irrespective of absolute size, and many users do

not want this in a thesis or published document. Naturally, these arguments do not apply to integers.

As an example consider the following case with the title Table 1.

Table 1

1­Way Analysis of Variance: 1 (Grand Mean 4.316E+01)

Transformation:­ x (untransformed data)

Source SSQ NDOF MSQ F p

Between Groups 2.19344E+03 4 5.48316E+02 5.61546E+01 0.0000

Residual 2.44130E+02 25 9.76520E+00 ... ...

Total 2.43757E+03 29 ... ... ...

Actually, most users would want to import such a table formatted as tabbed-text, html, xml, or LATEX into

documents such as a report, thesis, or publication looking something like Table 2.

Table 2

1-Way Analysis of Variance: 1 (Grand Mean 43.16)

Transformation:- x (untransformed data)
Source SSQ NDOF MSQ F p

Between Groups 2193.44 4 548.316 56.1546 0.0000

Residual 244.130 25 9.76520

Total 2437.57 29

Or even, for those with artistic leanings, possibly something like Table 3.

Table 3

1-Way Analysis of Variance: Grand Mean 43.16

Transformation: G (untransformed data)

Source SSQ NDOF MSQ � ?

Between Groups 2193.44 4 548.316 56.1546 0.0000

Residual 244.130 25 9.76520

Total 2437.57 29
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This article explains the procedures required to export tables from from SimFIT results files into forms suitable

for inclusion into word processors, spreadsheet programs, website scripts, or even professional document

preparation systems such as LATEX. Also, decimal points can be replaced by commas as in continental notation

if required.

The procedure

It is important to realize that the [Results] option from the SimFIT main menu gives access to all the currently

saved results files.

• Choosing a results file.

Early versions of SimFIT allowed users to name results files individually to avoid anything being lost.

However, now that up to 100 results files are saved and users have the option [Results] from the main

SimFIT menus from which to view, print, save, edit, or export tables, this is no longer usually necessary.

Clearly, if results are always required for retrospective use, regular back-up or saving will be necessary.

• Extracting a table.

From the [Extract tables] option view the file to make sure it is the one required then copy to the

clipboard only the table required along with any associated header and trailer sections ... but nothing

else.

• Preliminary editing.

Sometimes editing of the file is required to make sure that every row of the table has exactly the same

number of columns. So note that, for extracting a table there can be no empty cells, and each cell

must contain precisely one word. Any column titles must be edited so that they consist of one word,

for instance changing Time of Day to Time_of_Day, or filling empty cells by three dots. Added

underscores and sets of three contiguous dots can be removed when the final table is written to file. A

pre-processing option is provided for editing before attempting to create a table.

Note that often tables have cells with added comments relating to goodness of fit or results of statistical

testing, and these no not need to be underscored. There are also special tables with only two columns

containing several words in some cells, and Example 1 later will make this clear.

• Viewing the hashtag table.

The algorithm attempts to identify cells in a table by inserting a hashtag between every column. If the

algorithm succeeds there would be no need to view this hashtag table. However this option should be

switched on until the process of the algorithm is understood, or if it fails and you need to see why.

The hashtag table is clarified in Example 1.

• Headers and trailers.

Frequently tables have header and trailer sections that are descriptive and not part of the table itself. As

these can have strings of word and numbers that would confuse the algorithm checking that every row

must have the same number of columns, they must be identified. This is done by using buttons on a

window that allows the header and trailer lines to be highlighted. If this is not done the table creating

algorithm will fail.

Selecting headers and trailers is clarified in Example 2.

• Saving the table.

For programs that produce Windows quality hardcopy the table should be saved as html or xml as these

will import directly into word processors or spreadsheets. Tabbed-text is also available but is much less

versatile than html or xml, and LATEX is available for those up to it.

• Fine tuning.

Inevitably there will often be the need for dealing with details. For instance, users will sometimes want

to replace alpha by U or chi­sqd by j2 and this can be done for html, xml, and LaTeX output but not
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for tabbed-text. On the other hand html, xml, and LATEX have reserved letters and these must be dealt

with retrospectively.

For instance, consider the transformation of the following expressions which can be done in html, xml,

and LATEX but not in tabbed text.

Original Transformed

>= ≥
=< ≤
alpha U

beta V

delta X

gamma W

lambda _

infinity ∞
P(chi-sqd >= TS) = 0.2037 %(j2 ≥ )() = 0.2037

Where ambiguity could arise in LATEX using underscores or similar special characters they will be

replaced by question marks. So LATEX users should search for ? characters to replace for the final table.

• Padding with zeros.

As the [Extract tables] option will never remove significant digits a problem arises if users wish to

replace numbers in scientific notation by floating point representation. In order to extend the range over

which this can be done, padding zeros can be introduced as illustrated in this next table.

Scientific notation Padding Floating point representation

1.234E-01 0 .1234

1.234E+00 0 1.234

1.234E+01 0 12.34

1.234E+02 0 123.4

1.234E-02 2 0.01234

1.234E-01 2 0.12340

1.234E+00 2 1.23400

1.234E+01 2 12.3400

1.234E+02 2 123.400

1.234E+03 2 1234.00

1.234E+04 2 12340.0

1.234E-04 4 0.0001234

. . . . . . . . .

1.234E+06 4 1234000.0

Evidently increasing the number of padding zeros increases the range over which transformation from

scientific to floating point representation can be achieved, and the default is two which allows a wide

range, but four ensures that a mixture of transformed and untransformed numbers will occupy the same

width in the columns of a table.

However, there is here a problem because adding padding zeros could suggest all trailing zeros are

meaningful. For instance, the number 1.2341213179 stored in the computer could be written as

1.234E+00 in SimFIT output because the analysis in question only justifies accuracy or meaning for up

to four significant digits. However, 1.23400 could be mistaken for indicating the internal representation

with six significant digits. So users may wish to suppress trailing zeros in such cases, noting that

this could result in numbers with different widths in a column. In any case, the transformation from

scientific notation to floating point can be switched off.

Sometimes, for instance with numerical analysis where more significant digits are justified than with

data analysis, eight significant digits are output, and some procedures can optionally allow more. In

addition special DLLs dedicated for particular routines can be supplied for this purpose.
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Example 1

This example shows the transformationof a special type of SimFIT table containing just two columns separated

by equals signs (i.e., = ) and containing cells with multiple words. As long as the equals signs are perfectly

lined up and there is no header or trailer section, this type of table can always be transformed. Here is the

table with no header or trailer sections as extracted using the [Results] then [Extract tables] options from the

main SimFIT menu using the results file f$result.txt following the exhaustive analysis of a vector process

used to analyze data contained in the default test file normal.tf1.

Sample size = 50

Minimum value = ­2.20820E+00

Maximum value = 1.61750E+00

Coefficient of skew = ­1.66905E­02

Coefficient of kurtosis = ­7.68395E­01

Lower Hinge (25th percentile) = ­8.55015E­01

Median value (50th percentile) = ­9.73615E­02

Upper Hinge (75th percentile) = 7.85965E­01

Sample mean = ­2.57897E­02

Sample standard deviation = 1.00553E+00

Coefficient of variation (CV%) = > 100%

Standard error of the mean = 1.42203E­01

Upper 2.5% t­value = 2.00958E+00

Lower 95% con lim for mean = ­3.11558E­01

Upper 95% con lim for mean = 2.59978E­01

Sample variance = 1.01109E+00

Lower 95% con lim for variance = 7.05519E­01

Upper 95% con lim for variance = 1.57006E+00

Shapiro­Wilks W statistic = 9.62693E­01

Significance level for W = 0.1153

Conclusion = Tentatively accept normality

This is the corresponding intermediate hashtag table.

Sample size # 50

Minimum value # ­2.20820E+00

Maximum value # 1.61750E+00

Coefficient of skew # ­1.66905E­02

Coefficient of kurtosis # ­7.68395E­01

Lower Hinge (25th percentile) # ­8.55015E­01

Median value (50th percentile) # ­9.73615E­02

Upper Hinge (75th percentile) # 7.85965E­01

Sample mean # ­2.57897E­02

Sample standard deviation # 1.00553E+00

Coefficient of variation (CV%) # > 100%

Standard error of the mean # 1.42203E­01

Upper 2.5% t­value # 2.00958E+00

Lower 95% con lim for mean # ­3.11558E­01

Upper 95% con lim for mean # 2.59978E­01

Sample variance # 1.01109E+00

Lower 95% con lim for variance # 7.05519E­01

Upper 95% con lim for variance # 1.57006E+00

Shapiro­Wilks W statistic # 9.62693E­01

Significance level for W # 0.1153

Conclusion # Tentatively accept normality
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The hashtag table is very useful for detecting the source of errors. The table making algorithm attempts

to locate the position separating columns and writes a hashtag there. If every row has the same number of

columns then every row will have the same number of hashtags and the algorithm has succeeded. Observing

this hashtag table when the algorithm has failed will allow you identify then correct the error.

Here is the selected table as it would be written to the output file.

Sample size 50

Minimum value -2.2082000

Maximum value 1.6175000

Coefficient of skew -0.0166905

Coefficient of kurtosis -0.7683950

Lower Hinge (25th percentile) -0.8550150

Median value (50th percentile) -0.0973615

Upper Hinge (75th percentile) 0.7859650

Sample mean -0.0257897

Sample standard deviation 1.0055300

Coefficient of variation (CV%) > 100%

Standard error of the mean 0.1422030

Upper 2.5% t-value 2.0095800

Lower 95% con lim for mean -0.3115580

Upper 95% con lim for mean 0.2599780

Sample variance 1.0110900

Lower 95% con lim for variance 0.7055190

Upper 95% con lim for variance 1.5700600

Shapiro-Wilks W statistic 0.9626930

Significance level for W 0.1153

Conclusion Tentatively accept normality

Here it is with a few minor cosmetic changes.

Exhaustive analysis of a vector

Sample size 50

Minimum value -2.2082000

Maximum value 1.6175000

Coefficient of skew -0.0166905

Coefficient of kurtosis -0.7683950

Lower Hinge (25th percentile) -0.8550150

Median value (50th percentile) -0.0973615

Upper Hinge (75th percentile) 0.7859650

Sample mean -0.0257897

Sample standard deviation 1.0055300

Coefficient of variation (CV%) > 100%

Standard error of the mean 0.1422030

Upper 2.5% t-value 2.0095800

Lower 95% confidence limit for mean -0.3115580

Upper 95% confidence limit for mean 0.2599780

Sample variance 1.0110900

Lower 95% confidence limit for variance 0.7055190

Upper 95% confidence limit for variance 1.5700600

Shapiro-Wilks, statistic 0.9626930

Significance level for, 0.1153

Conclusion: Tentatively accept normality
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Example 2

From fitting a two-exponential model to data in the test file exfit.tf4 using program exfit the following

results can be extracted from the results file.

For best­fit 2­exponential function

Parameter Value Std.Error Lower95%cl Upper95%cl p

A(1) 8.5255E­01 6.7731E­02 7.1332E­01 9.9177E­01 0.0000

A(2) 1.1765E+00 7.4779E­02 1.0227E+00 1.3302E+00 0.0000

k(1) 6.7935E+00 8.5386E­01 5.0383E+00 8.5486E+00 0.0000

k(2) 1.1121E+00 5.1128E­02 1.0070E+00 1.2172E+00 0.0000

AUC 1.1834E+00 1.4714E­02 1.1531E+00 1.2136E+00 0.0000

AUC is the area under the curve from t = 0 to t = infinity

Initial time point (A) = 3.5983E­02

Final time point (B) = 1.6110E+00

Area over range (A,B) = 9.3832E­01

Average over range (A,B) = 5.9575E­01

Now the file has an additional head and trailer section so, if the full table is selected, it will have to be

highlighted as follows in the header and trailer selection control as shown next, where the header is colored

magenta and the trailer colored cyan.

For best­fit 2­exponential function

Parameter Value Std.Error Lower95%cl Upper95%cl p

A(1) 8.5255E­01 6.7731E­02 7.1332E­01 9.9177E­01 0.0000

A(2) 1.1765E+00 7.4779E­02 1.0227E+00 1.3302E+00 0.0000

k(1) 6.7935E+00 8.5386E­01 5.0383E+00 8.5486E+00 0.0000

k(2) 1.1121E+00 5.1128E­02 1.0070E+00 1.2172E+00 0.0000

AUC 1.1834E+00 1.4714E­02 1.1531E+00 1.2136E+00 0.0000

AUC is the area under the curve from t = 0 to t = infinity

Initial time point (A) = 3.5983E­02

Final time point (B) = 1.6110E+00

Area over range (A,B) = 9.3832E­01

Average over range (A,B) = 5.9575E­01

Using two padding zeros this leads to the following table.

For best-fit 2-exponential function

Parameter Value Std.Error Lower95%cl Upper95%cl p

A(1) 0.852550 0.067731 0.713320 0.991770 0.0000

A(2) 1.176500 0.074779 1.022700 1.330200 0.0000

k(1) 6.793500 0.853860 5.038300 8.548600 0.0000

k(2) 1.112100 0.051128 1.007000 1.217200 0.0000

AUC 1.183400 0.014714 1.153100 1.213600 0.0000

AUC is the area under the curve from C = 0 to C = ∞
Initial time point (A) = 0.035983

Final time point (B) = 1.611

Area over range (A,B) = 0.93832

Average over range (A,B) = 0.59575
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However, note that, with this example, three points emerge.

1. Numbers outside the main table will also be transformed into floating point numbers.

2. Equals signs lined up the trailer will not lead directly to secondary tabulation.

3. Some special words, like infinity, will be recognized.

So, because a certain amount of fine tuning will be required, the possibilities for handcrafting are endless.

Here, for example, the header is enlarged by adding a formula, while the trailer is added in the form of a

footnote to the main table.

For the best-fit 2-exponential function

5 (C) = �1 exp(−:1C) + �2 exp(−:2C)

Parameter Value Std.Error Lower95%cl Upper95%cl ?

�1 0.852550 0.067731 0.713320 0.991770 0.0000

�2 1.176500 0.074779 1.022700 1.330200 0.0000

:1 6.793500 0.853860 5.038300 8.548600 0.0000

:2 1.112100 0.051128 1.007000 1.217200 0.0000

�*� 1.183400 0.014714 1.153100 1.213600 0.0000

Area under the curve �*� =

∫ ∞

0

5̂ (C) 3C

Initial time point (A) = 0.035983

Final time point (B) = 1.611

Area over range (A,B) = 0.93832

Average over range (A,B) = 0.59575

Example 3

A special situation exists with symmetric matrices where just a lower or upper triangle is displayed, and also

some other related situations. For instance, following on from the previous example we have the parameter

correlation matrix expressed in the following form.

Parameter correlation matrix

1.0000

­0.8758 1.0000

­0.5964 0.8996 1.0000

­0.8480 0.9485 0.8200 1.0000

Clearly, the algorithm to count the number of columns per row in order to insert hashtags will fail because all

the rows have different numbers of columns, unless editing is performed like this.

Parameter correlation matrix

1.0000 ... ... ...

­0.8758 1.0000 ... ...

­0.5964 0.8996 1.0000 ...

­0.8480 0.9485 0.8200 1.0000
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Now transformation would be possible leading to a table such as the following.

Parameter correlation matrix

1

-0.8758 1

-0.5964 0.8996 1

-0.8480 0.9485 0.8200 1

Another example to consider is from correlation analysis which leads to A values in the strict upper triangle

and significance levels in the strict lower triangle as shown next followed by the extracted table.

Pearson correlation results

Upper triangle = r, Lower = corresponding two­tail p values

..... 0.5295 0.2874 0.0662 0.1941 0.6255 ­0.5876 0.3010

0.0766 ..... 0.3285 ­0.0219 0.7930 0.5338 ­0.4230 0.3006

0.3650 0.2971 ..... ­0.2833 0.2165 0.0264 0.2314 ­0.0304

0.8381 1.0000 1.0000 ..... 0.2787 0.2837 ­0.5238 ­0.1166

0.5455 0.0021 0.4992 0.3804 ..... 0.2029 ­0.1949 0.2144

0.0296 0.0738 0.9351 1.0000 0.5271 ..... ­0.4532 0.1360

1.0000 1.0000 0.4694 1.0000 1.0000 1.0000 ..... ­0.1696

0.3418 0.3424 1.0000 1.0000 0.5035 0.6735 1.0000 .....

Test for absence of any significant correlations

H0: correlation matrix is the identity matrix

Determinant = 2.476E­03

Test statistic (TS) = 4.501E+01

Degrees of freedom = 28

P(chi­sq >= TS) = 0.0220 Reject H0 at 5% sig.level

Pearson correlation results

Upper triangle = A, Lower = corresponding two-tail ? values

..... 0.5295 0.2874 0.0662 0.1941 0.6255 -0.5876 0.3010

0.0766 ..... 0.3285 -0.0219 0.7930 0.5338 -0.4230 0.3006

0.3650 0.2971 ..... -0.2833 0.2165 0.0264 0.2314 -0.0304

0.8381 1.0000 1.0000 ..... 0.2787 -0.2837 -0.5238 -0.1166

0.5455 0.0021 0.4992 0.3804 ..... 0.2029 -0.1949 0.2144

0.0296 0.0738 0.9351 1.0000 0.5271 ..... -0.4532 0.1360

1.0000 1.0000 0.4694 1.0000 1.0000 1.0000 ..... -0.1696

0.3418 0.3424 1.0000 1.0000 0.5035 0.6735 1.0000 .....

Test : for absence of any significant correlations

�0 : correlation matrix is the identity matrix

Determinant = 0.002476

Test statistic()() = 45.01

Degrees of freedom = 28

%(j2 ≥ )() = 0.0220 Reject �0 at 5% significance level

Here the five dots (.....) denote that the diagonal elements have no meaning and this is just a convenient way

to conserve space by having one matrix instead of two. Note that the option to blank out three dots (...) used

as temporary column separators does not blank out groups with less three or more than three contiguous dots.

A summary of the options available and procedure to be used comes next.
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Summary

• Up to Version 8 the default notation for numbers in results files was scientific notation, but from Version

8 users can decide whether to use standard notation or scientific notation and can also select the number

of significant digits required. The default is six digits in standard notation.

• The first step is to select just one table from the results file.

• This can be followed by an optional pre-processing step to edit the table so that every row has exactly

the same number of columns.

• Empty cells must be denoted by a three dot ellipsis (...) and cells containing multiple words must have

them joined by underscores or similar.

• Three dot symbols to denote empty cells are deleted from the output file.

• The input table can have optional header and trailer sections if required, but these must be highlighted

by the control to select headers and trailers.

• There is an option to transform scientific numbers into floating point format by specifying the number

of padding zeros required. This option can be switched off.

• Numbers in the header and trailer will also be transformed in this way.

• If it is required, decimal points in floating point numbers can be replaced by commas.

• If transformation fails then the option for pre-processing should be switched on, and also the hashtag

table should be requested. By viewing the hashtag table most errors can easily be diagnosed, then

rectified by a re-run using pre-process editing.

• If tabbed-text output is selected the resulting file will have to be input into a spreadsheet program for

formatting before importing into a word processing program.

• Both html and xml output can allow a certain number of further changes, like changing alpha into U, or

adding cell borders.

• LATEX output will have question marks (?) inserted to replace forbidden character such as underscores

which must be edited retrospectivelydepending the intention, e.g., linking words, or denoting subscripts.

Three further things should be emphasized.

1. Some tables have specialized features such as lined up equals signs that allow multiple words in a

column and, as long as every row in the table has an equals sign in exactly the same position, this feature

will be recognized.

2. Some SimFIT results files output tables to the display without three dot separators (...) to create a more

pleasing effect, but add them to the results files to assist the processing described in this document.

3. There are several widely used tables that can have empty cells and multi-word titles that the parsing

routine will recognize and format automatically.

Finally, should you require further worked examples, you can browse the SimFIT tutorials, or the document

w_examples.pdf, where a large number of alternative display styles are demonstrated.
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4 Statistical analysis

4.1 Statistical distributions

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

4.1.1 Introduction

Data analysis will usually consist of assuming a statistical distribution and comparing a sample, or a test

statistic derived from it, to possible values from the assumed distribution. If the test statistic proves to have a

rather extreme value when referred to the assumed distribution it may be taken to suggest that the assumed

distribution may not be correct. So statistical testing will often consist of a null hypothesis, denoted as �0,

and there may be an alternative hypothesis or several alternative hypotheses, say ��.

The situation can be summarized by the following sequence.

1. Collect data.

An example could be a sample of sizes, times, weights, distances, etc.

2. Calculate a test statistic.

An example could be calculating the sample mean or standard distribution.

3. Assume a theoretical null distribution, denoted by �0.

An example �0 could be assuming a normal distribution with mean of 6 and standard deviation of 4.

4. Assume a possible alternative distribution, denoted by ��.

For instance �� might be a normal distribution with a mean of 7 and a standard deviation of 4.

5. Check if the test statistics would be extreme if coming from the assumed distribution.

For instance, to do this we could see if the sample estimates for mean and standard deviation are more

consistent with �0 rather than ��. This would lead to one of two possible courses of action.

• Consider the possibility that �0 is likely to be correct.

• If no satisfactory conclusion can be reached then accumulate more data or assume a new distribu-

tion, or the same distribution with different parameters.

Obviously, if the assumed distribution is incorrect, any conclusions drawn from this procedure will be of

questionable value. Now almost no scientific experiment ever leads to data that follows a known distribution

exactly, so what happens in practice is that a number of standard distributions are chosen in the hope that one

of these will be sufficiently close to the distribution of the test statistic, or that the data can be transformed

into an alternative form that is closer to an assumed distribution.

Actuality, only a limited number of distributions, such as the following, are encountered in data analysis.

a) Normal

b) t

c) chi-square

d) F

e) Binomial
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f) Poisson

g) Uniform

Even so-called nonparametric tests often finish up by relying on some standard distribution, and frequent use

is made in statistical theory of the Gauss central limit theorem. This shows that sums of suitably normalized

values will tend, in the limit of large sample size =, to a normal distribution. However = may often be very

large before such convergence is achieved. Because of all this uncertainty it is often stated that statistical

analysis can prove nothing, or alternatively anything. Nevertheless this is all we have so it is useful to sum up

some unifying concepts that will be assumed in subsequent SimFIT tutorials.

Continuous variables

A continuous random variable - is a number that can take all values in a range, say−∞ ≤ - ≤ ∞ but is subject

to certain constraints. Typical continuous variables would be time, size, blood pressure, etc., which like so

many measured variables happen to be necessarily non-negative. In particular, there will be a non-negative

probability distribution function 5 (G) ≥ 0 and a cumulative distribution function � (G) such that that the

probability that - has a particular value G in the range � ≤ - ≤ � will be

%(� ≤ - ≤ �) =
∫ �

�

5 (C)3C

= � (�) − � (�) .

Here, for example are 5 (G) and � (G) for a normal distribution with mean zero and variance one.
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Evidently values of - less than -3 or greater than 3 would be very unlikely for this distribution and could

indicate a mean differing from zero and/or a variance differing from 1. A statistical test using the sample

mean and sample variance could be constructed by such reasoning.
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Note also that, because the variable is continuous, it makes no sense to assign a probability of the random

variable having a definite value, but only the probability of it taking a value in an interval � ≤ - ≤ �.

However, the integration of 5 (G) over the possible range, say −∞ ≤ - ≤ ∞ would be one, i.e.∫ ∞

−∞
5 (C)3C = 1.

Discrete variables

A discrete random variable - is an integer that can only take a limited number of values. Examples would be

the number of heads resulting from a fixed number of coin tossings, or the number of eggs hatching as males

from a clutch of eggs.

In particular, there will be a non-negative probability mass function ?(G) ≥ 0 which would describe the

probability of - having a particular integer value, that is %(- = :) = ?(:). Obviously, if there are = possible

values that - can have, say :1, :2, . . . := then

=∑
8=1

?(:8) = 1.

Here, for example is the plot of probabilities for a binomial distribution with # = 10 and ? = 0.5 such as

would result, for instance, by adding up the number of times a head would occur in ten throws of a coin.
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Evidently numbers of heads of 0, 1, 9, or 10 would be very unlikely for this distribution and could be taken to

indicate a biased coin. A statistical test using the sample mean and sample variance could be constructed by

such reasoning.
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4.1.2 Uniform distribution

Given two numbers � and �with � > �, then a random variable that can take all values in the interval between

� and � with equal probability is referred to as having a uniform distribution, * (�, �), or alternatively a

rectangular distribution. This distribution is of immense value in simulation studies as will be explained

subsequently. Two frequently encountered special cases are when only integer values are allowed, and also

when � = 0 and � = 1.

Definitions

A random variable . distributed as * (�, �) has probability density function 6(H), cumulative distribution

function � (H), expectation � (. ) and variance + (. ) given by

6(H) = 1

� − �
� (H) = H − �

� − �
� (. ) = � + �

2

+ (. ) = (� + �)2

12
.

It is interesting to note two important facts used by SimFIT concerning any arbitrary continuous random

variable - with distribution function � (G), and a random variable . which follows a continuous uniform

distribution on (0,1), say with distribution � (H), i.e. with � = 0 and � = 1, so that � (H) = H.

1. If * (0, 1) random numbers H1, H2, . . . , H= are available, then random numbers G1, G2, . . . , G= with

distribution function � (G) can be generated from them using

G8 = �
−1 (H8) .

This can be appreciated from a graph of the cumulative distribution � (G) as a function of G but taking

as vertical axis . = � (G) so that

%(- ≤ G) = %(. ≤ � (G)) = � (� (G)) = � (G) .

2. Conversely, given random numbers G1, G2, . . . , G=, then uniformly distributed random numbers H1, H2, . . . , H=
can be generated from them using

H8 = � (G8) .

This follows since

%(. ≤ H) = %(- ≤ �−1 (H)) = � (�−1 (H)) = H = � (H) .

The Probability Integral transform

Not surprisingly, there are technical details to consider before accepting the previous results, known as the

probability integral transform. However, the following diagram and table illustrating the uniform distribution

on 0,1 with distribution function � (H) and the standard normal distribution with distribution function � (G)
should make it clear.
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H � (H) G � (G)
0.2 0.2 -0.8416 0.2

0.4 0.4 -0.2533 0.4

0.8 0.8 0.8416 0.8

The point is that equally spaced divisions on the . axis correspond to unequal divisions on the - axis, but the

probabilities in the intervals are identical.

In other words, in terms of the inverse standard normal distribution function,

�−1(0.2) = −0.8416

�−1(0.4) = −0.2533

�−1(0.8) = 0.8416,

so that

%(−0.8416 ≤ - ≤ −0.2533) = %(0.2 ≤ . ≤ 0.4) = 0.2.
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Pseudo random numbers

Computers cannot generate true random numbers, but they can generate extremely long deterministic se-

quences of numbers that do have properties closely similar to random numbers. As all such schemes are

cyclic, the starting point in the sequence can be determined arbitrarily, usually by using the system clock, or

from a fixed starting point using a seed or array of seeds. Generation of such pseudo random numbers begins

by obtaining a sample of = such * (0, 1) numbers that are then transformed into numbers from a selected

distribution. As evaluation of � (.) and �−1 (.) for standard distributions requires numerical methods, SimFIT

does not use the scheme G = �−1 (H) outlined in 1. above, as there are more convenient techniques. However

SimFIT does use the scheme H = � (G) outlined in 2. above to transform numbers into * (0, 1) numbers,

because this is valuable when testing if numbers do arise from an assumed distribution, and it is particularly

useful when visually inspecting values generated in experiments if these can be transformed so as to be

collected into bins with equal probability, as will be illustrated.

Unfortunately,pseudo random numbers do have appreciable autocorrelation and other deficiencies,particularly

if long sequences are required for simulation, and much ingenuity has been expended to surmount such

obstacles. Accordingly, methods to test the performance of particular random number generators have been

developed, and SimFIT provides the option to test the random number generator provided. This is a Marsaglia-

Zaman type using subtract-with-borrow and has a cycle length of 21376, compared to the value of 257 available

with some standard linear congruential generators.

Testing the Simfit U(0,1) generator

Choose [A/Z] from the main SimFIT menu and open program rannum when the following options will be

available.

Generate sequences of random numbers

Generate and plot random walks

Generate random matrices

Generate random permutations

Test the current U(0,1) generator

Set the seed type

After selecting the option to test the current* (0, 1) generator these further options become available.

Runs up (or down) test

Bar chart plot

Chi­square test

Kolmogorov­Smirnov test

The runs up (or down) test requires a very large sample and tests for significant autocorrelations, the bar

chart plot simply displays a histogram, the chi-square test measures departure of the histogram from a* (0, 1)
distribution, while the Kolmogorov-Smirnov test examines the maximum deviation of the sample cumulative

distribution from the expected straight line.

It is often advised that a minimum sample size of = = 20 is required to test if a sample is consistent with

an assumed distribution and, although statistical tests like the above can be employed, decisions are more

often made by visual inspection of a histogram. Now in the limit of very large samples with many bins

histograms do converge in shape to the population distribution. However the next examples are intended to

demonstrate that, in reality, sample sizes much greater than = = 20 are required to carry conviction. The

* (0, 1) distribution is particularly suited for this purpose as the histogram should have every bin frequency

of approximately the same size, since the probability density function is a horizontal line.

The following histograms display four consecutive simulations using program rannum, and note that the usual

advice is to have an expected value of at least 5, and preferably an observed value of the same order, for each
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bin. Of course, a major failing of analysis based on histograms is that the visual appearance and results from

statistical analysis depend on the number of bins chosen.
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It will be clear from these results that a sample size of = = 20 is insufficient and could easily lead to false

conclusions, as the histogram can suggest almost any shape for the population distribution. Increasing the

sample size to = = 50 can still appear to be rather low as will be clear from the next four successive simulations.
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Actually numerical results concerning the sample size required can be obtained from the SimFIT section on

power as a function of sample size. Meanwhile here is the sort of convincing result obtained with large

samples, in the next case = = 10000.
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4.1.3 Normal distribution

The normal distribution has great importance in data analysis because, although experimental measurements

never follow normal distributions exactly, many observations are approximately normally distributed, or

become so after transformations such as replacing observations by the logarithms. For instance experimental

error is often approximately normally distributed

Definitions

A random variable - is said to normally distributed if the probability density function (pdf) 5 (G) and

cumulative distribution function (cdf) � (G) are

5 (G) = 1
√

2c f
exp−1

2

( G − `
f

)2

� (G) =
∫ G

−∞
5 (C) 3C

so that the probability of a value occurring in the range �, � with � > � is

%(� ≤ - ≤ �) = � (�) − � (�) .

Here ` is the mean, the standard deviation is f, and the variance is f2. Because ` can have any value at all

and f can have any positive value it is useful to consider the standardized variable / defined as

/ =
- − `
f

which is normally distributed with mean zero and variance one.

Simfit program normal

In order to understand this distribution by plotting profiles and calculating deviates we shall consider some

of the procedures available using the SimFIT program normal. To do this, select menu item [A/Z] from the

main SimFIT menu, and open program normal when the following options will be available

Input: mu and sigma

Input: x, calculate pdf(x)

Input: x, calculate cdf(x)

Input: alpha, calculate x

as well as options to test if data are normally distributed, to perform power and sample size calculations, or to

investigate the multivariate normal distribution.

If the default values for ` and f are accepted then the following plot can be obtained.
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This illustrates that the normal distribution pdf is a symmetrical bell-shaped curve with tails that rapidly

decrease after some two standard deviations. The cdf on the other hand is a monotonic sigmoidal curve rising

from a minimum value of zero to a maximum value of one. It is in fact the integral of the pdf, that is, the

value of � (G) at the value G is simply the area under the pdf curve from −∞ to G.

Particular interest attaches to the area in the lower and upper tails of this distribution. In fact, the tails illustrated

in this figure are the lower and upper 2.5% points. In other words, the probability of a value occurring in the

lower tail is 0.025, the probability of a value occurring in the upper tail is 0.025, so that the probability of

a value occurring in either the lower or upper tail is obviously 0.05. Perhaps the best known 2-tail critical

points are the 68% and 95% ones, i.e.

%(` − f ≤ - ≤ ` + f) = 0.68, and %(` − 1.96f ≤ - ≤ ` + 1.96f) = 0.95.

Out of interest, it should be pointed out that the tails were shaded in this figure by using the advanced option

to transfer the data into the SimFIT program simplot followed by assigning the first two lines to be closed

polygons which were then colored grey.

Before the widespread availability of computers, values of such critical points were read off from tables, and

also the inverses were obtained in this way, that is the values of - calculated from specific values of � (G).
We now explain how to do this using SimFIT program normal

Obtaining critical values

SimFIT program normal was used to obtain three values of −1, 0, 1 for the pdf, the same three for the cdf, and

three critical values for 2.5%, 5.0% and 50.0% as in this table from the results log file, which was archived by

SimFIT when program normal was closed.
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pdf values

Current parameters: mu = 0.0E+00, sigma = 1.0E+00, sigma^2 = 1.0E+00

pdf(­1.000E+00) = 2.420E­01

pdf( 0.000E+00) = 3.989E­01

pdf( 1.000E+00) = 2.420E­01

cdf values

Current parameters: mu = 0.0E+00, sigma = 1.0E+00, sigma^2 = 1.0E+00

P(X =< ­1.000E+00) = 0.1587 ... P(X >= ­1.000E+00) = 0.8413

P(X =< 0.000E+00) = 0.5000 ... P(X >= 0.000E+00) = 0.5000

P(X =< 1.000E+00) = 0.8413 ... P(X >= 1.000E+00) = 0.1587

critical points

Current parameters: mu = 0.0E+00, sigma = 1.0E+00, sigma^2 = 1.0E+00

P(X =< 1.960E+00) = 0.9750 *** P(X >= 1.960E+00) = 0.0250

P(X =< 1.645E+00) = 0.9500 *** P(X >= 1.645E+00) = 0.0500

P(X =< 0.000E+00) = 0.5000 *** P(X >= 0.000E+00) = 0.5000

The pdf values illustrate in numbers what is displayed in the graph, that 5 (−1) = 5 (1) because of the fact that

values equally spaced below and above the mean give the same pdf values due to the symmetry.

The cdf values also illustrate that the areas in the lower and upper tails at values equally spaced below and

above the means are equal, and clearly the areas below and above the mean are 0.5.

The critical points illustrated show the same symmetry, but it should be emphasized that using lower and

upper critical points for statistical testing would normally require critical points based on the sum of lower

and upper tail probabilities, as in a two-tail test. For instance, if a statistical test is conducted to see if an

observation is consistent with a certain mean, then the two-tail test would allow for the observation being

either extremely low or extremely large. If the analyst was just not prepared to consider such an outcome but

would only countenance the possibility of an observation being too large for the null hypothesis, or too small

as the case may be, would a one-tail test based on only one of the tails be used.

A trick often resorted to when submitting grant proposals is to do power and sample size calculations

using one-tail tests when two-tailed would be more honest. Like claiming a lower variance than is justified

experimentally to reduce the sample size required, statistics is always open to such abuse.
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4.1.4 t distribution

The great importance of the C distribution in data analysis lies in the existence of numerous tests based upon

it, such as the 1-sample C, unpaired C, and paired C, as well as the use in calculating confidence intervals.

Definitions

Consider two independent random variables, / which has a normal distribution with ` = 0, f2 = 1, and �

which has a chi-square distribution with : degrees of freedom. Then the ratio

C: =
/√
�/:

is described as a C variable with : degrees of freedom. It should be noted incidentally that C2
:

is distributed as

� (1, :).

A special case arises when analyzing a sample of size = from a normal distribution with population mean `

and population variance f2, because the sample mean

Ḡ =
1

=

=∑
8=1

G8

is normally distributed with mean ` and variance f2/=, while =(2/f2 using

(2
=

1

=

=∑
8=1

(G8 − Ḡ)2

has a j2 distribution with = − 1 degrees of freedom. Hence the statistic

C=−1 =
Ḡ − `

(/
√
= − 1

has a C distribution with = − 1 degrees of freedom. Note that this C variable only has one unknown parameter,

the population mean `.

Simfit program ttest

Choose [A/Z] from the main SimFIT menu and open program ttest when the following options will be

available.

Input: N, number of degrees of freedom

Input: t, calculate pdf(t)

Input: t, calculate cdf(t)

Input: alpha, calculate t inverse

Input: data, 1­sample t test

Input: data, 2­sample unpaired t test

Input: data, 2­sample paired t test

Input: matrix, groups across rows t test

Power and sample size

Non­central t distribution.

Degrees of freedom

An important use of the C distribution is when calculating confidence limits, for instance with a sample mean,

or parameter estimate. The main thing to realize in such circumstances is that, although the mean value for C=
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is zero irrespective of =, the variance is heavily dependent on =. This is why the confidence limits shrink as

the sample size increases. Actually the C= distribution is asymptotic to a standardized normal distribution as

= increases, as shown by the next graph created from ttest.
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Note how the area under the tails decreases rapidly as = increases from 2 to 6 but less slowly thereafter. A

more detailed inspection of this will be clear from this table copied from the ttest results log file for a 95%

confidence interval.

P(t =< 4.303E+00) = 0.975 *** P(t >= 4.303E+00) = 0.025, N = 2

P(t =< 2.776E+00) = 0.975 *** P(t >= 2.776E+00) = 0.025, N = 4

P(t =< 2.447E+00) = 0.975 *** P(t >= 2.447E+00) = 0.025, N = 6

P(t =< 2.306E+00) = 0.975 *** P(t >= 2.306E+00) = 0.025, N = 8

P(t =< 2.228E+00) = 0.975 *** P(t >= 2.228E+00) = 0.025, N = 10

Confidence range for the sample mean

Given Ḡ and (2 from a sample of size =, then a symmetrical 100(1− U)% confidence range for the population

mean ` can be constructed using the upper tail critical value CU/2,=−1. We have that

%

(
Ḡ − `

(/
√
= − 1

≥ CU/2,=−1

)
= U/2

and

%

(
Ḡ − `

(/
√
= − 1

≤ −CU/2,=−1

)
= U/2,

so that

%
(
Ḡ − CU/2,=−1(/

√
= − 1 ≤ ` ≤ Ḡ + CU/2,=−1(/

√
= − 1

)
= 1 − U.
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Alternatively, note that it often causes confusion because an unbiased estimate of the population variance is

not (2 but the sample variance

B2 =
1

= − 1

=∑
8=1

(G8 − Ḡ )2,

so that an equivalent expression for C=−1 would then be

C=−1 =
Ḡ − `
B/
√
=
,

whereupon

%
(
Ḡ − CU/2,=−1B/

√
= ≤ ` ≤ Ḡ + CU/2,=−1B/

√
=
)
= 1 − U.

using B2 instead of (2.

We see from the above table that the multipliers of the sample standard error required for a 95% confidence

interval with sample sizes of = = 3, 5, 7, 9, and 11 would be 4.303, 2.776, 2.447, 2.306, and 2.228. Clearly,

using the sample mean plus or minus twice the standard error as an approximate 95% confidence range will

always underestimate the actual 95% confidence range unless the sample size exceeds 10, say.
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4.1.5 chi-square distribution

There is an ever present need in data analysis to estimate goodness of fit. That is, an experimentalist makes =

observations

$1, $2, . . . , $=

and wishes to test how well a theory that predicts expected values

�1, �2, . . . , �=

fits the data. This leads naturally to the chi-square variable and chi-square tests.

Definitions

Given a normally distributed random variable G8 with mean ` and variance f2 it is possible to derive from it

a standard normal variable I8 using

I8 =
G8 − `
f

which is normally distributed with mean 0 and variance 1. A sum of squares of = such independent variables

defines a chi-square variable with = degrees of freedom. That is,

j2
= I21 + I22 + . . . + I2=

is chi-square distributed with = degrees of freedom, and has expectation = and variance 2=. For = = 1 the

density is infinite at j2 = 0, for = = 2 it is that of the exponential distribution, while the distribution becomes

asymptotically normal for large =.

In applications the actual distribution and its parameters are unknown and must be estimated, say from the

sample. Tests based on chi-square usually require the estimation of : ≥ 0 such parameters in order to asses

the size of test statistics like �2 defined by

�2
=

($1 − �1)2

�2
1

+ ($2 − �2)2

�2
2

+ · · · + ($= − �=)2

�2
=

which becomes asymptotically j2 distributed with = − 1 − : degrees of freedom as = → ∞. Instead of

frequencies, the objective function from weighted nonlinear regression, namely

,((& =

=∑
8=1

{
H8 − 5 (G8 , \̂)

B8

}2

where parameters \̂ have been estimated, converges to a j2 distribution as long as the model is correct and

not over-determined, and the weights B8 are accurate.

Using the chi-square distribution

Choose [A/Z] from the main SimFIT menu and open program chisqd when the following options will be

available.

Input: number of degrees of freedom

Input: x­values then output pdf(x)

Input: x­values then output cdf(x)

Input: alpha then output x­critical

Input: sample then test for chi­square distribution

Input: O and E values for a chi­square test

Input: contingency table for chi­square test

Input: parameters for non­central chi­square distribution
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After input of the number of degrees of freedom a graph like the following can be viewed.

0.00

0.02

0.04

0.06

0.08

0.10

0 5 10 15 20 25 30

χ2: Degrees of Freedom = 10

χ2

pd
f

Area = 0.05

The essence of chi-square testing is to see if test statistics such as �2 or ,((& fall in the upper tail of the

appropriate j2 distribution. For instance, in the above graph, the shaded region contains 5% of the probability,

and a test statistic falling in this region would be considered as sufficiently extreme to support rejecting a null

hypothesis, such as consistency of the data with the assumed model, at the 5% significance level. Of course it

is always assumed that the sample size is sufficiently large to justify treating the test statistic as a j2 variable

instead of an approximate j2 variable.
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4.1.6 F distribution

It is frequently necessary to compare sample variances for equality, and there are also numerous other

applications for examining variance estimates, such as analysis of variance or excess variance, where a test

statistic is required. The � distribution arises naturally in such contexts.

Definitions

If there are two independent random chi-square variables: * with< degrees of freedom, and+ with = degrees

of freedom, then the ratio of these divided by their respective degrees of freedom as in

� =
*/<
+/=

defines the � distribution with < and = degrees of freedom. The expectation is given by

� (�) = =

= − 2

when = > 2 and, rather than performing upper, lower, or two tail tests, the ratio is often inverted in some

applications so that the numerator is always greater than the denominator, resulting in values of test statistics

� ≥ 1.

There is a good reason for this. Because of a special property of this distribution, lower tail percentiles are

readily available from upper tail percentiles and vice versa. To see this, note that

%(� < �.05) = 0.05

= 1 − %(� > �.05)

= 1 − %
(

1

�
<

1

�.05

)

where �.05 is the 5% critical point for the distribution of �, so that 1/�.05 is the 95% critical point for the

distribution of 1/�. Obviously, as � is distributed with < and = degrees of freedom, then 1/� is � distributed

with = and < degrees of freedom.

Using the F distribution

Choose [A/Z] from the main SimFIT menu and open program ftest when the following options will be

available.

Input: current parameters m and n

Input: x­value then output pdf(x)

Input: x­value then output cdf(x)

Input: alpha then calculate x­critical

Input: sample then test distributed F(m,n)

Input: sums of squares then perform F test

Do 1,2,3­way Analysis of Variance

Calculate non­central F distribution values

Selecting the first option and choosing < = 10 and = = 12 displays the following plot.
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When using the � distribution, SimFIT will usually return the probability of a test statistic, say )(, being

acceptable or not in the following way

%()( ≥ �) = 0.6742

or similar. If )( is sufficiently large to fall in the upper tail for the corresponding � distribution, such as in the

region shaded in the above figure, there would then be a further message indicating the possibility for rejecting

the null hypothesis at the 5% significance level, i.e. ? ≤ 0.05 or, in even more extreme cases, ? ≤ 0.01 In

other words, %()( ≥ �) is simply the area in the upper tail beyond the test statistic )(, i.e. the significance

level for rejection of the null hypothesis.
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4.1.7 Binomial distribution

Just as the normal distribution plays an important part in the analysis of measurements, the multinomial

distribution is central to the analysis of counts, e.g. frequencies, contingency tables,etc. For instance, suppose

an experiment leads to just one of < possible and exclusive events �1, �2, . . . , �< each with fixed probability

?8 ≥ 0, then the probability that in = successive experiments there will be G8 events �8 , for 8 = 1, 2, . . . , < is

5 (G1, G2, . . . , G<) =
=!

G1!G2! · · · G<!
?
G1

1
?
G2

2
· · · ?G<

:

where

?1 + ?2 + · · · + ?: = 1.

Definitions

A special case is the binomial distribution where each experiment has only one of two possible outcomes,

e.g. heads or tails, success or failure, positive or negative, black or white, improvement or deterioration, and

where each experiment is independent of all previous experiments. A succession of # such Bernoulli trials

where the probability of success is ?, so that the possibility of failure is 1 − ?, can be described by a random

variable - , which is just the number of successes in the # trials. Then the probability of : successes being

recorded %(- = :) is

5 (:) =
(
#

:

)
?: (1 − ?)#−:

where the binomial coefficient, i.e. the number of ways of selecting : items from # , is(
#

:

)
=

#!

:!(# − :)! ,

and the expected value and variance of such a binomial variable are

� (-) = #?
+ (-) = #?(1 − ?) .

Simfit program binomial

Choose [A/Z] from the main SimFIT menu and open program binomial when the following options will be

available.

Input: b(N,p), and P(lambda) parameters

Input: binomial x ... calculate pmf(x)

Input: binomial x ... calculate cdf(x)

Input: binomial % ... calculate x­critical

Input: binomial N,x, calculate NCX(x)

Input: binomial N,x, estimate p, con. lim.

Input: a sample, test if distributed b(N,p)

Input: binomial x,N,t, analysis of proportions

Input: trinomial x,y,N, plot conf. reg.

Input: Poisson x ... calculate pmf(x)

Input: Poisson x ... calculate cdf(x)

Input: Poisson % ... calculate x­critical

Input: Poisson x, estimate lambda and con.lim.

Input: a sample, test if distributed P(lambda)

Calculate: power and sample size

Calculate: change confidence limits (now ,i3,%)

Calculate: using the non­central beta distribution
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Choosing the first option allows you to change the binomial parameters as required for the subsequent binomial

options. For instance, the plot with default parameters # = 10 and ? = 0.5 is as follows
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which demonstrates the symmetry when ? = 0.5.

Changing the ? value away from 0.5 results in skewing the probabilities and removing the symmetry as will

be seen from the next plot.
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Critical values

It should be noted that calculating critical points for a discrete distribution, like the binomial distribution,

is problematical as the cumulative distribution is a step function, and so only ranges can be given, as in the

following example for the 99%, 95%, 90%, 75%, and 50% points.

Current binomial parameters: N = 100, p = 0.75

P(X =< 64) = 0.00941 P(X =< 65) = 0.01643

P(X > 64) = 0.99059 *** P(X > 65) = 0.98357 (99%, 64 or 65)

P(X =< 67) = 0.04460 P(X =< 68) = 0.06935

P(X > 67) = 0.95540 *** P(X > 68) = 0.93065 (95%, 67 or 68)

P(X =< 68) = 0.06935 P(X =< 69) = 0.10379

P(X > 68) = 0.93065 *** P(X > 69) = 0.89621 (90%, 68 or 69)

P(X =< 71) = 0.20754 P(X =< 72) = 0.27762

P(X > 71) = 0.79246 *** P(X > 72) = 0.72238 (75%, 71 0r 72)

P(X =< 74) = 0.44653 P(X =< 75) = 0.53833

P(X > 74) = 0.55347 *** P(X > 75) = 0.46167 (50%, 74 or 75)

Binomial parameter confidence limits

If there are - successes in # trials then the best estimate for the population parameter is the sample estimate

?̂ given by

?̂ = -/#.

However, to get some idea of the reliability of such estimates it is necessary to calculate confidence limits,

and it often surprises experimentalists that these limits are not symmetrical, as illustrated by the next set of

results.

Binomial p and 95% limits given X successes in N trials.

N = 10 X = 5 :Lower 95% = 0.18709, p = 0.5, Upper 95% = 0.81291

N = 100 X = 50 :Lower 95% = 0.39832, p = 0.5, Upper 95% = 0.60168

N = 1000 X = 500 :Lower 95% = 0.46855, p = 0.5, Upper 95% = 0.53145

N = 10 X = 3 :Lower 95% = 0.06674, p = 0.3, Upper 95% = 0.65245

N = 100 X = 30 :Lower 95% = 0.21241, p = 0.3, Upper 95% = 0.39981

N = 1000 X = 300 :Lower 95% = 0.27172, p = 0.3, Upper 95% = 0.32946

For large# and ? close to 0.5 limits are approximately central, but the asymmetry increases and the confidence

range becomes increasingly skewed as ? moves away from 0.5 since, of course, confidence limits must remain

between 0 and 1. When comparing sequential estimates for a binomial parameter, say as a function of some

variable C, it is useful to plot ?̂ values with individual confidence limits along with the overall estimate from

the combined sample to detect trends, as shown next.
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4.1.8 Poisson distribution

The Poisson distribution is widely used to model the occurrence of events in time or space. It can be presented

as a limiting form of the binomial distribution, or more formally by way of the Poisson postulates defined

using %= (ℎ) for the probability of = events occurring in an interval of width ℎ in time (or space) as follows.

1. The number of events in nonoverlapping intervals of time are independent.

2. Probability does not change during the occurrence of the events.

3. Probability of 1 event in a small interval of time is approximately proportional to the size of the interval.

4. Probability of 1 event in a small interval of time is much larger than that for occurrence of multiple

events.

Definitions

A random integer variable - that can take all values ≥ 0 is said to obey the Poisson distribution with parameter

_ > 0 if the discrete probability mass function 5 (G) is

5 (G) = _G

G!
exp(−_)

with mean and variance both equal to _.

Example 1: Counting arbitrary independent events.

In the case of the binomial distribution with parameters # and ? where # is very large and ? very small, then

the following approximation becomes valid

(
#

:

)
?: (1 − ?)#−: ≈ (#?):

:!
exp(−#?) .

In other words, the Poisson distribution with one parameter _ = #? becomes a good approximation to the

binomial distribution with two parameters # and ? when # → ∞ and ? → 0 but #? remains finite.

Example 2: Counting independent events as a function of time.

Again, for a process with an average rate of ` events per unit of time, then the probability of : events in time

interval C is

%: (C) =
(`C):
:!

exp(−`C),

which defines a Poisson process with parameter _ = `C.

Plotting Poisson probabilities

The next plots illustrate how the distribution moves to the right as _ increses.
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Simfit program binomial

Choose [A/Z] from the main SimFIT menu and open program binomial when the following Poisson options

will be available.

Input: Poisson x ... calculate pmf(x)

Input: Poisson x ... calculate cdf(x)

Input: Poisson % ... calculate x­critical

Input: Poisson x, estimate lambda and con.lim.

Input: a sample, test if distributed P(lambda)

Calculate: power and sample size

Calculate: change confidence limits (now 95%)

Calculate: using the non­central beta distribution

Choosing to analyze test file poisson.tf1 for consistency with a Poisson distribution using a dispersion test,

and also a Fisher exact test first warns that Bonferroni = = 2 then outputs these results.

Sample size 40

Sample total 44

Sample sum of squares 80

Sample mean 1.1

Lower 95% confidence limit 0.7993

Upper 95% confidence limit 1.477

Sample variance 0.8103

Dispersion (�) 28.73

%(j2 ≥ �) 0.88632

Degrees of freedom 39

Fisher exact Probability 0.91999
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Note that the Bonferroni = = 2 declaration is a warning not to use both test statistics uncritically. Actually

SimFIT often lists the results of several tests at the same time, but this is only for convenience, and users

should always take note if a Bonferroni correction is required.

It is frequently required to confirm that it is sensible to use the Poisson distribution, with all the associated

assumptions that are involved, as a model when analyzing a given data set. The dispersion test examines if

there is any evidence that the dispersion �

� =

=∑
8=1

(G8 − Ḡ )2/Ḡ

is significantly greater than 1 (indicating over-dispersion, i.e. clumping or clustering) or significantly less 1

(indicating under-dispersion, i.e. too evenly scattered), while the Fisher exact test, which can only be done

with small samples, estimates the probability of the sample based on all partitions consistent with the sample

size, mean, and total. In this case there seems no evidence to reject the null hypothesis

�0: the sample is consistent with a Poisson distribution.

The following plot compares the observed and expected frequencies in order to visualize the goodness of fit.
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Note the use of a Poisson distribution to assess the significance of :, a small number of counts for one outcome,
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Simfit program chisqd

Radioactive decay is an exponential process but, during a sufficiently small time interval where the decay rate

can be regarded as approximately constant, particle emission follows a Poissson distribution. In a famous

experiment Rutherford counted :, the number of particles emitted in 2608 intervals of 7.5 seconds to obtain

the following results, where the expected values were calculated using _ = 10094/2608 = 3.87.

k Observed Expected

0 57 54.399

1 203 210.523

2 383 407.361

3 525 525.496

4 532 508.418

5 408 393.515

6 273 253.817

7 139 140.325

8 45 67.882

9 27 29.189

≥ 10 16 17.075

The SimFIT program chisqd was used to analyze the observed and expected frequencies to obtain these

results.

Number of partitions (bins) 11

Number of degrees of freedom 9

Chi-square test statistic � 12.88

%(j2 ≥ �) 0.1679 Consider accepting �0

Upper tail 5% critical point 16.92

Upper tail 1% critical point 21.67

and the following bar chart.
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4.1.9 Bivariate normal distribution

The bivariate normal distribution is an extension of the univariate normal distribution to the case of two

variables. It is the basis of many procedures including Pearson product-moment correlation analysis.

Definitions

A pair of continuous random variables - and. will constitute a bivariate distribution if there is a joint density

function 5 (G, H) which defines probabilities % as follows

5 (G, H) ≥ 0∫ ∞

−∞

∫ ∞

−∞
5 (G, H) 3G 3H = 1∬

'

5 (G, H) 3G 3H = %(-,. ∈ ')

∫ 1

0

∫ 3

2

5 (G, H) 3G 3H = %(0 ≤ - ≤ 1 and 2 ≤ . ≤ 3)

where ' is an arbitrary region in the -,. plane, while 0 ≤ - ≤ 1 together with 2 ≤ . ≤ 3 defines a

rectangular region in the -,. plane.

The marginal distributions are defined as

5- (G) =
∫ ∞

−∞
5 (G, H) 3H

5. (H) =
∫ ∞

−∞
5 (G, H) 3G

while the conditional distributions are

5- |. (G) = 5 (G, H)/ 5. (H)
5. |- (H) = 5 (G, H)/ 5- (G) .

Of particular interest are the definitions of variances f2
G and f2

H , and the covariance �>E(-,. ) between -

and . in terms of the expectations `G = � [-] and `H = � [. ]

f2
G = � [- − � (-)]2

= � [-2] − � [-]2

f2
H = � [. − � (. )]2

= � [.2] − � [. ]2

�>E(-,. ) = �{[- − � (-)] [. − � (. )]}
= � [-. ] − � [-]� [. ]

as this leads to the correlation coefficient d

d =
�>E(-,. )
fGfH

where −1 < d < 1, and the fact that when the two variables are independent d = 0. However, the condition

d = 0 is not a sufficient condition that two variables are independent as this requires the stronger condition

5 (G, H) = 6(G)ℎ(H) .
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So, if variables - and . are jointly distributed as a bivariate normal distribution, the density function is

5 (G, H) = 1

2cfGfH
√

1 − d2
exp

(
−1

2
&

)

where & =
1

1 − d2

(
(G − `G)2

f2
G

− 2d
(G − `G) (H − `H)

fGfH
+
(H − `H)2

f2
H

)

with fG > 0, fH > 0, and −1 < d < 1.

Here the marginal and conditional densities for - and . are normal, as will be clear from the following

5- (G) =
1

√
2c fG

exp−1

2

(
G − `G
fG

)2

5- |. (G) =
1√

2c(1 − d2) fG
exp− 1

2(1 − d2)f2
G

(
G − [`G + d

fG

fH
(H − `H)]

)2

with corresponding expressions for 5. (H) and 5. |- (H) by symmetry. At fixed probability levels, the quadratic

form & defines an ellipse in the -,. plane which will have axes parallel to the -,. axes if d = 0, but with

rotated axes otherwise. Note that the marginal distribution for - has mean `G and variance f2
G , and the

marginal distribution of . has mean `H and variance f2
H , but also consider the expressions for the means in

the conditional distributions, namely

<- |. = `G + d
fG

fH
(H − `H)

<. |- = `H + d
fH

fG
(H − `G)

which will be mentioned later.

Using program MAKDAT to simulate f(x,y)

From the SimFIT main menu select [A/Z], then run program makdatchoosing the bivariate normal distribution.

Using the parameters

`G = `H = 0, fG = fH = 1, d = 0, −3 ≤ G ≤ 3, −3 ≤ H ≤ 3, =G = =H = 7

allows the creation of the following three dimensional skyscraper plot for a bivariate normal distribution,

where the volume of the individual bars indicates the probability of a G, H pair of random variables occurring

in the area of the -,. plane at the base of the bars. Increasing the number of divisions to =G = =H = 50

as in the subsequent plot indicates how the three dimensional bar chart converges to a smooth surface as the

number of divisions increases.



Bivariate normal distribution 79

-3
-2

-1
0

1
2

3

-3
-2

-1
0

1
2

3

0.0

0.15915

XY

Bivariate Normal Distribution
µx = µy = 0, σx = σy = 1, ρ = 0

f(x,y)

3.0

-3.0

3.0

-3.0

0.00.0 XY

Bivariate Normal Distribution
µx = µy = 0, σx = σy = 1, ρ = 0

f(x,y)

0.15856

0.0



80 Statistical analysis

Plotting bivariate normal contour diagrams

Contour diagrams are at the basis of checking scatter diagrams when using Pearson product-moment analysis,

and especially the practise of plotting lines on such plots to indicate linear correlation. From SimFIT program

makdat simply change the the current value of d = 0 which models the absence of correlation to a value such

d = 0.8 for positive correlation then create the contour diagram below.

Bivariate Normal Contours: µx = µy = 0, σx
2 = σy

2 = 1, ρ = 0.8

X

Y

-2.5

2.5

2.5-2.5

Key   Contour
   1 2.4114×10-2

   2 4.8229×10-2

   3 7.2343×10-2

   4 9.6458×10-2

   5 0.1206

   6 0.1447

   7 0.1688

   8 0.1929

   9 0.2170

  10 0.2411

1

2

3

4

5

6

7

8

9

10

This diagram also includes the two mean regression lines indicating the mean values of the conditional

distributions as functions of their arguments. These lines show the limiting positions that would be obtained

with a swarm of random points following a bivariate normal distribution when plotting best-fit lines for . as

a function of - and - as a function of . . The lines are

For <. |- : H = d
fG

fH
G +

{
`H − d

fH

fG
`G

}

For <- |. : H =
1

d

fH

fG
G +

{
`H −

1

d

fG

fH
`G

}

where it is understood that d2 < 1 and d ≠ 0.

Given two lines with slopes U and V then the angle between them (subject to the usual sign conventions) is

given by tan \ = (U − V)/(1 + UV). So, for the above conditional mean regression lines, we have

tan \ =
1

2

(
d
fG

fH
− 1

d

fH

fG

)

which, apart from the singular case with \ as a right angle when d = 0, defines |\ | as a decreasing function

of d2 thereafter.
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4.2 Statistical tests

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

4.2.1 Introduction

Once a data set has been collected it is useful to see what statistical tests could be done to characterize

a possible theoretical statistical distribution underlying the observations. Clearly success in this endeavor

depends on having a sufficiently large sample with maximum possible signal to noise ratio, as well as a

sensible presumed distribution. First we consider some standard data types.

• A single one-dimensional data set.

Such a sample would ordinarily consist of = observations G8 , such as estimates of blood pressure in =

subjects, and it might be sensible in this case to consider an underlying normal distribution.

Such a sample will be referred to in SimFIT as a = dimensional vector - that is

- = G1, G2, . . . , G=.

However, in SimFIT this data set would have to be submitted for analysis as a single vertical column of

numbers, either from the clipboard or else from a file.

• Two independent one-dimensional data sets, e.g. unpaired data.

For instance a set of = blood pressure measurements on one group, say - , and another set of < blood

pressure measurements on an independent group, say . . That is

- = G1, G2, . . . , G=

. = H1, H2, . . . , H<.

Here the question could be if the two sample estimates for the means and variances suggest a common

distribution, and the data would have to be presented to SimFIT as two separate vertical columns of

measurements, unless = = < when a two-dimensional matrix would be a possible data format.

• Two dependent one-dimensional data sets, e.g. paired data.

For instance a set of = blood pressure measurements on a group before medication, say -1, and another

set of = blood pressure measurements on the same group, say -0, after medication. That is

-0 = G01, G02, . . . , G0=

-1 = G11, G12, . . . , G1= .

Here a more searching test for equality of means, that is for the presence or absence of a treatment

effect, could be conducted because in such cases the obvious correlation between the groups can be

exploited.

In this instance the two samples could also be submitted to SimFIT as a matrix with = rows and 2

columns, or as two columns selected from a = by < matrix if < > 2.

Types of data

Before summarizing the simple statistical tests options in SimFIT it must be clear that there are essentially

two types of data.
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1. Continuous

These would be observations that can take values in a range and are collected using apparatus.

Examples could be where - is temperature measured using a thermometer, or time measured by a

clock. Of course continuous variables by definition can have an infinite number of values between any

two limits but, given the limits of measurement accuracy, they could well be collected as integers. For

example temperature to the nearest degree, or time to the nearest second, would still be analyzed using

continuous statistical distributions even though the values are expressed as integers.

2. Discrete

These would be observation that are definitely integers and are often presented as counts. Examples

could be where - is the number of observations in a limited number of defined categories, such as

the number responding to treatment or not responding to treatment in a group of subjects. A special

case is dichotomous data where each experiment has only one of two possible outcomes, for example

improvement or deterioration, say 0 or 1. Such categorical data are analyzed using discrete statistical

distributions, but often the test statistics are continuous random variables, such as a chi-square statistic

resulting from a contingency table.

Types of test

Another distinction that can be made separates statistical tests into one of two categories.

A) Parametric tests.

These depend upon choosing a defined statistical distribution to model the data. If the model is correct

these are the most powerful tests. However, if the model is wrong, or the parameters assumed for the

model are incorrect or are estimated from the sample, then performance is degraded. In extreme cases

the test may not just be compromised but could lead to completely erroneous conclusions.

B) Nonparametric tests.

These do not depend on an assumed model and frequently use ranks instead of just measured values.

They are much weaker than parameteric tests but have the advantage that they seldom lead to false

conclusions. That is, for instance, why the Mann-Whitney * test for equal medians is frequently

preferred to the Student C test for equal means. It should be noted however that nonparametric tests

often lead to test statistics that are only asymptotic to known continuous distributions, so that they can

require large samples for reliability.

Statistics

Any function evaluated using a data set can be called a statistic, and some listed below are used as test statistics,

that is, numbers that can tested for extreme values given a data set and a theoretical distribution.

a) The sample mean

Given a sample - = G1, G2, . . . , G= of size =, the sample mean Ḡ defined as Ḡ = 1
=

∑=
8=1 G8 estimates the

center of the distribution, as opposed to the median which is the point where half of the sample is below

the median and half above. The sample mean is frequently used in parametric tests, and the sample

median in nonparametric tests.

b) The sample variance

The sample variance B2 is defined as

B2 =
1

= − 1

=∑
8=1

(G8 − Ḡ)2

and its square root B is the sample standard deviation. It is also known as the dispersion and sums up

the spread of the data.



Statistical tests 83

c) The sample cumulative distribution

Suppose the sample is rearranged into a non-decreasing order, then the sample cumulative distribution

function� (G8) is a step function which is zero for values below G1, one for values greater than or equal

to G=, and increases in steps of 1/= at each consecutive value of G8 .

d) Rank

The rank of an observation is the position it would take if the sample was to be arranged into non-

decreasing order, and ranks are used in many nonparametric tests.

Summary of available tests

• 1-sample C test.

This is a parametric test used to check if a single sample of observations can be considered as arising

from a defined normal distribution with a known mean which users can input interactively.

• 1-sample Kolmogorov-Smirnov test.

This is a nonparametric test to see if a single sample is consistent with one of a known set of stan-

dard distributions. The test statistic calculated is the maximum vertical distance between the sample

cumulative distribution and the theoretical distribution. It is only really useful when the assumed

distribution is a known continuous distribution with specified parameters, and is much weaker with

discrete distributions, or where the parameters are estimated from the sample.

• 1-sample Shapiro-Wilks test for normality.

This is a recommended test to see if a sample is consistent with a normal distribution. It is based on

the correlation between the sample scores and the expected normal scores.

• 1-sample Dispersion and Fisher exact Poisson test.

This tests if a sample of non-negative integers is consistent with a Poisson distribution. It is based

on examining the sample variance to see if the data suggest over-dispersion due to clumping or an

over-uniform dispersion, both of which can suggest departure from the behavior expected for a Poisson

distribution. The Fisher exact test is only performed for small samples.

• 2-sample unpaired C and variance ratio tests.

This is the most frequently used test to see if two samples have the same mean. It relies on the samples

being normally distributed with the same variance and, with large samples, these two assumptions can

be tested interactively. It is essentially analysis of variance (ANOVA) but with only two columns.

• 2-sample paired C test.

This depends on the same assumptions as the 2-sample unpaired C test for equality of means, but in

the additional circumstance that pairs of corresponding values are necessarily correlated. For instance,

when the column vectors are body temperatures measured with the same subjects but before and after

treatment. The correlation allows the use of a test statistic that is more searching than with the 2-sample

unpaired C test.

• 2-sample Kolmogorov-Smirnov test.

This is a nonparameteric test for equality of distribution. It is based on the maximum vertical distance

between the two sample cumulative distributions but is rather weak and requires large samples.

• 2-sample Wilcoxon-Mann-Whitney* test.

This is the most widely used nonparametric test to see if two samples can be regarded as having the

same but unspecified distribution. It is based on the extent to which one of the samples dominates the

other, that is, has a larger median.

• 2-sample Wilcoxon signed-ranks test.

Just as the Wilcoxon-Mann-Whitney* test is the nonparametric equivalent of the unpaired C test, this is

the nonparametric equivalent of the paired C test and tests for equality of medians in two paired samples.
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• Chi-square test on observed and expected frequencies.

Given a set of = actual observed frequencies this tests if the observed frequencies are consistent with

those generated as expected frequencies by some assumed distribution. It requires users to supply the

expected frequencies along with the observed frequencies.

• Chi-square and Fisher-exact contingency table tests.

The chi-square test can always be done on an arbitrary = by < contingency table, but the Fisher-exact

test is only useful with small contingency tables. Yates’s continuity correction is used for two by two

tables.

• McNemar test.

This requires paired samples of dichotomous data (i.e. values 0 or 1) as a two by two contingency table.

• Cochran& repeated measures test.

This also requires dichotomous data, but in a repeated measures design.

• Binomial test.

This test checks to see if a set of dichotomous observations are consistent with a binomial distribution.

The binomial ? value and number of trials # are input along with the number of successes or failures.

• Sign test.

Checks if a set of outcomes such as success or failure are consistent with a binomial distribution with

? = 0.5, that is, equally likely outcomes.

• Run test.

This is used to test if a set of residuals have a succession of signs that is consistent with equally likely

positive and negative values occurring randomly along the sequence and not clustering to suggest a

biased fit. Whereas the sign test just examines the overall number of positive and negative signs, the run

test also depends on the order of occurrence. For instance, if a model fitted to 20 data points resulted in

10 positive and 10 negative residuals the sign test would report this as perfectly normal. If there were 10

positive residuals followed by 10 negative residuals, that is the sign pattern ++++++++++­­­­­­­­­­,

the run test would draw attention to a badly fitting model.

• � test for excess variance.

This test is performed automatically when SimFIT fits a nested set of models to some data but can also

be done interactively using this option. It is based on the fact that adding extra parameters to a model,

for example higher order terms in a polynomial, will generally improve the fit, i.e. decrease,((&, the

weighted sum of squared residuals resulting from fitting. This test examines if the increased number of

parameters required to decrease the,((& is justified on statistical grounds.

• Runs up and down for randomness.

This is used to test for correlation in a set of numbers, for example pseudo random numbers from

a random number generator. The runs up test is based on counting the lengths of runs of numbers

increasing in magnitude within in a sequence, and the runs down test is done by simply changing the

signs of all the numbers and doing the runs up test.

• Mood and David tests for equal dispersion.

This is a nonparametric test for variance equality in two samples. It examines the ranks of observations

in a pooled sample.

• Kendall coefficient of concordance.

This measures the degree of agreement between : comparisons of = objects.

• Bartlett and Levene tests for homogeneity of variance

Analysis of variance is based on the presumption that the samples under investigation are all normally

distributed with the same variance. This test examines if all the variances are consistent with this

assumption.
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4.2.2 1-sample t test

The one sample t test is one of many tests designed to see if a sample can be regarded as consistent with

a normal distribution but, for this test, it is also a strict requirement that the theoretical mean value is `0, a

parameter that is known in advance from previous investigations.

To be precise, the user has a sample (i.e. vector -) of = observations

- = (G1, G2, . . . , G=)

and wishes to test if these numbers are consistent with a normal distribution where the mean `0 has been

previously estimated with great precision from an independent very large sample. Preferably the data should

cover a wide range and = should not be too small, say = ≥ 20 ?

Choose [A/Z] from the main SimFIT menu, open program ttest, select the 1-sample-t-test option, input a

theoretical mean `0 = 0, then analyze the test data set to obtain the following results.

Normal distribution test

Data: Test file normal.tf1 with 50 pseudo-random numbers

Shapiro-Wilks statistic, 0.9627

Significance level for, 0.1153

Conclusion: Tentatively accept normality

One sample C test

Number of G-values 50

Number of degrees of freedom 49

Theoretical mean (`0) 0

Sample mean (Ḡ) −0.02579

Standard error of mean ((�) 0.1422

)( = (Ḡ − `0)/(� −0.1814

%(C ≥ )() (upper tail ?) 0.5716

%(C ≤ )() (lower tail ?) 0.4284

? for two tailed C test 0.8568

Difference � = Ḡ − `0 −0.02579

Lower 95% confidence limit for � −0.3116

Upper 95% confidence limit for � 0.2600

Conclusion: Consider accepting equality of means

The analysis begins by performing a Shapiro-Wilks test to see if the sample can be regarded as normally

distributed using the sample estimates for both the mean and the standard deviation. This test is less powerful

than the one sample t test and, if it rejects the null hypothesis of an arbitrary normal distribution, the subsequent

results can be ignored. Clearly, there is no evidence to support rejection of the hypothesis of an arbitrary

normal distribution. The further analysis goes on to examine the size of the difference between the sample

mean Ḡ and the theoretical mean `0, given the sample variance estimate, using the C distribution, and concludes

that the data do appear to be normally distributed with mean close to `0 = 0, as the two tail ? value is 0.8568.

In order to appreciate the sensitivity of this test to the assumed value for `0, you should repeat the test using

a different value for the theoretical mean, say `0 = 1 for instance, which leads to the next results.
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One sample C test

Number of of G-values 50

Number of degrees of freedom 49

Theoretical mean (`0) 1

Sample mean (Ḡ) −0.02579

Standard error of mean ((�) 0.1422

)( = (Ḡ − `0)/(� −7.214

%(C ≥ )() (upper tail ?) 1.0000

%(C ≤ )() (lower tail ?) 0.0000

? for two tailed C test 0.0000

Difference � = Ḡ − `0 −1.026

Lower 95% confidence limit for � −1.312

Upper 95% confidence limit for � −0.740

Conclusion: Reject equality of means at 1% significance level

Obviously the Shapiro-Wilks test result is unchanged, but now the lower tail ? value strongly indicates that

the sample is shifted to the left of a normal distribution with ` = 1, and the two tail ? value, which is twice

the lesser of the upper and lower tail probabilities, clearly rejects the null hypothesis �0 : `0 = 1.

The following graph makes it clear why �0 : `0 = 1 was rejected.
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4.2.3 1-sample Kolmogorov-Smirnov test

The Kolmogorov-Smirnov nonparametric test is used to check if a sample is consistent with a known continuous

distribution. It is most powerful with large samples from such a distribution when the true parameters are

known, and is much weaker if parameters have to be estimated from the sample, or if a discontinuous

distribution is to be considered.

To be precise, the user has a sample (i.e. vector -) of = observations

- = (G1, G2, . . . , G=)

and wishes to test if these numbers are consistent with a known distribution, where the parameters have been

previously estimated with great precision from an independent very large sample, or are known due to further

information. Preferably the data should cover a wide range and = should not be too small, say = > 20 ?

The test is based upon the largest vertical distance where the sample cumulative exceeds the theoretical

distribution (�+), the largest vertical distance where the theoretical distribution exceeds the sample cumulative

distribution (�−), or the the maximum of these (� = max(�+, �−)). The standardized / values are defined

as / = �
√
=, and SimFIT calculates exact ? for small samples, but uses a series expansion for / with large

samples.

Choose [A/Z] from the main SimFIT menu, open program simstat, select statistical tests, then choose the

1-sample Kolmogorov-Smirnov test. First of all select to test for a uniform distribution* (�, �) with � = 0

and � = 2 to get the following results.

Kolmogorov-Smirnov one sample test 1: Uniform(A,B)

Data: test file g08cbf.tf1 (Kolmogorov-Smirnov 1-sample test)

Parameters fixed by user: A = 0, B = 2

Sample size = 30, i.e. number of G-values

�0: � (G) equals � (H) (G and theory are comparable) against

�1: � (G) not equal to � (H) (G and theory not comparable)

� 0.2800

/ 1.534

? 0.0143 Reject �0 at 5% significance level

�2: � (G) > � (H) (G tend to be smaller than theoretical)

� 0.2800

/ 1.534

? 0.0071 Reject �0 at 1% significance level

�3: � (G) < � (H) (G tend to be larger than theoretical)

� 0.02333

/ 0.1278

? 0.5000

Here � (G) is the sample distribution while� (H) is the theoretical distribution, and these figures are interpreted

as follows. The three � values were

�+ = 0.28

�− = 0.02333

� = 0.28

and the three cases are therefore as follows.

1. Reject �0 against �1 as a two-tail test indicates � (G) and � (H) are unlikely to be equal (? = 0.0143).
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2. Reject �0 against �2 as a one-tail test indicates that � (G) is more likely to be larger than � (H) than to

be equal to it (? = 0.0071).

3. Do not reject �0 against �3 as a one tail test offers no support for the case that � (G) is smaller than

� (H) (? = 0.5).

These results clearly reject the case � (G) = � (H), in favor of �1, i.e. that G values tend to be smaller than H

values, indicating that the sample cumulative distribution was heavily displaced to the left of the theoretical

distribution. To confirm this interpretation visually we can plot the sample cumulative distribution and

theoretical distribution as in the next graph.
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Having rejected the null hypothesis �0: the sample is distributed as * (0, 2), we can try another theoretical

distribution.

So, in this next case, we proceed to test the null hypothesis that the theoretical distribution is normal with

parameters ` = 0.6967 and f2 = 0.2564 as estimated from the sample. We conclude that this cannot be

rejected and that the sample distribution is close to the theoretical distribution, as displayed graphically.
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Kolmogorov-Smirnov one sample test 2: Normal(`, f2)

Parameters estimated from sample are:

` = 6.967E-01, se = 9.244E-02, 95%confidence limits = (5.076E-01, 8.857E-01)

f = 5.063E-01, f2 = 2.564E-01, 95%cl = (1.626E-01,4.633E-01)

�0: � (G) equals � (H) (G and theory are comparable) against

�1: � (G) not equal to � (H) (G and theory not comparable)

� 0.1108

/ 0.6068

? 0.8162

�2: � (G) > � (H) (G tend to be smaller than theoretical)

� 0.1108

/ 0.6068

? 0.4081

�3: � (G) < � (H) (G tend to be larger than theoretical)

� 0.08753

/ 0.4794

? 0.4801

Shapiro-Wilks normality test (Note: Bonferroni = ≥ 2):

, 0.9529

? 0.2019 Tentatively accept normality
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Note that SimFIT often presents the results from several tests at the same time, which is convenient for

preliminary data investigation but not for precise analysis. Which is why, as in the last table, hints about the

Bonferroni correction are frequently given.
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4.2.4 1-sample Shapiro-Wilks test

Of the many tests for normality, the Shapiro-Wilks test is usually recommended to check if a sample is

consistent with a normal distribution, and it leads naturally to the normal scores plot which is a convenient

technique to examine normality graphically.

To be precise, the user has a sample (i.e. vector -) of = observations

- = (G1, G2, . . . , G=)

and wishes to test if these numbers are consistent with a normal distribution, where the parameters have been

previously estimated with great precision from an independent very large sample, or are known due to further

information. Preferably the data should cover a wide range and = should not be too small, say = > 20 ?

There are many statistical methods provided by SimFIT program normal for doing this as now summarized.

• Kolmogorov-Smirnov

This only has advantages in the case when both parameters are known, and not estimated from the

sample.

• One sample t

This always uses the sample variance, and also is best when the true mean is known in advance.

• Chi-square

This is also a rather poor test, especially if the expected values are estimated from the sample.

• Shapiro-Wilks

This is now generally thought to be the best all purpose test where parameters are estimated from

the sample, but it does require intensive computation which can limit the maximum value of =, e.g.

= ≤ 5000 in SimFIT.

In addition there are the following graphical methods.

• Histogram

This can easily be done, but SimFIT can also be used to rationalize the situation by analyzing the data

after transformation to * (0, 1), as it is somewhat easier to detect deviations of a histogram from the

case where all cells have equal expected frequency from one where a bell-shaped curve is anticipated.

• Cumulative distribution

This is much better than a histogram, as histogram shape depends on the number of bins whereas the

sample cumulative distribution is of fixed shape.

• Normal scores

The = values that can be calculated to divide a standard normal cumulative distribution into = + 1

sections, each of area 1/(=+1), are referred to as normal scores. A plot of sample scores against normal

scores should be close to a straight line, and is widely recognized as the best plot for detecting departure

from normality. A variant is the half normal plot, where negative values are changed in sign, and this

is usually preferred for testing that residuals from regression do not differ too widely from normality.

In the case of mixtures of normal distributions there are dedicated statistical tests, but SimFIT program qnfit

also provides the ability to fit histograms or cumulative distributions if the sample size is very large, and the

distributions well separated. The advantage here is that the SimFIT graphical deconvolution technique can be

used to display how the distribution is made up from sums of normal distributions.

Here is the conclusion from program normal and the test data normal.tf1 provided, which establishes that

a normal distribution cannot be rejected, as the Shapiro-Wilks test statistic is , = 0.9627 with ? = 0.1153,

i.e. close to, = 1, which indicates strong correlation between the sample scores and normal scores.
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Normal distribution test

Data: Test file normal.tf1 with 50 pseudo-random numbers

Shapiro-Wilks statistic, 0.9627

Significance level for, 0.1153

Conclusion: Tentatively accept normality
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4.2.5 1-sample Poisson distribution test

The situation envisaged is where a user has a set counts of nonnegative integers and wishes to see if the

frequencies observed are consistent with a Poisson distribution with parameter _. In SimFIT this can be done

using a chi-square test, a dispersion test, a Fisher exact test, or a Kolmogorov-Smirnov test.

From the SimFIT main menu choose [A/Z], then program binomial, and select the option to test for a Poisson

distribution. The most widely used test is a chi-square test so this is done first, choosing to use the sample

estimate of _̂ = 1.1 instead of the current fixed value of 2, and opting for a minimum of 5 counts per bin,

leading to the next results.

Chi-square test for %(_) with _ = 1.1

�0: Poisson distribution for data with title:

Test file Poisson.tf1: 40 random numbers

Sample estimate used in chi-square test

Sample estimate for _ 1.100

Lower 95% confidence limit 0.7993

Upper 95% confidence limit 1.477

Mean of G-values 1.100

Variance of G-values 0.8103

Standard deviation of G 0.9001

Mean using fixed _ 2.000

Poisson dispersion value � 28.73

%(j2 ≥ �) 0.8863

Number of partitions (bins) used 3

Number of degrees of freedom 1

Chi-square test statistic � 5.857

%(j2 ≥ �) 0.0155 Reject �0 at 5% level

Upper tail 5% critical point 3.841

Upper tail 1% critical point 6.635

Now it should be emphasized that the chi-square test is an approximate test, as the test statistic only becomes

asymptotic to a chi-square variable with large samples. Further, if any cells have a small frequency, say < 5,

it is usually recommended to combine adjacent bins until this is the case. That is why choosing a minimum

frequency of 5 resulted in only 3 bins. If the test is now repeated on the same data but choosing a minimum

frequency of 3 the next results are obtained.

Number of partitions (bins) used 4

Number of degrees of freedom 2

Chi-square test statistic � 5.858

%(j2 ≥ �) 0.0535 Consider accepting �0

Upper tail 5% critical point 5.991

Upper tail 1% critical point 9.210

It should be noted that by simply changing the number of bins from 3 to 4 a rejection (? = 0.0155) becomes

an acceptance (? = 0.053), which should serve to emphasize how the outcome of such chi-square tests depend

on the number of bins.

A classical example is the famous data collected by von Bortkiewicz for 0, 1, 2, 3, or 4 deaths per year by

horse kick in the Prussian cavalry during the period 1875 - 1894 for 10 groups, as this is a typical example of

using the Poisson distribution to model rare events.

The 200 frequencies recorded are contained in the test file poisson.tf2 as follows
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Deaths 0 1 2 3 4

Frequency 109 65 22 3 1

leading to the result, shown below, that ? = 0.8506, so that the null hypothesis of a Poisson distribution with

_̂ = 0.61 cannot be rejected.

Chi-square test for %(_) with _ = 0.61

�0: Poisson distribution for data with title:

Death from horse kicks in Prussian cavalry 1875-1894

Sample estimate used in chi-square test

Sample estimate for _ 0.6100

Lower 95% confidence limit 0.5066

Upper 95% confidence limit 0.7283

Mean of G-values 0.6100

Variance of G-values 0.6110

Standard deviation of G 0.7816

Number of partitions (bins) used 4

Number of degrees of freedom 2

Chi-square test statistic � 0.3235

%(j2 ≥ �) 0.8506 Consider accepting �0

Upper tail 5% critical point 5.991

Upper tail 1% critical point 9.210

The observed and expected values used in this test are displayed below.
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The Fisher Exact test will frequently fail with large or aberrant data sets and this will be indicated when it

happens, but the dispersion test can always be used to test for data that are too uniform or too clustered to be

from a Poisson distribution. This is used to study clumping of objects studied microscopically, and similar

situations concerning spatial or temporal distributions of counts. Consider, for instance, the analysis of this

data set contained in the test file poisson.tf3.

Counts 0 1 2 3 4 5 6 7 8 9 10

Frequency 0 2 10 0 0 0 1 2 9 1 5

Dispersion and Fisher-exact Poisson tests

Bonferroni = = 2

Data: Poisson clumping data

Sample size 30

Sample total 173

Sample sum of squares 1333

Sample mean 5.767

Lower 95% confidence limit 4.939

Upper 95% confidence limit 6.693

Sample variance 11.56 Too large ?

Dispersion (�) 58.16

%(j2 ≥ �) 0.00104 Reject �0 at 1% sig.level

Number of degrees of freedom 29

Fisher exact probability 1.00000

IFAIL = 1: Fisher ? is only an upper bound

In a Poisson distribution the mean is equal to the variance, and a variance much less than the mean suggests

a distribution that is too uniform, while a variance exceeding the mean could indicate clustering, as will be

clear from the results above and the following plot.
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4.2.6 2-sample Unpaired t test

The unpaired C test is used to see if it is reasonable to conclude that two sets of independent observations have

the same population means. It is based on the assumptions that

• Both samples are normally distributed

• Both samples have the same variance

• Both sample sizes are greater than 1 (and preferably very much greater)

and hence it is equivalent to analysis of variance (ANOVA) with just two columns.

To be precise, the user has two samples (i.e. vectors - and . ) with < and = observations

- = (G1, G2, . . . , G<)
. = (H1, H2, . . . , H=)

and wishes to test the null hypothesis that the samples have the same population means, `G and `H , against

the alternative hypothesis that they are not equal, or possibly the one-sided alternatives. That is

�0 : `G = `H

�1 : `G ≠ `H

�2 : `G > `H

�3 : `G < `H

and SimFIT provides all the information that is required to perform such tests.

From the main SimFIT menu select [A/Z], choose to open program ttest, then analyze the test files provided.

The first choice offered is to test for a normal distribution and equal variances and, if these are chosen, we get

the following analysis.

Normal distribution test 1

Data: --data for C test

Shapiro-Wilks statistic, 0.9539

Significance level for, 0.7146 Tentatively accept normality

Normal distribution test 2

Data: . -data for C test

Shapiro-Wilks statistic, 0.9360

Significance level for, 0.5089 Tentatively accept normality

This informs us that the Shapiro-Wilks test does not provide any evidence to reject the assumption that both

samples are normally distributed. However, this test should only be used if both < and = are sufficiently large,

say <, = > 20, so in this case we should really have chosen not to do Shapiro-Wilks tests.

Then a � test for equality of variances is carried out, yielding the next results.
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� test for equality of variances

--data: Test file ttest.tf2: for paired C test with TTEST.TF3

Number of G-values 10

Mean G 14.80

Sample variance of G 21.96

Sample standard deviation of G 4.686

. -data: Test file ttest.tf3: for paired C test with TTEST.TF2

Number of H-values 10

Mean H 16.10

Sample variance of H 24.54

Sample standard deviation of H 4.954

Variance ratio +' 1.118

Degrees of freedom (numerator) 9

Degrees of freedom (denominator) 9

%(� ≥ +') 0.4354

Two tail ? value 0.8708

Conclusion: Consider accepting equality of variances

Again, although this does not reject equality of variances, it should be pointed out that this test is only reliable

with large samples, say <, = > 50 and should not have been performed with such small samples. It is

anticipated that, for routine analysis with small samples, the Shapiro-Wilks and variance ratio tests would be

switched off.

Finally, the unpaired C test yields the following results.

Unpaired C test ([ ] = corrected for unequal variances)

Number of G-values 10

Number of H-values 10

Number of degrees of freedom 18 [ 18]

Unpaired C test statistic* −0.6029 [ -0.6029]

%(C ≥ *) (upper tail ?) 0.7229 [ 0.7229]

%(C ≤ *) (lower tail ?) 0.2771 [ 0.2771]

? for two tailed C test 0.5541 [ 0.5541]

Difference between means �" −1.300

Lower 95% confidence limit for �" −5.830 [ -5.830]

Upper 95% confidence limit for �" 3.230 [ 3.230]

Conclusion: Consider accepting equality of means

Note that ? values are given for either two-tailed or one-tailed testing, but this is just for convenience as users

should have decided in advance which ? value to accept, or in doubt would usually just rely on the two-tailed

test.

For situations where there is doubt about variance equality, corrected values are given, but in this case where

the sample size is small and the data are actually paired, correction is not required. Provided that deviations

from normality and variance equality are fairly small, the unpaired C test has been claimed to be reassuringly

robust. However this does not mean that using sample sizes much less than 10 is acceptable.

To explore these last points note that SimFIT can calculate power as a function of sample size and, in addition,

has extensive facilities to explore particular situations concerning sample size, deviations from normality, and

variance inequality by simulation.
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4.2.7 2-sample Paired t test

The paired C test should not be viewed as an alternative to the unpaired C test. It is used to see if it is

reasonable to conclude that the mean of the differences between two sets of dependent observations is zero in

the poulations, and the null hypothesis is based on the following assumptions.

• The pairwise differences are normally distributed

• The mean of the pairwise differences is zero

• The sample sizes are equal and greater than 1 (and preferably very much greater)

• The samples are pairwise dependent, i.e. highly correlated

For instance, the columns could be repeated observations of blood pressure on the same set of subjects, before,

then after treatment.

The paired C test is equivalent to repeated analysis of variance (ANOVA) with just two columns if the samples

are normally distributed with the same variance. Alteratively, as the test is only examining the hypothesis

that a single sample of differences is normally distributed with zero mean, and variance estimated from the

sample, it can be viewed as a one sample C test.

To be precise, the user has two samples (i.e. vectors - and . ) with = observations

- = (G1, G2, . . . , G=)
. = (H1, H2, . . . , H=)

and wishes to test the null hypothesis that the samples have the same zero differences, against the alternative

hypothesis that they are not equal, or possibly the one-sided alternatives. That is

�0 : G8 = H8

�1 : G8 ≠ H8

�2 : G8 > H8

�3 : G8 < H8

and SimFIT provides all the information that is required to perform such tests.

It is important to emphasize the difference between a paired and an unpaired C test, so that it will not be

mistakenly assumed that the choice between them is arbitrary. For instance, given two random variables -

and . , then the expectation and variance of the difference is as follows.

� (- − . ) = � (-) − � (. )
+ (- − . ) = + (-) ++ (. ) − 2�+ (-,. )

When the samples are uncorrelated the covariance �+ (-,. ) would be zero, so that the variance of the

difference only depends on the variance of - and . . However, the paired hypothesis under consideration

would be consistent with a strong positive correlation between - and . , so that the covariance term would

make the variance of the difference smaller.

In the case of the unpaired C test, the test statistic is

* =
Ḡ − H̄√

B2?

(
1

<
+ 1

=

) ,
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which is C distributed with < + = − 2 degrees of freedom under the unpaired C test null hypothesis. Here Ḡ

and H̄ are sample means, and the pooled estimate of variance is expressed in terms of the independent sample

variance estimates B2G and B2H as

B2? =
(< − 1)B2G + (= − 1)B2H

< + = − 2
.

The paired C test is quite different. It uses the paired differences 38 , the mean difference 3̂, and the variance

estimate for the differences B2
3

to define the test statistic C3 defined as follows

38 = G8 − H8

3̄ =

=∑
8=1

38/=

B23 =

=∑
8=1

(38 − 3̄ )2/(= − 1)

C3 =
3̄√
B2
3
/=

which is C distributed with =− 1 degrees of freedom under the paired C test null hypothesis. It therefore makes

allowances for the strong correlation between the two samples.

From the main SimFIT menu select [A/Z], then choose to open program ttest, and perform a paired C test to

obtain the following results.

Paired C test

Number of paired comparisons 10

Number of degrees of freedom 9

Paired C test statistic S −0.9040

%(C ≥ () 0.8052

%(C ≤ () 0.1948

? for two tailed t test 0.3895

Mean of differences MD −1.300

Lower 95% confidence limit for MD −4.553

Upper 95% confidence limit for MD 1.953

Conclusion: Consider accepting �0 : "� = 0

Note that the paired C test only requires that the differences G8 − H8 are normally distributed with zero mean,

and the requirement for - and . to be both normally distributed with the same variance, is not so strictly

required. Nevertheless, as discussed for the unpaired C test, the Shapiro-Wilks and variance ratio tests are

provided to explore the distribution of the observations if that is thought necessary, but they should only be

used routinely for large samples, say = > 50.
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4.2.8 2-sample Kolmogorov-Smirnov test

The Kolmogorov-Smirnovtwo sample nonparametric test can be used to examine if it is reasonable to conclude

that two sets of independent observations have the same unknown distribution. It is based on a test statistic

estimated from the largest differences between the two sample cumulative distributions.

To be precise, the user has two samples (i.e. vectors - and . ) with < and = observations

- = (G1, G2, . . . , G<)
. = (H1, H2, . . . , H=)

and wishes to test the null hypothesis that the samples have the same distribution, against the alternative

hypothesis that they are not equal, or possibly the one-sided alternatives. That is

�0 : � (G) = � (H)
�1 : � (G) ≠ � (H)
�2 : � (G) > � (H)
�3 : � (G) < � (H)

and SimFIT provides all the information that is required to perform such tests.

From the main SimFIT menu select [A/Z], choose to open program rstest, then analyze the test files provided

to obtain the following results.

Kolmogorov-Smirnov two sample test 1

--data: Test file ttest.tf2: for paired C test with TTEST.TF3

. -data: Test file ttest.tf3: for paired C test with TTEST.TF2

- sample size 10

. sample size 10

�0: � (G) is equal to � (H) (G and H are comparable) against

�1: � (G) not equal to � (H) (G and H are not comparable)

� 0.2000

/ 0.08944

? 0.7869

�2: � (G) > � (H) (G tend to be smaller than H)

� 0.2000

/ 0.08944

? 0.3935

�3: � (G) < � (H) (G tend to be larger than H)

� 0.1000

/ 0.04472

? 0.4972

The test statistic uses �, which would be either the largest difference where � (G) > � (H), �<, the largest

difference where � (G) < � (H), �=, or the maximum of these, �<= = max(�<, �=), and is defined as

/ =

√
<=

< + =�.

This test is very weak unless the distributions are continuous and the sample sizes fairly large, so it is not

surprising that the first example does not lead to a rejection of the null hypothesis. However, the next example

compares data from two test files, normal.tf1 with 50 pseudo random numbers from a normal distribution

with ` = 0 and f = 1, and normal.tf2 with 50 pseudo random numbers from a normal distribution with
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` = 1 and f = 2. The plot confirms very convincingly the table results, that identical distribution can be

rejected in favor of the alternative hypothesis that - < . , but not in favor of the alternative that - > . .

Kolmogorov-Smirnov two sample test 2

--data:Test file normal.tf1: mean = 0, standard deviation = 1

. -data:Test file normal.tf2: mean - 1, standard deviation = 2

- sample size 50

. sample size 50

�0: � (G) is equal to � (H) (G and H are comparable) against

�1: � (G) not equal to � (H) (G and H are not comparable)

� 0.3600

/ 0.07200

? 0.0013 Reject �0 at 1% significance level

�2: � (G) > � (H) (G tend to be smaller than H)

� 0.3600

/ 0.07200

? 0.0007 Reject �0 at 1% significance level

�3: � (G) < � (H) (G tend to be larger than H)

� 0.06000

/ 0.01200

? 0.4989

0.0

0.2

0.4

0.6

0.8

1.0

-4 -2 0 2 4 6 8

Kolmogorov-Smirnov Two Sample Test

Values

S
am

pl
e 

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

ns normal.tf1

normal.tf2



2-sample Mann-Whitney U test 101

4.2.9 2-sample Mann-Whitney U test

The Mann-Whitney U test is a sort of nonparametric equivalent of the unpaired C test that is used to examine

the relative size of observations in two data sets, say - and . without assumptions about the distributions.

To be precise, the user has two samples (i.e. vectors - and . ) with < and = observations

- = (G1, G2, . . . , G<)
. = (H1, H2, . . . , H=)

where the ranks of the two sets of observations within a combined, i.e. pooled, data set can be consulted to

see if is is reasonable to conclude that either

• data values in both samples are similar,

• data values in sample - tend to be smaller than those in sample . , or

• data values in sample - tend to be larger than those in sample . .

The test is weak unless large samples are used, and is further weakened by ties within the data, that is, multiple

observations with the same value.

From the main SimFIT menu select [A/Z], choose to open the SimFIT nonparametric testing program rstest,

then analyze the test files provided to obtain the following results.

Wilcoxon-Mann-Whitney* test

--data: g08ahf.tf1 (Mann-Whitney* test)

. -data: g08ahf.tf2 (Mann-Whitney* test)

- sample size 16

. sample size 23

* 86.00

/ -2.804

�0: � (G) is equal to � (H) (G and H are comparable)

as null hypothesis against the alternatives:-

�1: � (G) is not equal to � (H) (G and H not comparable)

? 0.0050 Reject �0 at 1% significance level

�2: � (G) > � (H) (G tend to be smaller than H)

? 0.0025 Reject �0 at 1% significance level

�3: � (G) < � (H) (G tend to be larger than H)

? 0.9977

Note that * is the Mann-Whitney test statistic which is used to calculate an exact ? value, while / is an

approximatelynormal test statistic and, using SimFIT program normal, we find that %(/ ≤ −2.804) = 0.0025.

To understand how to interpret the meaning of the above two-tail and one-tail test statistics you can just look

at a table of frequencies. This is easily constructed using SimFIT program editmt to rearrange the samples

into increasing order as follows, where bracketed values are frequencies.

- 6(1) 7(5) 8(2) 9(1) 10(3) 11(0) 12(2) 13(1) 14(0) 15(0) 16(1) 17(0)

. 6(1) 7(0) 8(2) 9(0) 10(4) 11(2) 12(4) 13(3) 14(3) 15(3) 16(0) 17(1)

Alternatively, the frequencies can be plotted, as lines and symbols by first using SimFIT program makfil to

generate plotting files, followed by SimFIT program simplot to create the following plot which emphasizes

the test results, i.e. the most likely conclusion is that --sample values tend to be smaller than the . -sample

values.
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Using the built-in data editor in simplot to move - leftwards and . rightwards to prevent overlapping, then

replacing symbols by bars and suppressing the lines gives the next alternative way to plot the data.
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4.2.10 2-sample Wilcoxon signed rank test

The Wilcoxon signed rank test is a sort of nonparametric equivalent of the paired C test that is used to examine

the differences between matched observations in two data sets, say - and . , just assuming a symmetrical, but

unspecified, distribution for the paired differences.

To be precise, the user has two samples (i.e. vectors - with median -<43, and . with median .<43) with =

observations, and specifies a hypothetical median for the paired differences, say �<43 , that generates a vector

of signed differences 38 = G8 − H8 defined by

- = (G1, G2, . . . , G=)
. = (H1, H2, . . . , H=)
� = (31, 32, . . . , 3=) .

Users have to decide whether to include or discard zero differences, and whether to change the default median

difference of �<43 = 0 to �<43 = : for some hypothetical :, then analysis of the signed differences is

performed to test if it is reasonable to conclude that either

• both samples have the same population median,

• the population median for sample - is smaller than that for sample . , or

• the population median for sample - is larger than that for sample . .

The test is weak unless large samples are used, and is further weakened by ties within the data, that is, multiple

observations with the same value.

From the main SimFIT menu select [A/Z], choose to open the SimFIT statistics program simstat, then the

standard tests option to analyze the test files provided. Choosing a specified zero median and opting to

suppress zero differences yields the following results.

Wilcoxon paired-sample signed-rank test

Zero differences suppressed, median test value = 0

--data: test file g08agf.tf1

. -data: test file g08agf.tf2

Size of data = 8, Number of values suppressed = 0

, 32.00

/ 1.890

�0: - median = . median

as null hypothesis against the alternatives:-

�1: Medians differ

? 0.0547

�2: - median < . median

? 0.9805

�3: - median > . median

? 0.0273 Reject �0 at 5% significance level

In this example there were no zero differences to reject, and here, is the signed ranks test statistic, while /

is an approximate normal test statistic. Using SimFIT program normal, we find that %(/ ≥ 1.89) = 0.0294.

In order to make the interpretation of this test as clear as possible, especially the effect of the value chosen

for �<43 , the results from sequential analysis of data in SimFIT test files wilcoxon.tf1 and wilcoxon.tf2

using two different values of �<43 = 0 then �<43 = −2 are displayed next.
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Wilcoxon paired-sample signed-rank test 1 and test 2

Median test value = 0

--data: test file wilcoxon.tf1

. -data: test file wilcoxon.tf2

Size of data = 50, Number of values suppressed = 0

, 306.0

/ -3.195

�0: - median = . median

�1: Medians differ

? 0.0011 Reject �0 at 1% significance level

�2: - median < . median

? 0.0005 Reject �0 at 1% significance level

�3: - median > . median

? 0.9995

Median test value = -2

, 783.0

/ 1.400

�0: - median = . median

�1: Medians differ

? 0.1629

�2: - median < . median

? 0.9200

�3: - median > . median

? 0.0815

The following graph shows that, although - and . do appear to be matched, the difference is mostly around

−2, which explains why �<43 = 0 is rejected, but �<43 = −2 is not rejected, emphasizing the importance of

choosing �<43 sensibly on the outcome of this test.
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4.2.11 Chi-square test on observed and expected frequencies

The chi-square test on observed and expected frequencies is based on forming a test statistic that, in the limit

of a very large sample size, becomes asymptotic to a chi-square distribution, with the number of degrees of

freedom dependent on the number of categories, and also on the number of parameters estimated from the

sample.

To be precise, it is assumed that the user has counted the frequency of occurrence of : observations partitioned

into = categories with $8 in category 8, and also knows the frequencies �8 expected under the null hypothesis

that the observations are consistent with the expected frequencies given by the assumed distribution. This

allows the calculation of � defined as

� =
($1 − �1)2

�1

+ ($2 − �2)2

�2

+ · · · + ($= − �=)2

�=

which has an approximate chi-square distribution with a degrees of freedom given by

a = = − 1 − <

where a ≥ 2, and < is the number of parameters estimated from the sample. The reason for subtracting 1 +<
from = to get the degrees of freedom will be clear by considering the identity

=∑
8=1

�8 =

=∑
8=1

$8 = :

which reduces the effective numbers of terms in the calculation of� to =−1. Similarly, every further equation

of constraint can be considered to reduce by one the effective number of terms in the calculation of �.

It is usually recommended that the expected values are at least 5 and, if this cannot be realized, then categories

could be combined until this condition is met. Alternatively, if the total number of observations is : as above,

and the number of categories is not fixed by other considerations, then the number of bins = used to partition

the data is sometimes suggested as

= ≈ :0.4,

but obviously this all depends on the shape of the assumed distribution.

To illustrate this test consider the next table, which records the results from one hundred observations on the

number of heads resulting from tossing five different coins. Clearly there are six categories, as the number of

heads per toss of the five coins can only be 0, 1, 2, 3, 4, or 5, but note that 1000.4 ≈ 6 anyway in this case.

Number of Heads 0 1 2 3 4 5

Observed 3 16 36 32 11 2

Expected 4.0 17.9 32.6 29.6 13.5 2.4

There were 238 heads in all from the total of 500 tosses, so the expected frequencies were calculated using

a binomial distribution with binomial # = 5 and estimated parameter ?̂ = 238/500 = 0.476, and therefore 4

degrees of freedom.

Choose [A/Z] from the main SimFIT menu, open program chisqd, select chi-square test on observed and

expected frequencies, then analyze the above data contained in the test files chisqd.tf2 and chisqd.tf3,

with one parameter estimated from the sample to get these results.

Number of partitions (bins) 6

Number of degrees of freedom 4

Chi-square test statistic C 1.531

%(j2 ≥ �) 0.8212 Consider accepting H0

Upper tail 5% critical point 9.488

Upper tail 1% critical point 13.28
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SimFIT first displays a warning that the expected frequencies for 0 and 5 heads are below 5, and so these two

categories could be combined if it was thought necessary. However, in this case the ? value of 0.8212 is

much larger than 0.05, so the conclusion is that the null hypothesis of a binomial distribution with parameters

# = 5, and ? = 0.476 cannot be rejected.

Note that SimFIT also lists the 1% and 5% upper tail critical points, as this is how the test results were analyzed

in the past by looking up tables of critical points, before the availability of computers made this unnecessary.

The most widely used technique to display the agreement between the observed and expected frequencies is

a bar chart, as in the next figure.
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4.2.12 Contingency table analysis

A contingency table is an array of nonnegative frequencies with = rows and < columns, such as this table

contained in SimFIT test file chisqd.tf4, for 15 observations carried out on two populations to test for equal

probabilities of success.

Success Failure

Sample 1 3 3 6

Sample 2 7 2 9

10 5 15

Here, the cell frequencies are (3, 3, 7, 2), the sum of row frequencies known as row marginals are (6, 9),
the sum of column frequencies known as column marginals are (10, 5), and obviously the row and column

marginals must separately both add up to the total number of frequencies (15).

To be precise, in the general case there will be frequencies 58 9 where 8 = 1, 2, . . . , =, and 9 = 1, 2, . . . , <, and

it is wished to test for homogeneity, i.e. independence, or no association between the variables, which can be

stated as the null hypothesis

�0 : `8 9 = `8.`. 9 , for 8 = 1, 2, . . . , =, and 9 = 1, 2, . . . , <

where each cell probability `8 9 is completely determined by the corresponding row marginal `8., and the

column marginal `. 9 . To examine a given data set SimFIT provides the following three alternatives.

1. The chi-square test.

This is the easiest to perform and and interpret, and is the test most generally used. However, it must be

emphasized that the test statistic is only asymptotically distributed as chi-square with (= − 1) (< − 1)
degrees of freedom in the limit for large samples. Where there are small frequencies the option to

combine cells should be considered, and note that the Yate’s continuity correction may be used where

appropriate.

2. The Fisher exact test.

This is very powerful and widely used, but sometimes suffers from being difficult to interpret with large

samples, which also may lead to computational problems.

3. The loglinear contingency table analysis.

This uses general linear modeling assuming a Poisson error distribution and log link, but it does require

some expertise on the part of users.

Choose [A/Z] from the main SimFIT menu, then open SimFIT program chisqd.

Chi-square contingency table test

For all tables, SimFIT calculates a chi-square test statistic � from the observed frequencies 58 9 , and expected

frequencies 48 9 , and also a likelihood ratio test statistic ! defined in terms of the expected values 48 9 and

marginals 58. and 5. 9 as follows

48 9 = 58. 5. 9/#

� =

=∑
8=1

<∑
9=1

( 58 9 − 48 9 )2

48 9

! = −2 log_

= 2

=∑
8=1

<∑
9=1

58 9 log( 58 9/48 9 )
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It is often recommended to combine cells where the expected values are small, say 48 9 < 0.5, and this facility

is provided.

Select chi-square contingency table analysis, then analyze the above data which leads to calculation of the

approximate chi-square test statistic with the Yate’s continuity correction

� =
# (| 511 522 − 512 521 | − #/2)2

A1A22122

for this 2 by 2 contingency table, where # is the sum of frequencies 58 9 , A8 are the row marginals, and 2 9 are

the column marginals, leading to the following results, which do not suggest rejecting �0.

Number of rows 2

Number of columns 2

chi-square test statistic � 0.3125

Number of degrees of freedom 1

%(j2 ≥ �) 0.5762

Upper tail 5% point 3.841

Upper tail 1% point 6.635

! = −2 log(_) 1.243

%(j2 ≥ !) 0.2649

Fisher exact test

For 2 by 2 contingency tables, and # ≤ 100, tables like the following are also displayed.

Observed Rearranged so A1 = smallest marginal,22 ≥ 21

3 3 3 2

7 2 3 7

?(A) ? for 511 = A after rearranging and adjusting

?(0) 0.041958

?(1) 0.251748

?(2) 0.419580

?(3) 0.239760 ?(∗), observed frequencies

?(4) 0.044955

?(5) 0.001998

P_sums, 1-tail and 2-tail test statistics

P_sum1 0.041958 sum of ?(A) ≤ ?(∗) for A < 3

P_sum2 0.953047 sum of all ?(A) for A ≤ 3

P_sum3 0.286713 sum of all ?(A) for A ≥ 3

P_sum4 0.046953 sum of ?(A) ≤ ?(∗) for A > 3

P_sum5 1.000000 P_sum2 + P_sum4

P_sum6 0.328671 P_sum1 + P_sum3

For convenience, this test starts by rearranging the data table until A1 is the smallest marginal and 22 ≥ 21.

Then all hypothetical tables that are possible with the same marginals are considered, but now for A = 511 for

A = 0, 1, . . . , A1 as follows, where the observed frequencies are indicated by stars (*).

0 5 1 4 2 3 *3 *2 4 1 5 0

6 4 5 5 4 6 *3 *7 2 8 1 9

Assuming the null hypothesis, the probabilities ?(A) for tables with 511 = A are then calculated for a

hypergeometric distribution using

?(A) = A1!A2!21!22!

511! 521! 512! 522!#!
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With the tables under consideration it is clear that, had the outcome been as for the hypothetical tables

indicated by ?(0), ?(4), or ?(5) then the possibility of rejecting �0 would have to be considered. However,

the current data ?(3), indicated by ?(∗) would be accepted, as for the chi-square test on the same data. With

less obvious results, various one-tailed and two-tailed tests can be based on considering probabilities for more

extreme contingency tables, or sums of such probabilities. As an example consider the following data

Boys Girls

Left-handed 6 (18%) 12 (22%) 18

Right-handed 28 (82%) 24 (67%) 52

34 36 70

and possible hypotheses for this sample

�0: left-handedness is not less common in boys than girls

��: left-handedness is less common in boys than girls.

?(A) ? for 511 = A after rearranging and adjusting

?(0) 0.000000

?(1) 0.000013

?(2) 0.000177

?(3) 0.001436

?(4) 0.007590

?(5) 0.027720

?(6) 0.072572 ?(∗), observed frequencies

?(7) 0.139338

?(8) 0.198959

?(9) 0.212877

?(10) 0.171062

?(11) 0.102959

?(12) 0.046046

?(13) 0.015082

?(14) 0.003535

?(15) 0.000571

?(16) 0.000060

?(17) 0.000004

?(18) 0.000000

P_Sums, for 1-tail and 2-tail test statistics

P_sum1 0.036936 sum of ?(A) ≤ ?(∗) for A < 6

P_sum2 0.109508 sum of all ?(A) for A ≤ 6 (one-tailed ?)

P_sum3 0.963064 sum of all ?(A) for A ≥ 6

P_sum4 0.065297 sum of ?(A) ≤ ?(∗) for A > 6

P_sum5 0.174805 P_sum2 + P_sum4

P_sum6 1.000000 P_sum1 + P_sum3

Adding up the probabilities for the observed table ?(6) = ?(∗) and all the possible tables more extreme than

this that would favor �� against �0 we see that the appropriate one-tailed ? value is

?(0) + ?(1) + ?(2) + ?(3) + ?(4) + ?(5) + ?(6) = 0.109508

and so, for this sample with U = 0.05 we would not consider rejecting �0.

loglinear contingency table test

The full details for this test will be found in the SimFIT reference manual, but meaningful interpretation of

the results is possible without detailed understanding. Essentially, a statistical model is constructed for the

contingency table with the following characteristics.
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• Best-fit theoretical cell frequencies are calculated using a loglinear model.

• The parameter estimates are displayed along with standard errors and ? values.

• Predicted cell frequencies are then compared with the observed data to generate differences, residuals,

and leverages.

• The deviance is calculated, and the chi-square significance reported.

Here are the results for the SimFIT test data set.

Log-linear contingency table analysis

Data: Test file chisqd.tf4

number of rows = 2, number of columns = 2

Deviance (D) = 1.243, degrees of freedom = 1

%(j2 ≥ �) = 0.2649

Parameter Estimate Std.Err. Lower 95% Upper 95% ?

Constant 1.792 0.380 -3.04 6.62 0.1330 ***

Row 1 -0.4055 0.527 -7.10 6.29 0.5823 ***

Row 2 0.4055 0.527 -6.29 7.10 0.5823 ***

Col 1 -0.6931 0.547 -7.65 6.26 0.4254 ***

Col 2 0.6931 0.547 -6.26 7.65 0.4254 ***

Data Model Delta Residual Leverage

3 4 -1 -0.5234 0.7997

3 2 1 0.6579 0.6005

7 6 1 0.3976 0.8664

2 3 -1 -0.6149 0.7335

The model that is assumed expresses the theoretical cell probability `8 9 as a constant \, plus row parameters

U8 , column parameters V 9 , and mixed row-column parameters W8 9 in the following way

log `8 9 = \ + U8 + V 9 + W8 9

where
=∑
8=1

U8 =

<∑
9=1

V 9 = 0.

The null hypothesis of homogeneity, that is `8 9 = `8.`. 9 , can then be stated as

�0 : W8 9 = 0 for 8 = 1, 2, . . . , =, and 9 = 1, 2, . . . , <

and the deviance measures the extent to which the hypothesis of homogeneity can be supported. Note that

the purpose of starred parameter estimates is simply to warn users about suspiciously large ratios of standard

errors to parameter estimates, i.e. where ? ≥ 0.05. Also, with large contingency tables, the ability to plot the

residuals in a variety of ways to visualize goodness of fit is provided.

As before, this test provides no support for rejecting the null hypothesis of homogeneity with these data.
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4.2.13 McNemar test

The McNemar test is used to analyze paired observations of a dichotomous variable, i.e. where there can

only be one of two possible values such as: success/failure, +/-, 0/1, etc. and it is of interest to examine if the

paired values are associated or are independent.

To be precise, consider the possible outcome from testing fifty specimens of sputum cultured on two different

culture media, A and B, with the intention of detecting a particular bacterium. The four possible outcomes

were as follows.

Type Medium A Medium B Number

Both + + 20

A only + - 12

B only - + 2

Neither - - 16

These data can be arranged as a 2 by 2 contingency table, such as this table contained in SimFIT test file

mcnemar.tf1.

B + B - Total

A + 20 12 32

A - 2 16 18

Total 22 28 50

Here, the cell frequencies are ( 511 = 20, 512 = 12, 521 = 2, 522 = 16), the sum of row frequencies known

as row marginals are (32, 18), the sum of column frequencies known as column marginals are (22, 28), and

obviously the row and column marginals must separately both add up to the total number of frequencies

(= = 50).

From the main SimFIT menu choose [Statistics] then [Standard tests] and analyze the above data using the

McNemar option to get the following table.

McNemar test 1

�0: Expected value of [(f(1,2) - (f(2,1))/n] = 0

Title: Data for 2 by 2 McNemar test

Number of rows/columns 2

Chi-square test statistic � 5.786

Number of degrees of freedom 1

%(j2 ≥ �) 0.0162 Reject �0 at 5% level

Upper tail 5% point 3.841

Upper tail 1% point 6.635

Continuity correction used in chi-square

The frequencies 58 9 in this table are analyzed by calculating the j2 test statistic given by

j2
=

(| 512 − 521 | − 1)2

512 + 521

.

which has an approximate chi-square distribution with 1 degree of freedom. The outcome emphasizes the

obvious fact that culture medium A is more effective than culture medium B.

Note that this test does not perform so well with small frequencies and, in particular, if A = 2 and

512 + 521 ≤ 20
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a warning will be displayed. In such cases it may be preferable to do a binomial test using # = 512 + 521

then - = 512 or - = 521 to check if ?̂ = -/# is consistent with a binomial distribution with parameters #

and ? = 0.5. Since in the 2 by 2 case the McNemar test is equivalent to testing if two sample estimates for

a binomial probability parameter differ significantly, we can use SimFIT to calculate exact 95% confidence

limits as follows

For 2/14 : 0.0178 ≤ ?̂ = 0.1429 ≤ 0.4281

For 12/14 : 0.5719 ≤ ?̂ = 0.8571 ≤ 0.9822

which convincingly demonstrates the superiority of culture medium A over culture medium B.

To explain the logic behind this analysis, note that the overall proportion of successes with medium A is

( 511 + 512)/=, while the overall proportion of successes with medium B is ( 511 + 521)/=, so that the difference

between these estimates for the probability of success depends only on 512 − 521, and the null hypothesis for

such a 2 by 2 table can be expressed as expectations in several equivalent ways without using the diagonal

frequencies 588 except in the sample size =, such as

�0 : �

(
512 − 521

=

)
= 0, or

�0 : �

(
512

521

)
= 1.

Note that it is important that tables for the McNemar test are set up correctly to reflect the pairwise nature of

the data, so an additional example is given using data in test file mcnemar.tf2 for the case where medication

A was applied to one arm and medication B to the other arm with subjects suffering from a rash on both arms.

B worked B failed Total

A worked 11 6 17

A failed 10 24 34

Total 21 30 50

Chi-square test statistic � 0.5625

Number of degrees of freedom 1

%(j2 ≥ �) 0.4533 Consider accepting �0

Upper tail 5% point 3.841

Upper tail 1% point 6.635

The outcome is that there is no evidence to support a significant difference between medications A and B in

this experiment.

More generally, for larger A by A tables with identical paired row and column categorical variables, the

continuity correction is not used, and the appropriate test statistic is

j2
=

A∑
8=1

∑
9>8

( 58 9 − 5 98)2

58 9 + 5 98

with A (A−1)/2 degrees of freedom. Unlike the normal contingency table analysis where the null hypothesis is

independence of rows and columns, with this test there is intentional association between rows and columns.

The test statistic does not use the diagonal frequencies 588 and is testing whether the upper right corner of the

table is symmetrical with the lower left corner. The SimFIT test file mcnemar.tf3 contains data for a such a

3 by 3 McNemar table.
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4.2.14 Cochran Q test

The Cochran Q test is used to analyze randomized block or repeated-measures observations of a dichotomous

variable, i.e. where there can only be one of two possible values such as: success/failure, +/-, 0/1, etc. and it

is of interest to examine if successive measurements differ significantly.

To be precise, consider the possible outcome from testing eight people exposed to mosquito attacks with five

different types of clothing as follows, where a 1 indicates attacked by mosquitos and a 0 indicates freedom

from attack.

Blocks Groups (Clothing Type)

(Subjects) Light-loose Light-tight Dark-long Dark-short None

1 0 0 0 1 0

2 1 1 1 1 1

3 0 0 0 1 1

4 1 1 0 1 0

5 0 1 1 1 1

6 0 1 0 0 1

7 0 0 1 1 1

8 0 0 1 1 0

The results for blocks (e.g., subjects) are in rows from 1 to = of a matrix while the attributes, which can

be either 0 or 1, are in groups, that is, columns 1 to <. So, with = blocks, < groups, �8 as the number of

attributes equal to 1 in group 8, and � 9 as the number of attributes equal to 1 in block 9 , then the statistic & is

calculated, where

& =

(< − 1)

<∑
8=1

�2
8 −

1

<

(
<∑
8=1

�8

)2
=∑
9=1

� 9 −
1

<

=∑
9=1

�2
9

and & is distributed as approximately chi-square with < − 1 degrees of freedom. It is recommended that <

should be at least 4 and <= should be at least 24 for the approximation to be satisfactory.

For example, open the main SimFIT menu, select [Statistics], then [Standard tests], and perform the Cochran

Q test on the test file cochranq.tf1 to obtain the results shown below.

Number of blocks (rows) 7 Rows suppressed: 1 (all 0 or all 1)

Number of groups (columns) 5 Columns suppressed: 1 (not data)

Cochran & value 6.947

%(j2 ≥ &) 0.1387

95% chi-square point 9.488

99% chi-square point 13.28

Clearly, the test provides no reason to reject the null hypothesis that the proportion of humans in this study

attacked by mosquitos is the same for all clothing types. Also, note the following facts about the SimFIT file

format for a Cochran Q test.

1. Rows containing only a 0 or only a 1, like row 2 above, can be included in the data file but they do not

contribute to the analysis.

2. An extra column of successive integers, which must be in order from 1 to =, can be included as a first

column if required to help you identify the subjects in the results file.
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4.2.15 Binomial test

This procedure, based on the binomial distribution, is used with dichotomous data, i.e., where an experiment

has only two possible outcomes and it is wished to test �0: binomial ? = ?0 for some 0 ≤ ?0 ≤ 1. For

instance, to test if consecutive outcomes are independent with the same probability, i.e. are Bernoulli trials.

To be precise, you input the number of successes, :, the number of Bernoulli trials, # , and the supposed

probability of success, ?0, then SimFIT calculates the probabilities associated with :, #, ?0, and ; = # − :,

including the estimated probability parameter ?̂ with 95% confidence limits, and the two-tail binomial test

statistic. The probabilities for - equal to the number of successes, which can be used for upper-tail, lower-tail,

or two-tail testing are

?̂ = :/#

%(- = :) =
(
#

:

)
?: (1 − ?)#−:

%(- > :) =
#∑

8=:+1

(
#

8

)
?8 (1 − ?)#−8

%(- < :) =
:−1∑
8=0

(
#

8

)
?8 (1 − ?)#−8

%(- = ;) =
(
#

;

)
?; (1 − ?)#−;

%(- > ;) =
#∑

8=;+1

(
#

8

)
?8 (1 − ?)#−8

%(- < ;) =
;−1∑
8=0

(
#

8

)
?8 (1 − ?)#−8

%(two tail) = min(%(- ≥ :), %(- ≤ :)) + min(%(- ≥ ;), %(- ≤ ;)) .

Open the SimFIT main menu then choose [Statistics] followed by [Standard tests] and run the binomial test

option using the default parameters to obtain this table of results.

Binomial test analysis 1

Successes : 5

Trials # 10

; = # − : 5

?-theory 0.50000

?-estimate 0.50000 95% confidence limits = 0.18709,0.81291

%(- > :) 0.37695

%(- < :) 0.37695

%(- = :) 0.24609

%(- ≥ :) 0.62305

%(- ≤ :) 0.62305

%(- > ;) 0.37695

%(- < ;) 0.37695

%(- = ;) 0.24609

%(- ≥ ;) 0.62305

%(- ≤ ;) 0.62305

Two tail binomial test statistic = 1.00000

From this table it is obvious that 5 successes in 10 trials is perfectly consistent with a binomial distribution

having # = 10 and ? = 0.5. However, consider the results when the number of Bernoulli trials is reduced to

5, where intuition might suggest that five successive heads in coin tossing would suggest a two-headed coin.
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Binomial test analysis 2

Successes : 5

Trials # 5

; = # − : 0

?-theory 0.50000

?-estimate 1.00000 95% confidence limits = 0.47818,1.0000

%(- > :) 0.00000

%(- < :) 0.96875

%(- = :) 0.03125

%(- ≥ :) 0.03125

%(- ≤ :) 1.00000

%(- > ;) 0.96875

%(- < ;) 0.00000

%(- = ;) 0.03125

%(- ≥ ;) 1.00000

%(- ≤ ;) 0.03125

Two tail binomial test statistic = 0.06250

This shows, for example, that the probability of obtaining five successes (or alternatively five failures) in an

experiment with equiprobable outcome would not lead to rejection of �0 : ? = 0.5 in a two tail test. Note, for

instance, that the exact confidence limits for the estimated probability include 0.5. Many life scientists when

asked what is the minimal sample size to be used in an experiment, e.g. the number of experimental animals

in a trial, would use a minimum of six, since the null hypothesis of no effect would never be rejected with a

sample size of five.

The next table illustrates that an experiment with six consecutive successes (or failures) would indicate that

the 95% confidence region for the parameter ? does not include 0.5, and would provide grounds for rejecting

the null hypothesis �0: The trials are all independent with ? = 0.5.

Binomial test analysis 3

Successes : 6

Trials # 6

; = # − : 0

?-theory 0.50000

?-estimate 1.00000 95% confidence limits = 0.54074,1.0000

%(- > :) 0.00000

%(- < :) 0.98438

%(- = :) 0.01563

%(- ≥ :) 0.01563

%(- ≤ :) 1.00000

%(- > ;) 0.98438

%(- < ;) 0.00000

%(- = ;) 0.01563

%(- ≥ ;) 1.00000

%(- ≤ ;) 0.01563

Two tail binomial test statistic = 0.03125, Reject �0 at 5% significance level
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4.2.16 Sign test

This procedure, which is based on the binomial distribution, but assuming the special case ? = 0.5, is used

with dichotomous data, i.e., where an experiment has only two possible outcomes, and it is wished to test if

the outcomes, say success or failure, are equally likely. The test is usually described in terms of positive signs

(+) or negative signs (-) but, as it is only concerned with a succession of observations that can only be one

of two types and does not necessarily involve any sort of measurement scale, it has much wider application.

Unfortunately the test does not take into account the order of positive and negative signs and would not

differentiate between the patterns + − + − + − + − +− and + + + + + − − − −−, so the test is rather weak and

large samples, say greater than 20, are usually recommended. The run test does take the order of occurrence

into account, and should be used where order in the sequence of signs has significance.

Open the SimFIT main menu, choose [Statistics] then [Standard tests] and run the sign test option. This can

be used to input numbers of positive and negative signs and, using the default options for number of positive

signs < = 5, and negative signs = = 5, the next results are obtained.

Sign test analysis 1, < + = = 10

%(+E4 = <) 0.24609 < = 5

%(+E4 > <) 0.37695

%(+E4 < <) 0.37695

%(+E4 ≥ <) 0.62305

%(+E4 ≤ <) 0.62305

%(−E4 = =) 0.24609 = = 5

%(−E4 < =) 0.37695

%(−E4 > =) 0.37695

%(−E4 ≤ =) 0.62305

%(−E4 ≥ =) 0.62305

Two tail sign test statistic = 1.00000

The test could be used, for instance, to find out how many consecutive successes you would have to observe

before the likelihood of an equiprobable outcome would be questioned. From these five successes and five

failures it is quite clear that such an outcome is perfectly consistent with the null hypothesis �0 : ? = 0.5,

On the other hand, the case with < = 9, and = = 1, summarized in the next table is obviously more extreme.

Sign test analysis 2, < + = = 10

%(+E4 = <) 0.00977 < = 9

%(+E4 > <) 0.00098

%(+E4 < <) 0.98926

%(+E4 ≥ <) 0.01074

%(+E4 ≤ <) 0.99902

%(−E4 = =) 0.00977 = = 1

%(−E4 < =) 0.00098

%(−E4 > =) 0.98926

%(−E4 ≤ =) 0.01074

%(−E4 ≥ =) 0.99902

Two tail sign test statistic = 0.02148, Reject �0 at 5% significance level

Clearly, nine outcomes of one kind but only one of the opposite kind, suggests rejection of the null hypothesis

that both outcomes are equally likely irrespective of the order of occurrence of the observations.
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4.2.17 Run test

SimFIT provides two types of run test.

1. Run test on successive signs.

This is used to analyze residuals from regression or, in fact, any succession of observations of a variable

which can only have one of two values, say positive (+ve) or negative (-ve).

2. Runs up or down test.

This is mainly used to test sequences of numbers for significant correlation, as in examining the

performance of a random number generator, and is discussed elsewhere.

To be precise, the run test considered in this article is based on an application of the binomial distribution,

and is used when the sequence of successes and failures (presumed in the null hypothesis to be equally likely)

is of interest, not just the overall proportions. To understand the definition of runs as dealt with by this test,

just consider the sequence

+ + + − − + + − − − +−

or alternatively

111001100010

which has twelve items with six runs, as will be clear by adding brackets like this

(000) (11) (00) (111) (0) (1).

Open the SimFIT main menu, select [A/Z], then choose to run SimFIT program rstest. This provides three

quite separate ways to perform a run test as follows.

1. Direct input of parameters.

You simply type in the number of negative and positive signs observed and the associated runs to get

an analysis like the following results for the default values of 10 positives, 10 negatives, and 10 runs.

Run and sign test 1

Number of -ve values 10

Number of +ve values 10

Number of runs 10

Probability(runs ≤ observed;

given number of +ve, -ve values) 0.41407

Critical number for 1% significance level 5

Critical number for 5% significance level 6

Probability(runs ≤ observed;

given number of non zero values) 0.50000

Probability(signs ≤ observed)

(Two tail sign test statistic) 1.00000

Note that when defining parameters in this way you will be warned if there is an inconsistency in the

data supplied.

2. Direct input of residuals.

Using this method a file containing the residuals is input to give results like the following for the default

test file rstest.tf1.



118 Statistical analysis

Run and sign test 2

Number of -ve values 29

Number of +ve values 21

Number of runs 21

Probability(runs ≤ observed;

given number of +ve, -ve values) 0.12867

Critical number for 1% significance level 17

Critical number for 5% significance level 19

Probability(runs ≤ observed;

given number of non zero values) 0.12643

Probability(signs ≤ observed)

(Two tail sign test statistic) 0.32224

3. Direct input of two sequences of values.

Another way is to input two files containing numerical values, then allow SimFIT to calculate the

residuals as for the next results with the default test files rstest.tf1 and normal.tf1.

Run and sign test 3

Number of -ve values 24

Number of +ve values 26

Number of runs 26

Probability(runs ≤ observed;

given number. of +ve, -ve values) 0.56142

Critical number for 1% significance level 17

Critical number for 5% significance level 20

Probability(runs ≤ observed;

given number of non zero values) 0.61228

Probability(signs ≤ observed)

(Two tail sign test statistic) 0.88772

To emphasize the advantages of the run test over the sign test, consider a situation that a sample of ten new

born babies in a hospital ward consisted of five boys and five girls? That would appear reasonable. However,

what if all the boys were born first in the morning, then all the girls in the afternoon, that is, two runs? Clearly

the sign test alone does not help, but the next table would confirm what most would believe intuitively: the

event may not represent random sampling but could suggest the operation of other factors. In this way the run

test, particularly when conditional upon the number of successes and failures, is using information from the

sequence of outcomes and is therefore more powerful than the sign test alone.

Run and sign test 4

Number of -ve values 5

Number of +ve values 5

Number of runs 2

Probability(runs ≤ observed;

given number of +ve, -ve values) 0.00794 Reject �0 at 1% significance level

Critical number for 1% sig. level 2

Critical number for 5% sig. level 3

Probability(runs ≤ observed;

given number of non zero values) 0.01953 Reject �0 at 5% significance level

Probability(signs ≤ observed)

(Two tail sign test statistic) 1.00000

Note that every time SimFIT performs curve fitting it gives an analysis of goodness of fit which includes

the run test to draw attention to bias in the fit resulting in too few runs caused by sections where the best-fit

curve lies appreciably to one side of the data. Actually residuals from regression are not exactly normally
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distributed even if the experimental errors are and the model fitted is correct, due to dependence introduced

by the estimation of parameters. However, if the total numbers of data points fitted is much larger than the

number of parameters estimated, this complication will not be very important.

Note that the run test in the analysis of residuals depends on a natural ordering, for instance, when the residuals

are arranged to correspond to the order of a single independent variable. This is not possible if there are

replicates, or several independent variables so, to use the run test in such circumstances, the residuals must

be arranged in some meaningful sequence, such as the order in time of the observation, otherwise arbitrary

results can be obtained by rearranging the order of residuals. The formulas used by SimFIT to calculate the

statistics in the run test analysis are presented next.

Given the numbers of positive and negative residuals, the probability of any possible number of runs can be

calculated by enumerating all possible arrangements. For instance, the random number of runs ' given <

positive and = negative residuals (redefining if necessary so that < ≤ =) depends on whether the number of

runs is even or odd as follows

%(' = 2:) =
2

(
< − 1

: − 1

) (
= − 1

: − 1

)
(
< + =
<

) ,

or %(' = 2: + 1) =

(
< − 1

: − 1

) (
= − 1

:

)
+

(
< − 1

:

) (
= − 1

: − 1

)
(
< + =
<

) .

Here the maximum number of runs is 2< + 1 if < < =, or 2< if < = =, and : = 1, 2, . . . , < ≤ =. However,

in the special case that < > 20 and = > 20, the probabilities of A runs can be estimated by using a normal

distribution with

` =
2<=

< + = + 1,

f2
=

2<=(2<= − < − =)
(< + =)2(< + = − 1)

,

and I =
A − ` + 0.5

f
,

where the usual continuity correction is employed.

The previous conditional probabilities depend on the values of < and =, but it is sometimes useful to know the

absolute probability of ' runs given # = = + < nonzero residuals. There will always be at least one run, so

the probability of A runs occurring depends on the number of ways of choosing break points where a sequence

of residuals changes sign. This will be the same as the number of ways of choosing A − 1 items from # − 1

without respect to order, divided by the total number of possible configurations, i.e. the probability of A − 1

successes in # − 1 independent Bernoulli trials given by

%(' = A) =
(
# − 1

A − 1

) (
1

2

)#−1

.

This is the value referred to as the probability of runs given the number of nonzero residuals in the previous

tables of results.
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4.2.18 F test for excess variance

Is is often required to fit two or more possible models in sequence to a data set in order to decide which

model is best justified for the data supplied. SimFIT has several programs designed to do this automatically,

e.g., exfit for sums of exponentials, mmfit for sums of Michaelis-Menten equations, rffit for positive rational

functions, etc. At each stage of model fitting these programs output goodness of fit measures, and perform an

� tests for excess variance. The SimFIT program qnfit, like these other programs, also allows users to store

� test details for retrospective testing which can also be done interactively, as now described.

Open the SimFIT main menu, choose [Statistics], then [Standard tests], and select the � test option. This

requires you to input the following values.

1. The objective function&1 and number of parameters <1 in the simpler model.

2. The objective function&2 and number of parameters <2 in the richer model.

3. The number of experimental data points =.

Obviously this test requires&1 > &2, <2 > <1, and = > <2.

For instance, using the default parameters gives these results.

� test results

&1 ((,)((& for model 1) 12.00

&2 ((,)((& for model 2) 10.00

<1 (number of parameters in model 1) 2

<2 (number of parameters in model 2) 3

= (number of experimental points) 12

Numerator degrees of freedom 1

Denominator degrees of freedom 9

� test statistic )( 1.800

%(� ≥ )() 0.2126

%(� ≤ )() 0.7874

5% upper tail critical point 5.117

1% upper tail critical point 10.56

Conclusion:

Model 2 is not justified ... Tentatively accept model 1

From such values SimFIT calculates the test statistic )( given by

)( =
(&1 −&2)/(<2 − <1)

&2/(= − <2)
which may be distributed, or more usually only approximately distributed, according to the � distribution

with <2 −<1 an =−<2 degrees of freedom. The table indicates that, as )( was less than the upper 5% critical

point, there are no grounds for accepting the richer model in this particular case.

It must be emphasized that, while simulations suggest that this test is fairly robust in simple cases like

distinguishing one exponential from two, the test is only really justified for fitting linear nested model families

like polynomials, or multilinear regression, as now outlined.

Justification for the � test can be illustrated by successive fitting of polynomials to the same data

�0 : 5 (G) = U0

�1 : 5 (G) = U0 + U1G

�2 : 5 (G) = U0 + U1G + U2G
2

. . .

�: : 5 (G) = U0 + U1G + U2G
2 + · · · + U:G:
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in a situation where experimental error is normal with zero mean and constant variance, and the true model

is a polynomial, a situation that will never be encountered in real life.

The important distributional results, can be illustrated for the case of two models 8 and 9 , with 9 > 8 ≥ 0, so

that the number of points and parameters satisfy = > < 9 > <8 while the sums of squares are &8 > & 9 , then

1. (&8 −& 9 )/f2 is j2(< 9 − <8) under model i

2. & 9/f2 is j2(= − < 9 ) under model j

3. & 9 and &8 −& 9 are independent under model j.

So the likelihood ratio test statistic

� =
(&8 −& 9 )/(< 9 − <8)

& 9/(= − < 9 )
is distributed as � (< 9 − <8, = − < 9 ) if the true model is model 8, which is a special case of model 9 in the

nested hierarchy of the polynomial class of linear models.

In most experiments the models 5 (G, \) fitted to = observations H8 are nonlinear in the parameters \, and the

variance of the experimental error usually increases as the measured responses increase. In an attempt to

allow for this, weighting factors F8 are introduced so that the objective function at the minimum would be the

sum of weighted squared residuals,((& given by

,((& =

=∑
8=1

F8{H8 − 5 (G8 , \̂)}2.

However, the choice of weighting factors is highly controversial. For instance, if the variances of the

experimental errors were known to be f2
8 , then an obvious choice for the weighting factors would be

F8 =
1

f2
8

effectively reducing the problem to the special case of constant variance, much beloved by theoreticians.

To study individual cases, these options are available using SimFIT, especially with program qnfit.

• Set all F8 = 1.

Fitting will tend to be unduly dominated by large responses H8 .

• Set all F8 = 1/B28 , where B8 are standard errors determined from replicates.

Standard error estimates will be unreliable unless large number of replicates are available.

• Set all F8 = 1/6(H8), for some specified function 6(H).
Fitting may be dominated by small responses H8 if 6(H) = (UH)2 for some U.

• Set all F8 = 1/ℎ( 5 ), for some specified function ℎ( 5 (G, \)).
Weights will change for each cycle of optimization as the parameters change.

All these can lead to bias and using B, 6(H) or ℎ( 5 ) should be justified by further investigation.
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4.2.19 Tests for equal dispersion

It is frequently of interest to compare two samples without any assumptions about the population distribution,

and SimFIT provides an interface to conduct such nonparametric tests for equality of the median and dispersion,

i.e. the variance, with two such samples.

Open the main SimFIT menu, choose [A/Z], then select the SimFIT nonparametric test program rstest, and

run the Median, Mood, and David tests using the following default data

X-values 6 9 12 4 10 11

Y-values 8 1 3 7 2 5

leading to these results.

Median, Mood and David tests number 1

Current data sets X and Y are:

G08BAF.TF1: Mood-David tests for equal dispersions

Number of X-values 6

G08BAF.TF2: Mood-David tests for equal dispersions

Number of Y-values 6

Results for the median test:

�0: medians are the same

Number of X-scores < pooled median 2

Number of Y-scores < pooled median 4

Probability under �0 0.2835

Results for the Mood test

�0: dispersions are equal

�1: X-dispersion > Y-dispersion

�2: X-dispersion < Y-dispersion

The Mood test statistic 75.50

Probability under �0 0.8339

Probability under �1 0.4170

Probability under �2 0.5830

Results for the David test

�0: dispersions are equal

�1: X-dispersion > Y-dispersion

�2: X-dispersion < Y-dispersion

The David test statistic 9.467

Probability under �0 0.3972

Probability under �1 0.8014

Probability under �2 0.1986

As usual with SimFIT, all three results are given for convenience, but with the understanding that either only

one pre-decided test is to be used, or that the Bonferroni correction will be employed if more than one test

result is to be considered.

These tests all start by forming a pooled sample, then calculating the overall median " of the pooled sample

and considering various functions of the ranks A8 within this pooled sample. It is not surprising that with such

small samples no significant differences were detected in this case.

However, to better understand what these tests do, you should now use test files g08acf.tf1 and g08acf.tf2,

which have larger and more distinct samples and lead to the following results.
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Median, Mood and David tests number 2

Current data sets X and Y are:

G08ACF.TF1: the median test

Number of X-values 16

G08ACF.TF2: the median test

Number of Y-values 23

Results for the median test:

�0: medians are the same

Number of X-scores < pooled median 13

Number of Y-scores < pooled median 6

Probability under �0 0.0009 Reject �0 at 1% significance level

Results for the Mood test

�0: dispersions are equal

�1: X-dispersion > Y-dispersion

�2: X-dispersion < Y-dispersion

The Mood test statistic 1947

Probability under �0 0.8200

Probability under �1 0.5900

Probability under �2 0.4100

Results for the David test

�0: dispersions are equal

�1: X-dispersion > Y-dispersion

�2: X-dispersion < Y-dispersion

The David test statistic 69.77

Probability under �0 0.0130 Reject �0 at 5% significance level

Probability under �1 0.9935

Probability under �2 0.0065 Reject �0 at 1% significance level

The calculations used to perform these tests will now be outlined.

The Median test

If there are = observations overall, with individual sample sizes =G and =H so that = = =G + =H , then the data

can be expressed as a 2 by 2 contingency table with frequencies

511 = Number of - ≤ "

521 = =G − 511

512 = Number of . ≤ "

522 = =H − 512

then a chi-square test, or with small samples (= ≤ 100) a Fisher exact test, is carried out. The analysis for

these data leads to the following table of results when a contingency table analysis is performed using SimFIT,

but displaying only the most important results.
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Fisher exact test

Observed Rearranged so A1 = smallest marginal, 22 ≥ 21

13 6 13 3

3 17 6 17

?(13) 0.000820 ?(∗), observed frequencies

?(14) 0.000059

?(15) 0.000002

?(16) 0.000000

P_sum3 0.000881 sum of all ?(A) for A ≥ 13

Of course, it is obvious from the way the two data sets are partitioned by the overall median " in this

contingency table that the . values tend to be larger than the - values, and the Fisher exact probability

confirms this. Note that, in order to calculate the significance level for this table, the Fisher exact test must

not only consider the probability of the given table ?(∗) but must add the sum of probabilities for the more

extreme tables, i.e., with 511 equal to 14, 15, and 16.

Mood’s test

This assumes that the two samples have the same mean so that

, =

=G∑
8=1

(
A8 −

= + 1

2

)2

,

which is the sum of squares of deviations from the average rank in the pooled sample, is approximately

normally distributed for large =. The test statistic is

I =
, − =G (=2 − 1)/12√

=G=H (= + 1) (=2 − 4)/180

.

This test suffers from the disadvantage that is assumes equal means for the two samples and, if this is not

justified, it can lead to inflated values for, .

David’s test

This test uses the mean rank

Ā =

=G∑
8=1

A8/=G

to reduce the effect of the assumption of equal means in Mood’s test by calculating

+ =
1

=G − 1

=G∑
8=1

(A8 − Ā)2,

and + is also approximately normally distributed for large =. The test statistic is

I =
+ − =(= + 1)/12√

==H (= + 1) (3(= + 1) (=G + 1) − ==G)/360=G(=G − 1)
.

Note that it is not the values of , or + alone that determine the significance level for these dispersion tests,

but the I statistics calculated from them as defined above. It is often recommended that David’s test is more

discerning than Mood’s test, which seems to be the case with these data.
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4.2.20 Tests for equal variance

It is frequently necessary to check for homogeneity of variance given = samples, that is to perform a statistical

test to see if it reasonable to assume they have a common variance in the poulation. In particular, analysis

of variance (ANOVA) is based on the assumption that all samples are normally distributed with the same

variance.

Now it is often stated that ANOVA procedures are relatively insensitive to small departures from normality,

but are much more affected by differences in variances between groups so, for that reason, variance-stabilizing

transformations are frequently resorted to. Variance homogeneity tests are best done interactively on the data

set, so that the effect of transformations on variance stabilizations can be judged before proceeding to ANOVA.

SimFIT provides the facility to read in samples as individual data sets with possibly differing sample sizes, or

as a matrix if all samples have the same size, but then to test for homogeneity of variance under all conditions

of variance stabilizing transformations in order to check that the transformation selected has succeeded.

The next table illustrates analysis of data in the test file anova1.tf1 for homogeneity of variance, using the

Bartlett test, and also the Levene test.

Homogeneity of variance test 1: Bartlett

Transformation G (untransformed data)

� 0.69006

� 1.0800

�/� 0.63895

Number of degrees of freedom 4

%(j2 ≥ �/�) 0.9586

Upper tail 1% point 13.277

Upper tail 5% point 9.4877

Homogeneity of variance test 2: Levene (median)

Transformation G (untransformed data)

, 0.18458

Degrees of freedom 1 4

Degrees of freedom 2 25

%(� ≥ ,) 0.9442

Upper tail 1% point 4.1774

Upper tail 5% point 2.7587

In order to interpret these results it is necessary to understand the assumptions involved and the statistics that

are calculated, so such issues will now be discussed.

Bartlett’s test

With just two normal samples the � test is recommended, and this can be performed routinely in SimFIT as

part of the C test procedure, which is actually equivalent to 1-way ANOVA when there are only two samples.

Where there are = normal samples the Bartlett test is recommended, and this is just the same as the � test when

there are two samples of the same size. If there are : groups, with sample size =8 , a8 = =8 − 1, and sample
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variances B28 , then the pooled variance estimate B2?, and parameters � and � can be calculated as follows,

B2? =

:∑
8=1

a8B
2
8

:∑
8=1

a8

� = log(B2?)
:∑
8=1

a8 −
:∑
8=1

a8 log(B28 )

� = 1 + 1

3(: − 1)

©­­­­­­
«

:∑
8=1

1

a8
− 1

:∑
8=1

a8

ª®®®®®®¬
.

To test homogeneity of variance, the Bartlett test statistic �/� is approximately chi-square distributed with

: − 1 degrees of freedom.

Levene’s test

When normality cannot be assumed, the Levene test can be performed. If the total number of observations is

# =
∑:
8=1 =8 , then the test statistic, is defined as

, =

(# − :)
:∑
8=1

=8 (/8. − /..)2

(: − 1)
:∑
8=1

=8∑
9=1

(/8 9 − /8.)2

,

where /.. is the mean of all /8 9 , and /8. is the group mean of the /8 9 . If .8 9 is observation 9 in group 8 the

definitions are

/8 9 = |.8 9 − .8. |

/.. =
1

#

:∑
8=1

=8∑
9=1

/8 9

/8. =
1

=8

=8∑
9=1

/8 9 ,

but note that there are several ways to define .8.. Usually this is taken to be the median of group 8, but if

there are long tails in the distribution as with the Cauchy distribution, the the trimmed mean can be used. The

group mean can also be used if the data are similar to a normal distribution. To test variance homogeneity,

the Levene test statistic, is approximately � distributed with : − 1 and # − : degrees of freedom.

The above table illustrates that the null hypothesis

�0 : f2
1 = f2

2 = · · · = f2
:

cannot be rejected for the data in test file anova1.tf1.
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4.2.21 Kendall’s coefficient of concordance

Kendall’s coefficient of concordance estimates the extent of agreement between = objects ranked on : different

variables in order to test the null hypothesis

�0 : There is no agreement between the comparisons.

Open the SimFIT main menu, choose [A/Z], select the SimFIT nonparametric test program rstest, then run

the Kendall coefficient of concordance option and examine the following default data set of rankings for 10

objects ranked on 3 variables.

1.0 4.5 2.0 4.5 3.0 7.5 6.0 9.0 7.5 10.0

2.5 1.0 2.5 4.5 4.5 8.0 9.0 6.5 10.0 6.5

2.0 1.0 4.4 4.5 4.5 4.5 8.0 8.0 8.0 10.0

The results are as follows, suggesting that �0 should be rejected.

Kendall coefficient of concordance analysis 1

�0: no agreement between comparisons

Data: test file G08DAF.TF1

Number of columns (objects) 10

Number of rows (variables) 3

Kendall coefficient, 0.8277

%(j2 ≥ ,) 0.0078 Reject �0 at 1% significance level

The data matrix supplied for analysis can contain observations or ranks as follows.

• Data must have = columns for data/objects/ranks (across), and : rows for comparisons/variables (down).

• The matrix can have original values to be ranked automatically along rows, or else contain pre-calculated

ranks instead of values.

• Tied ranks are averaged as usual, so a ranked matrix must have these two properties:

1. �(8, 9) > 0 for 8 = 1, 2, ..., : and 9 = 1, 2, ..., =

2. Sum of �(8, 9) for each 8 and for 9 = 1, 2, ..., = must be =(= + 1)/2

• Note that, if data values are supplied instead of ranks, then SimFIT will calculate the ranks automatically.

For instance, the data in test file kendall.tf1 contains these measurements for wing length, tail length,and

bill length for 12 birds

10.4 10.8 11.1 10.2 10.3 10.2 10.7 10.5 10.8 11.2 10.6 11.4

7.4 7.6 7.9 7.2 7.4 7.1 7.4 7.2 7.8 7.7 7.8 8.3

17.0 17.0 20.0 14.5 15.5 13.0 19.5 16.0 21.0 20.0 18.0 22.0

and then the following ranks, calculated internally by SimFIT before performing the test,

4.0 8.5 10.0 1.5 3.0 1.5 7.0 5.0 8.5 11.0 6.0 12.0

5.0 7.0 11.0 2.5 5.0 1.0 5.0 2.5 9.5 8.0 9.5 12.0

5.5 5.5 9.5 2.0 3.0 1.0 8.0 4.0 11.0 9.5 7.0 12.0

lead to the next table of results.

Kendall coefficient of concordance analysis 2

�0: no agreement between comparisons

Data: test file KENDALL.TF1

Number of columns (objects) 12

Number of rows (variables) 3

Kendall coefficient, 0.9241

%(j2 ≥ ,) 0.0013 Reject �0 at 1% significance level
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As before, the null hypothesis is rejected for this alternative data set.

Calculating the Kendall coefficient of concordance,

Ranks A8 9 for the the rank of object 9 in comparison 8 (with tied values being given averages) are used to

calculate the = column rank sums ' 9 , which would be approximately equal to the average rank sum : (=+1)/2
under

�0 : There is no association among the variables.

For total agreement the ' 9 would have values from some permutation of :, 2:, . . . , =:, and the total squared

deviation of these is :2=(=2 − 1)/12.

Then the coefficient, is calculated according to

, =

=∑
9=1

(' 9 − : (= + 1)/2)2

:2=(=2 − 1)/12 − : ∑
)

which lies between 0 for complete disagreement and 1 for complete agreement.

Here the denominator correction for ties uses ) defined as

) =

∑
C(C2 − 1)/12

where C is the number of occurrences of each tied rank within a comparison.

For large samples (= > 7), : (= − 1), is approximately j2
=−1

distributed, otherwise tables should be used for

accurate significance levels.
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4.3 Data exploration

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

4.3.1 Introduction

It is frequently useful to examine a given data set without necessarily having any particular statistical tests in

mind, but rather as a preliminary to more searching investigations.

In this section the following two definitions are used.

1. A single sample supplied as a column of numbers will be referred to as a vector

2. A rectangular table of numbers will be referred to as a matrix

SimFIT provides a selection of techniques that can be used in order to make a preliminary examination of

such data sets by choosing [Statistics] from the main SimFIT menu followed by [Data exploration].

• Exhaustive analysis of a vector

Displays a table with a summary of estimated moments, ranges, coefficients of variation/skew/kurtosis.

Creates plots as histograms, cumulative distributions, pie charts, bar charts, time series, centered rods,

normal/half-normal scores. Performs tests on runs, and/or signs, or for a normal distribution.

• Exhaustive analysis of a matrix

In addition to plotting barcharts and calculating covariance or correlation matrices it is possible to select

individual rows or columns for the previous exhaustive analysis of a vector procedure.

• Exhaustive analysis of a multivariate normal matrix

Numerous tests are provided to ascertain if it is reasonable to assume multivariate normality and

sphericity before uncritically proceeding to employ MANOVA techniques.

• Parametric C tests on groups across rows of a matrix

This creates a summary of the results from tests on rows where columns have been assigned to groups.

• Nonparametric tests across rows of a matrix

Where the normality and constant variance required for C tests are not justified a similar procedure can

be performed using nonparametric tests.

• All possible pairwise tests on = vectors or a library file

Given sets of vectors it is possible to use a selection of parametric and nonparametric tests on all possible

pairs of columns. Naturally, with such a procedure there are limits to the number of comparisons allowed,

i.e. =(= − 1)/2 for = vectors.

• Robust analysis of 1 sample

Results can be obtained for parameters from winzorized samples.

• Robust analysis of 2 samples

Two samples can be compared by robust methods.

Of course it is assumed that users will be aware of the limitations arising from multiple tests on the same data

implied by some of these procedures, as described for the Bonferroni and related techniques in the SimFIT

reference manual. They should rather interpret the results as preliminary, as should be expected for data

exploration.
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4.3.2 Exhaustive analysis of a vector

Given any sample it is useful to generate a summary of the all the parameters that can be estimated together

with the ability to plot the data in alternative ways.

Summary statistics

For example, from the main SimFIT menu choose [Statistics] then [Data exploration] and read the default

vector test file normal.tf1 into the procedure called exhaustive analysis of a vector. Here you can obtain

the usual summary statistics as in this table, including the range, hinges (i.e. quartiles), mean Ḡ, standard

deviation B, coefficient of variation CV% (100B/Ḡ, i.e. the reciprocal of the signal to noise ratio), and the

normalized sample moments B3 (coefficient of skewness), and B4 (coefficient of kurtosis).

Exhaustive analysis of a vector

Data: Test file normal.tf1: 50 random numbers

Sample size 50

Minimum, Maximum values -2.20820, 1.61750

Lower and Upper Hinges -0.85502, 0.78597

Coefficient of skewness -0.01669

Coefficient of kurtosis -0.76840

Median value -0.09736

Sample mean -0.02579

Sample standard deviation 1.00553: CV% = 3899%

Standard error of the mean 0.14220

Upper 2.5% C-value 2.00958

Lower 95% confidence limit for mean -0.31156

Upper 95% confidence limit for mean 0.25998

Variance of the sample 1.01109

Lower 95% confidence limit for variance 0.70552

Upper 95% con limit for variance 1.57006

Shapiro-Wilks, statistic 0.96270

Significance level for, 0.1153 Tentatively accept normality

Testing for a normal distribution

The normalized sample moments shown in this table are useful for seeing how far a sample departs from a

normal distribution and are defined in a sample of size = by the following equations.

Ḡ =
1

=

=∑
8=1

G8

B =

√√
1

= − 1

=∑
8=1

(G8 − Ḡ)2

B3 =
=

(= − 1) (= − 2)

∑=
8=1 (G8 − Ḡ)3

B3

B4 =
(= + 1)=

(= − 1) (= − 2) (= − 3)

∑=
8=1 (G8 − Ḡ)4

B4
− 3(= − 1)2

(= − 2) (= − 3) .

The coefficient of skewness or symmetry indicates the extent to which the sample suggest deviation from a

symmetrical distribution. Values less than zero indicate skew to the left with a mean less than the median,

while values greater than zero indicate skew to the right with mean greater than the median. The coefficient

of kurtosis indicates the amount of peakedness in the distribution. Values less than zero indicate a platykurtic
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distribution which is more humped than a normal distribution, while values greater than zero indicate a

leptokurtic distribution which is more peaked than a normal distribution. A normal distribution is said to be

mesokurtic with both coefficients equal to zero.

As it is often wished to see how closely a sample resembles a normal distribution several options are provided

for this purpose. You can perform a Shapiro-Wilks test for normality (only on demand since this will, of

course, not always be appropriate) or create a histogram, pie chart, cumulative distribution plot or appropriate

curve-fitting files. This option is a very valuable way to explore any single sample before considering other

tests.

Graph plotting options

Since vectors have only one coordinate, graphical display requires a further coordinate. In the case of

histograms the extra coordinate is provided by the choice of bins, which dictates the shape, but in the case of

cumulative distributions it is automatically created as steps and therefore of unique shape. Pie chart segments

are calculated in proportion to the sample values, which means that this is only appropriate for positive

samples, e.g., counts.

The other techniques illustrated in this next figure may require further explanation.
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If the sample values have been measured in some sequence of time or space, then the H values could be the

sample values while the G values would be successive integers, as in the time series plot. Sometimes it is

useful to see the variation in the sample with respect to some fixed reference value, as in the zero centered rods

plot. The data can be centered automatically about zero by subtracting the sample mean if this is required.

The half normal and normal plots are particularly useful when testing for a normal distribution with residuals,

which should be approximately normally distributed if the correct model is fitted.
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In the half normal plot, the absolute values of a sample of size = are first ordered then plotted as H8 , 8 = 1, . . . , =,

while the half normal order statistics are approximated by

G8 = Φ
−1

(
= + 8 + 1

2

2= + 9
8

)
, 8 = 1, . . . , =

which is valuable for detecting outliers in regression.

The normal scores plot simply uses the ordered sample as H and the normal order statistics are approximated

by

G8 = Φ
−1

(
8 − 3

8

= + 1
4

)
, 8 = 1, . . . , =

which makes it easy to visualize departures from normality. Best fit lines, correlation coefficients, and

significance values are also calculated for half normal and normal plots.

Note that elsewhere in SimFIT a more accurate calculation for expected values of normal order statistics is

employed for a normal scores plot and also the Shapiro-Wilks test is just one of several tests for normality

available.
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4.3.3 Exhaustive analysis of a matrix

Given any data sample in the form of a rectangular table of values with no missing values it is useful to

generate a summary of the all the parameters that can be estimated together with the ability to plot the data in

alternative ways.

For instance, choose [Statistics] from the main SimFIT menu then [Data exploration]. Open the [Exhaustive

analysis of an arbitrary matrix] option and examine the data set contained in test file cluster.tf1 which is

the following 12 by 8 matrix.

1.0 4.0 2.0 11.0 6.0 4.0 3.0 9.0

8.0 5.0 1.0 14.0 19.0 7.0 13.0 21.0

3.0 1.0 3.0 1.0 3.0 6.0 23.0 37.0

9.0 0.0 7.0 7.0 1.0 2.0 21.0 2.0

7.0 12.0 9.0 5.0 14.0 9.0 12.0 14.0

2.0 13.0 15.0 2.0 23.0 6.0 34.0 8.0

11.0 7.0 2.0 1.0 4.0 17.0 11.0 4.0

6.0 3.0 7.0 12.0 11.0 8.0 8.0 0.0

8.0 21.0 1.0 10.0 31.0 9.0 3.0 18.0

19.0 14.0 12.0 9.0 16.0 10.0 0.0 27.0

17.0 18.0 10.0 6.0 19.0 14.0 1.0 24.0

15.0 21.0 8.0 7.0 17.0 12.0 4.0 22.0

The possibilities for further analysis are now listed.

• Summarize all columns (or rows)

• Exhaustive analysis of any column (or row)

• Analyze/paired-test any two rows (or columns)

• Plot

2D barchart or stack plot with rows as groups

2D box and whisker plot or bars and error bars

2D scattergrams with symbols (and lines if requested)

3D barchart or cylinder plot

• Display/file Sum–of–Squares, covariance, or correlation matrix

Summarizing all rows or columns

For instance, the option to summarize all columns results in this analysis.

Column Mean Variance St.Dev. Coeff.Var.

1 8.83333 33.4242 5.78137 65.45%

2 9.91667 57.7197 7.59735 76.61%

3 6.41667 21.5379 4.64089 72.33%

4 7.08333 18.6288 4.31611 60.93%

5 13.6667 81.3333 9.01850 65.99%

6 8.66667 17.6970 42.0678 48.54%

7 11.0833 107.720 10.3788 93.64%

8 15.5000 127.364 11.2855 72.81%

Here, for each column, the summary statistics are calculated downwards for all rows, and a similar table can

be generated for rows calculated across all columns.
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Pairwise statistical tests between rows or columns

Next consider pairwise statistical tests between selected rows or columns. If you choose to apply more than

one statistical test this would be to use the absolutely forbidden technique of multiple tests on the same data.

In such a situation you can either use the Bonferroni method or similar with a factor related to the actual

number of tests applied as explained in the SimFIT reference manual, or just use commonsense and regard this

as a preliminary examination where the ? values are simply being regarded as indicators of the differences

between paired or columns and not being used for hypothesis tests.

Analysis and two-tail tests for:

# = 12, - = column 1, . = column 2

Unpaired C test:

C -0.39309

? 0.69804

Paired C test:

C -0.56175

? 0.58555

Kolmogorov-Smirnov 2-sample test:

3 0.25000

I 0.10206

? 0.53610

Mann-Whitney* test:

D 68.5000

I -0.17339

? 0.85377

Wilcoxon signed rank test:

F 33.5000

I -0.39299

? 0.70752

Run test:

+ 6 (no. G > H)

- 6 (no. G < H)

? 0.60823

Sign test: # for non-tied pairs

# 12

- 6 (no. G < H)

? 1.00000

After an analysis like the above has been carried out, less controversial results are calculated, that is, the

inner product of the two selected rows or columns regarded as vectors, leading to the angle between them and

Euclidean distance between them, i.e. the square root of the sum of squared differences.

= dot product G size H size distance cos(\) radians degrees

12 1307.0 36.1109 42.6028 22.4722 0.849569 0.5556 31.835

Plotting a matrix

As long as the number of rows and columns is fairly small, say < 20, and for some procedures the matrix

contains only positive values, several graphs can be drawn to visualize the relative magnitude of column

values across row.
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For instance, the left-hand figure below plots a bar for each row with a stacked bar of segments each

proportional to the column values for the corresponding rows. On the right is a box and whisker plot to

illustrate the quartiles for each column calculated for all rows. Of course it is easy to interpret the row and

column effects illustrated when it is realized that the data set has 12 rows and 8 columns.
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The next plot illustrates a 3D skyscraper plot where, for each value in the data matrix, say G8 9 , the vertical

height of the bars is proportional to the G8 9 values.
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3D Skyscraper Plot from cluster.tf1

Numerous other graphs are available where the sign of G8 9 is irrelevant, for instance clusters and 95%

confidence ellipses for the data means or for the overall data ranges, and also linear regression according to

all three conventions is possible for selected pairs of rows and/or columns.
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Lower triangles of the covariance and correlation matrices

The exhaustive analysis of an arbitrary matrix can also calculate several symmetrical matrices from the data.

For instance the sum of squares matrix or the covariance matrix as this will give some idea if the columns are

independent.

Variance-Covariance matrix

33.4242

23.2576 57.7197

7.71212 11.5833 21.5379

1.65152 -0.71970 -5.67424 18.6288

10.1212 54.3333 9.06061 10.8485 81.3333

15.2121 17.0606 0.51515 -5.15152 7.69697 17.6970

-35.2576 -33.3561 11.1439 -23.4621 -18.2424 -19.7879 107.720

19.6364 25.7727 -1.59091 -5.68182 21.8182 6.45455 -19.8636 127.364

An easier matrix to visualize for correlations in the data is the correlation matrix, which is sometimes given,

as below, with unit diagonals to avoid confusion.

Pearson product-moment correlations

1

0.529507 1

0.287436 0.328526 1

0.066185 -0.021948 -0.283279 1

0.194119 0.792994 0.216482 0.278704 1

0.625474 0.533805 0.026387 -0.283722 0.202879 1

-0.587590 -0.423024 0.231361 -0.523754 -0.194895 -0.453213 1

0.300959 0.300591 -0.030375 -0.116647 0.214369 0.135954 -0.169585 1

For a = by < matrix X with values G8 9 , the sample column means Ḡ 9 , vector of column means x̄, variance

of the 9’th variable B 9 9 , covariance between the 9 and :’th variable B 9 : , correlation between the 9 and :’th

variable 2 9 : , and covariance matrix S are defined as follows.

Ḡ 9 =
1

=

=∑
8=1

G8 9

x̄
)
= (Ḡ1, Ḡ2, . . . , Ḡ<)

B 9 9 =
1

= − 1

=∑
8=1

(G8 9 − Ḡ 9 )2

B 9 : =
1

= − 1

=∑
8=1

(G8 9 − Ḡ 9 ) (G8: − Ḡ: )

2 9 : =
B 9 :

√
B 9 9 B::

S =
1

= − 1

=∑
8=1

(x8 − x̄) (x8 − x̄))

Alternatively, if X̂ is the matrix centered by subtracting the sample column means and X̃ is the centered

matrix scaled by dividing by the column standard deviations, then the sample covariance S and correlation

matrices C are

S =
1

= − 1
X̂
)
X̂ and C =

1

= − 1
X̃
)
X̃ .
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4.3.4 Exhaustive analysis of a multivariate normal matrix

Most multivariate techniques make no assumptions about the data and therefore do not calculate significance

levels. Actually, where multivariate hypothesis tests are provided, they are based on definite assumptions about

the data, generally assuming a multivariate normal population, and also often making additional assumptions

about the nature of the covariance matrix.

For these reasons the SimFIT procedure for exhaustive analysis of a normal multivariate matrix provides

options that are useful before proceeding to more specific techniques that depend on multivariate normality,

e.g., MANOVA and some types of ANOVA. These multivariate normal analysis procedures can be used by

selecting [Statistics] from the main SimFIT menu, then [Data exploration] followed by [Exhaustive analysis

of a multivariate normal matrix].

Example 1: The sample means and covariance matrix

Choosing the option to display the means and covariance matrix leads to the following results with test file

hotel.tf1.

Variable Mean Std.err. lower95%cl upper95%cl

1 -0.53000 0.46261 -0.55983 -0.50017

2 -0.03000 0.38559 -0.05486 -0.00514

3 -0.59000 0.49091 -0.62165 -0.55835

4 3.10000 1.94622 2.97451 3.22549

Covariance matrix

2.14011

-0.11878 1.48678

-0.89411 0.79144 2.40989

3.59222 1.88111 -4.60111 37.8778

Correlation matrix

1

-0.066588 1

-0.393709 0.418118 1

0.398982 0.250668 -0.481584 1

CV matrix eigenvalues

0.683568

0.821943

0.775086

0.231793

Determinant 9.81414E+01

The column means Ḡ 9 , and < by < sample covariance matrix ( displayed here are defined for a = by < data

matrix G8 9 with = ≥ 2, < ≥ 2 as

Ḡ 9 =
1

=

=∑
8=1

G8 9

B 9 : =
1

= − 1

=∑
8=1

(G8 9 − Ḡ 9 ) (G8: − Ḡ: )
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Example 2: Graphical test for multivariate normality

A graphical technique is provided for investigating if a data matrix with = rows and < columns, where

= >> < > 1, is consistent with a multivariate normal distribution. For example, the next figure

0.00

0.20

0.40

0.60

0.80

1.00

0.00 2.00 4.00 6.00

Multivariate Plot: r = 0.754

F-quantiles

R
an

ke
d 

T
ra

ns
fo

rm
s

n = 8, m = 4

0.00

1.00

2.00

3.00

0.00 1.00 2.00 3.00 4.00

Multivariate Plot: r = 0.980

F-quantiles

R
an

ke
d 

T
ra

ns
fo

rm
s
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which shows plots for two random samples from a multivariate normal distribution. The plot uses the fact

that, for a multivariate normal distribution with sample mean Ḡ and sample covariance matrix (,

(G − Ḡ)) (−1(G − Ḡ) ∼ <(=2 − 1)
=(= − <) �<,=−<,

where G is a further independent observation from this population, so that the transforms plotted against

the quantiles of an � distribution with < and = − < degrees of freedom, i.e. according to the cumulative

probabilities for (8 − 0.5)/= for 8 = 1, 2, . . . , = should be a straight line. It can be seen from the above figure

that this plot is of little value for small values of =, say = ≈ 2< but becomes progressively more useful as the

sample size increases, say = > 5<.

Example 3: Hotelling )2 test �0 : means = a supplied reference vector

It is possible to perform two variants of the Hotelling )2 test, namely

• testing for equality of the mean vector with a specified reference vector of means, or

• testing for equality of all means without specifying a reference mean.

Dealing first with testing that a vector of sample means is consistent with a reference vector, consider the next

table for a zero reference vector.

Hotelling one sample )2 test

�0: Column means = Expected values supplied (i.e. 0)

Number of rows = 10, Number of columns = 4

Hotelling )2 = 7.43910

� Statistic (�)() = 1.23985

Degrees of freedom (31, 32) = 4, 6

%(� (31, 32) ≥ �)() = 0.386864

Column Mean Std.Err. Expected Delta t p

1 -0.53000 0.46261 0.0000 -0.53000 -1.14567 0.281481

2 -0.03000 0.38559 0.0000 -0.03000 -0.07780 0.939687

3 -0.59000 0.49091 0.0000 -0.59000 -1.20186 0.260086

4 3.10000 1.94622 0.0000 3.10000 1.59283 0.145662

This resulted when the test file hotel.tf1 was analyzed using the Hotelling one sample test procedure. This

tests the null hypothesis �0 : ` = `0 against the alternative �1 : ` ≠ `0, where `0 is a known mean vector
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and no assumptions are made about the covariance matrix Σ. Hotelling’s )2 is

)2
= =(Ḡ − `0)) (−1(Ḡ − `0)

and, if �0 is true, then an � test can be used since (= − <))2/(<(= − 1)) is distributed asymptotically as

�<,=−<. Users can input any reference mean vector `0 to test for equality of means but, when the data columns

are all differences between two observations for the same subjects and the aim is to test for no significant

differences, so that `0 is the zero vector, as with hotel.tf1, the test is a sort of higher dimensional analogue

of the paired C test. The table also shows the results when C tests are applied to the individual columns of

differences between the sample means Ḡ and the reference means `0, which is suspect because of multiple

testing but, in this case, the conclusion is the same as the Hotelling )2 test: none of the column means are

significantly different from zero.

Example 4: Hotelling )2 test �0 : all means are equal

Now, turning to a test that all means are equal as displayed in the next table.

Hotelling one sample )2 test

�0: Column means are all equal

Number of rows 5

Number of columns 4

Hotelling )2 170.474

� Statistic (�)() 28.4123

Degrees of freedom (31, 32) 3, 2

%(� (31, 32) ≥ �)() 0.034191 Reject �0 at 5% significance level

This shows the results when the data in anova6.tf1 are analyzed, and the theoretical background to this test

is explained in the reference manual in connection with repeated measures analysis.

Example 5: Compound symmetry

Options are provided for investigating the structure of the covariance matrix. The sample covariance matrix

and its inverse can be displayed along with eigenvalues and determinants, and there are also options to check

if the covariance matrix has a special form, namely

• testing for compound symmetry,

• testing for spherical symmetry, and

• testing for spherical symmetry of the covariance matrix of orthonormal contrasts.

For instance, using the test file hotel.tf1 produces the results in the next table.

Compound symmetry test

�0: Covariance matrix has compound symmetry

Number of groups 1

Number of variables (<) 4

Sample size (=) 10

Determinant of �+ 98.14

Determinant of (0 1452.0

!')( (−2 log(_)) 36.30

Degrees of Freedom 8

%(j2 ≥ !')() 0.0000 Reject �0 at 1% significance level
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This shows an application of a test for compound symmetry which is when a covariance matrix Σ has a special

form with constant nonnegative diagonals and equal nonnegative off-diagonal elements as follows.

Σ = f2
©­­­
«

1 d . . . d

d 1 . . . d

. . . . . . . . . . . .

d d . . . 1

ª®®®¬
This can be tested using estimates for the diagonal and off-diagonal elements f2 and f2d as follows

B2 =
1

<

<∑
8=1

B88

B2A =
2

<(< − 1)

<∑
8=2

8−1∑
9=1

B8 9 .

Example 6: Sphericity

The sphericity test, designed to test the null hypothesis �0 : Σ = :� against �1 : Σ ≠ :� . In other words, the

population covariance matrix Σ is a simple multiple of the identity matrix, which is a central requirement for

some analytical procedures.

Likelihood ratio sphericity test

�0: Covariance matrix = :*Identity (for some : > 0)

Number of small eigenvalues 0 (i.e. < 1.00� − 07)

Number of variables (<) 4

Sample size (=) 10

Determinant of �+ 98.1414

Mauchly, statistic 0.00676

!')( (−2 log(_)) 49.9740

Degrees of Freedom 9

%(j2 ≥ !')() 0.000000 Reject �0 at 1% significance level

The Wilks generalized likelihood-ratio statistic is

! =
|( |

(B2 − B2A)<−1[B2 + (< − 1)B2A] ,

where the numerator is the determinant of the covariance matrix estimated with a degrees of freedom, while

the denominator is the determinantof the matrix with average variance on the diagonals and average covariance

as off-diagonal elements, and this is used to construct the test statistic !')(

j2
= −

[
a − <(< + 1)2(2< − 3)

6(< − 1) (<2 + < − 4)

]
log !

which, for large a, has an approximate chi-squared distribution with <(< + 1)/2 − 2 degrees of freedom.

If the sample covariance matrix ( has eigenvalues U8 for 8 = 1, 2, . . . , < then, defining the arithmetic mean �

and geometric mean � of these eigenvalues as

� = (1/<)
<∑
8=1

U8

� = (
<∏
8=1

U8)1/<,
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the likelihood ratio test statistic

−2 log_ = =< log(�/�)

is distributed asymptotically as j2 with (< − 1) (< + 2)/2 degrees of freedom. Using the fact that the

determinant of a covariance matrix is the product of the eigenvalues while the trace is the sum, the Mauchly

test statistic, can also be calculated from � and � since

, =
|( |

{)A (()/<}<

=

∏<
8=1 U8

{(∑<
8=1 U8)/<}<

so that − 2 log_ = −= log,.

Clearly, the test rejects the assumption that the covariance matrix is a multiple of the identity matrix in this

case, a conclusion which is obvious from inspecting the sample covariance and correlation matrices. Since

the calculation of small eigenvalues is very inaccurate when the condition number of the covariance matrix is

appreciable, any eigenvalues less than the minimal threshold indicated are treated as equal to that threshold

when calculating the test statistic.

Example 7: Helmert orthonormal contrasts

The next table results from analysis of hotel.tf1 and full details will be found in the tutorial on repeat

measures ANOVA or in the SimFIT reference manual.

Sphericity test on �+ of Helmert orthonormal contrasts

�0: Covariance matrix = :*Identity (for some : > 0)

Number of small eigenvalues 0 (i.e. < 1.00� − 07)

Number of variables (<) 4

Sample size (=) 10

Determinant of �+ 41.5788

Trace of �+ 32.6105

Mauchly, statistic 0.03237

!')( (−2 log(_)) 26.4909

Degrees of Freedom 5

%(j2 ≥ !')() 0.000072 Reject �0 at 1% significance level

4 (Geisser-Greenhouse) 0.402592

4 (Huynh-Feldt) 0.431104

4 (lower bound) 0.333333
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4.3.5 t tests across rows of a matrix

Sometimes data are stored in a matrix such that each row contains values observed within groups that are

defined by columns, and where it is wished to test for equality of group means. If normality and identical

variance are assumed then systematic C tests can be performed as long as membership of groups is easy to

define and change interactively.

To clarify the situation choose [Statistics] from the main SimFIT menu followed by [Data exploration] and

then [C tests across rows of a matrix], and browse the default test file ttest.tf6 which has the following data.

8.8 8.4 7.9 8.7 9.1 9.6 9.9 9.0 11.1 9.6 8.7 10.4 9.5

8.0 7.4 6.9 8.2 9.7 9.1 9.9 7.0 11.1 8.6 9.7 8.4 9.1

20.2 16.8 15.4 17.1 18.1 20.0 7.7 8.9 9.7 9.1 10.6 10.2 10.1

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

7.7 8.9 10.2 8.5 9.1 8.6 18.9 19.2 15.1 19.5 18.9 19.9 19.4

begin{indicators}

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1

end{indicators}

Note that, after the data, the group membership is defined by the sectioning commands

begin{indicators} . . . end{indicators}

with a 1 if a column belongs to group - , a -1 if the column belongs to group . and a 0 if a column is not to

be used. So in this data set the first 6 columns belong to group - while the next 7 columns belong to group.

and there are no suppressed columns.

Analysis leads to the following results for the sample means, standard deviations, standard error of the

differences, C values, and ? values, and where a -1 in the significance level column indicates zero sample

variance, as with row 4 emphasized in red, so that a C test cannot be performed.

Variables: #- = 6, #. = 7

-̄ std - .̄ std . se diff C 2-tail ?

8.7500 0.5822 9.7429 0.8182 0.4009 -2.4765 0.030765

8.2167 1.0420 9.1143 1.3005 0.6621 -1.3558 0.202338

17.933 1.8886 9.4714 0.9878 0.8164 10.365 0.000001

-1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.000000

8.8333 0.8238 18.700 1.6258 0.7360 -13.405 0.000000

The type of C test (i.e. lower, upper, or 2-tail) and partitioning of columns into groups can be done interactively.
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4.3.6 Nonparametric tests across rows of a matrix

Sometimes data are stored in a matrix such that each row contains values observed within groups that are

defined by columns, and where it is wished to test for equality of group means. If normality and identical

variance cannot be assumed then systematic nonparametric tests can be performed as long as membership of

groups is easy to define and change interactively.

To clarify the situation choose [Statistics] from the main SimFIT menu followed by [Data exploration] and

then [Nonparametric tests across rows of a matrix], and browse the default test file ttest.tf6 which has the

following data.

8.8 8.4 7.9 8.7 9.1 9.6 9.9 9.0 11.1 9.6 8.7 10.4 9.5

8.0 7.4 6.9 8.2 9.7 9.1 9.9 7.0 11.1 8.6 9.7 8.4 9.1

20.2 16.8 15.4 17.1 18.1 20.0 7.7 8.9 9.7 9.1 10.6 10.2 10.1

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

7.7 8.9 10.2 8.5 9.1 8.6 18.9 19.2 15.1 19.5 18.9 19.9 19.4

begin{indicators}

1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1

end{indicators}

Note that, after the data, the group membership is defined by the sectioning commands

begin{indicators} . . . end{indicators}

with a 1 if a column belongs to group - , a -1 if the column belongs to group . and a 0 if a column is not to

be used. So in this data set the first 6 columns belong to group - while the next 7 columns belong to group.

and there are no suppressed columns.

Choosing to perform both the Mann-Whitney * and Kolmogorov-Smirnov � two sample tests leads to the

following results.

Mann-Whitney* and Kolmogorov-Smirnov � tests

Variables: NX = 6, NY = 7

MW* MW / MW 2-tail ? KS � KS / KS 2-tail ?

7.00000 -1.93389 0.981352 0.54762 0.30467 0.146853

11.0000 -1.36089 0.927739 0.52381 0.29142 0.277389

42.0000 2.92857 0.000583 1.00000 0.55635 0.000000

-1.00000 -1.00000 -1.000000 -1.00000 -1.00000 -1.000000

0.00000 -2.93260 1.000000 1.00000 0.55635 0.000000

The type of test (i.e. lower, upper, or 2-tail) and partitioning of columns into groups can be done interactively,

but the Bonferroni or similar correction must be used if, as here, both tests are done. Note the setting of values

to -1 with singular data as emphasized in red for row 4.
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4.3.7 All pairwise comparisons on n samples

Given a set of samples it is useful to perform pairwise statistical tests to determine if any of the samples can

be regarded as atypical. For instance, if the samples are normally distributed with the same variance then

ANOVA followed by the Tukey post-ANOVA would be used, but SimFIT also provides a facility to perform

all pairwise comparisons on sets of samples using nonparametric tests as well as C tests.

As the sample sizes may differ then individual samples could be input, however the library file approach should

be used to facilitate this procedure. From the main SimFIT menu choose [Statistics] then [Data exploration]

followed by [All pairwise tests] and input the library file npcorr.tflwhich contains the following information.

Data for non­parametric correlation analysis

column2.tf1

column2.tf2

column2.tf3

This library file has a title followed by the data file names which, as they are SimFIT test files, are identified by

filename only, otherwise the full path would have to be be supplied. The data contained in the three files are

shown in the next table followed by the results from analysis quoting the Dunn-Sidak corrected significance

levels instead of the Bonferroni ones for : procedures on = samples, i.e. considered as :=(= − 1)/2 tests in

all on the same data to test �0: samples have the same distributions.

column2.tf1 column2.tf2 column2.tf3

1.70 1.00 0.50

4.00 2.80 3.00

0.60 6.00 2.50

9.00 1.80 6.00

0.99 4.00 2.50

2.00 1.40 5.50

1.80 9.00 7.50

7.00 2.50 0.00

0.99 5.00 3.00

Mann-Whitney-*/Kolmogorov-Smirnov-�/unpaired-C tests

Number of tests = 9, ?(1%) = 0.001116, ?(5%) = 0.005683 [Dunn-Sidak]

C:\Program Files (x86)\simfit\dem\column2.tf1
C:\Program Files (x86)\simfit\dem\column2.tf2
N1 = 9, N2 = 9 MW * = 8.00000 ? = 0.002262 *

KS � = 0.77778 ? = 0.000740 **

C = -3.71551 ? = 0.001880 *

C:\Program Files (x86)\simfit\dem\column2.tf1
C:\Program Files (x86)\simfit\dem\column2.tf3
N1 = 9, N2 = 9 MW * = 21.0000 ? = 0.088893

KS � = 0.55556 ? = 0.033566

C = -2.04236 ? = 0.057955

C:\Program Files (x86)\simfit\dem\column2.tf2
C:\Program Files (x86)\simfit\dem\column2.tf3
N1 = 9, N2 = 9 MW * = 55.5000 ? = 0.195886

KS � = 0.44444 ? = 0.125874

C = 1.46055 ? = 0.163497



One sample robust analysis 145

4.3.8 One sample robust analysis

It is obvious that outliers in a sample lead to biased parameters estimates. In some instances an experimenter

is able to examine the data and make a decision to eliminate certain observations, usually extremely low or

high values, that indicate a systematic source of variation beyond the usual spread of observational errors.

Alternatively, to avoid subjective doctoring of data, a robust method can be used which generally involves

discarding extreme values and using more appropriate numerical methods that do not assume that the sample

is normally distributed.

As an example, choose statistics from the main SimFIT menu, navigate to [Data exploration] and open the

option for [Robust analysis of one sample]. The results from examining the test file robust.tf1 after

trimming 10% off the extreme values are shown below, followed by the results from handling the full data set

without any trimming in the exhaustive analysis procedure.

Robust analysis

Data: 50 N(0,1) random numbers with 5 outliers

Total sample size 50

Median value 0.2019

Median absolute deviation 1.0311

Robust standard deviation 1.5288

Trimmed mean (TM) 0.2227

Variance estimate for TM 0.0192

Winsorized mean (WM) 0.2326

Variance estimate for WM 0.0192

Number of discarded values 10

Number of included values 40

Percentage of sample used 80% (for TM and WM)

Hodges-Lehmann estimate (HL) 0.2586

Exhaustive analysis

Minimum, Maximum values -2.208, 7.000

Lower and Upper Hinges -0.829, 1.307

Coefficient of skewness 1.690

Coefficient of kurtosis 3.566

Median value 0.202

Sample mean 0.512

Sample standard deviation 1.853: CV% = 361.736%

Standard error of the mean 0.262

Upper 2.5% t-value 2.010

Lower 95% confidence limit for mean -0.014

Upper 95% confidence limit for mean 1.039

Variance of the sample 3.435

Lower 95% confidence limit for variance 2.397

Upper 95% confidence limit for variance 5.335

Shapiro-Wilks W statistic 0.851

Significance level for W 0.000 Reject normality at 1% sig.level

Clearly the exhaustive analysis indicates that the presence of outliers has created a sample that is not normally

distributed and the results from robust analysis yield better estimates for the population mean and variance

which, before adding outliers, were ` = 0, f2 = 1. An outline of the theory and definitions used in this robust

analysis follows.
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Theory

If the sample vector is G1, G2, . . . , G= the following calculations are done.

1. Using the whole sample and the inverse normal function Φ
−1(.), the median " , median absolute

deviation � and a robust estimate of the standard deviation ( are calculated as

" = median(G8)
� = median(|G8 − " |)
( = �/Φ−1(0.75) .

2. The percentage of the sample chosen by users to be eliminated from each of the tails is 100U%, then

the trimmed mean )" , and Winsorized mean," , together with variance estimates +) and +, , are

calculated as follows, using : = [U=] as the integer part of U=.

)" =
1

= − 2:

=−:∑
8=:+1

G8

," =
1

=

{
=−:∑
8=:+1

G8 + :G:+1 + :G=−:

}

+) =
1

=2

{
=−:∑
8=:+1

(G8 − )")2 + : (G:+1 − )")2 + : (G=−: − )")2

}

+, =
1

=2

{
=−:∑
8=:+1

(G8 −,")2 + : (G:+1 −,")2 + : (G=−: −,")2

}
.

3. If the assumed sample density is symmetrical, the Hodges-Lehman location estimator �! can be used

to estimate the center of symmetry. This is

�! = median
{ G8 + G 9

2
, 1 ≤ 8 ≤ 9 ≤ =

}
,

and it is calculated along with 95% confidence limit. This would be useful if the sample was a vector

of differences between two samples - and . for a Wilcoxon signed rank test that - is distributed � (G)
and . is distributed � (G − \).
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4.3.9 Two samples robust analysis

Sometimes a robust estimate is required for the difference in location (with corresponding confidence limits)

for two samples, not necessarily of the same size, but without assuming normality or any other distribution.

From the main SimFIT menu choose [Statistics], navigate to [Data exploration] and open the option for [Robust

analysis of two samples]. The two default test files are ttest.tf4 and ttest.tf5 with these values

ttest.tf4 ttest.tf5

134 70

146 118

104 101

119 85

124 107

161 132

107 94

83

113

129

97

123

while analysis produces the following results.

Robust analysis of two samples

--sample size 12

. -sample size 7

Difference in location -18.501

Lower confidence limit -40.009

Upper confidence limit 2.997

Percentage confidence limit 95.30%

Lower Mann-whitney U-value 19.000

Upper Mann-Whitney U-value 66.000

The procedure is based on the assumption that - of size =G is distributed as � (G) and. of size =H as � (G− \),
so an estimate \̂ for the difference in location is calculated as

\̂ = median(H 9 − G8 , 8 = 1, 2, . . . , =G , 9 = 1, 2, . . . , =H) .

100U% confidence limits*! and*� are then estimated by inverting the Mann-Whitney U statistic so that

%(* ≤ *!) ≤ U/2
%(* ≤ *! + 1) > U/2
%(* ≥ *� ) ≤ U/2

%(* ≥ *� − 1) > U/2.
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4.4 Analysis of variance (ANOVA)

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

4.4.1 Introduction

Analysis of Variance (ANOVA) is one of the most widely used techniques in data analysis. For example,

this next data set which is contained in the test file anova.tf1 is for six replicate estimates for strontium

concentrations (mg/ml) in five different locations, and it is wished to test if there are significant differences

between population means based on the sample means as listed in the last row.

28.2 39.6 46.3 41.0 56.3

33.2 40.8 42.1 44.1 54.1

36.4 37.9 43.5 46.4 59.4

34.6 37.1 48.8 40.2 62.7

29.1 43.6 43.7 38.6 60.0

31.0 42.4 40.1 36.3 57.3

Means 32.1 40.2 44.1 41.1 58.3

In the subsequent discussion concerning ANOVA it will be assumed that the reader is familiar with the normal,

chi-square, and � distributions, and statistical tests based on them as described in the appropriate SimFIT

tutorial documents. In particular, the Shapiro-Wilks test for normality and the Bartlett or Levene tests for

homogeneity of variance could be used by purists determined to check if ANOVA is justified, because it should

be pointed out that ANOVA is often used uncritically where better techniques may be more appropriate.

Theory

In studying the distribution of the variance estimate from a sample of size = from a normal distribution with

mean ` and variance f2, you will have encountered the following decomposition of a sum of squares

=∑
8=1

( H8 − `
f

)2

=

=∑
8=1

(
H8 − H̄
f

)2

+
(
H̄ − `
f/

√
=

)2

into independent chi-square variables with = − 1 and 1 degrees of freedom respectively. Analysis of variance

is an extension of this procedure based on linear models, assuming normality and constant variance, then

partitioning of chi-square variables into two or more independent components, invoking Cochran’s theorem

and comparing the ratios to � variables with the appropriate degrees of freedom for variance ratio tests. It can

be used, for instance, when you have a set of samples (column vectors) that come from normal distributions

with the same variance and wish to test if all the samples have the same mean. Due to the widespread use

of this technique, many people use it even though the original data are not normally distributed with the

same variance, by first applying variance stabilizing transformations, like the square root with counts, which

can sometimes transform non-normal data into transformed data that are approximately normally distributed.

Note that you should never make the common mistake of supposing that ANOVA is model free: ANOVA is

always based upon data collected as replicates and organized into groups, where it is assumed that all the data

are normally distributed with the same variance but with mean values that differ from cell to cell according to

an assumed linear model.

Variance stabilizing transformations

A number of transformations are in use that attempt to create new data that is more approximately normally

distributed than the original data, or at least has more constant variance, as the two aims can not usually both
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be achieved. If the distribution of a random variable - is known, then the variance of a function of - can in

some cases be calculated explicitly. However, to a very crude first approximation, if a random variable - is

transformed by . = 5 (-), then the variances are related by the differential equation

+ (. ) ≈
(
3.

3-

)2

+ (-)

which yields 5 (.) on integration, e.g. for constant variance where + (. ) = : for some constant : would be

required, given + (-).

Note that SimFIT provides the ability to explore the commonly used transformations, to be discussed next,

whenever ANOVA or tests for homogeneity of variance are used.

The angular transformation

This arcsine transformation is sometimes used for binomial data with parameters # and ?, e.g., for - successes

in # trials, when

- ∼ 1(#, ?)

. = arcsin(
√
-/#)

� (. ) ≃ arcsin(√?)
+ (. ) ≃ 1/(4#) (using radial measure).

However, note that the variance of the transformed data is only constant in situations where there are constant

binomial denominators.

The square root transformation

This is often used for counts, e.g., for Poisson variables with mean `, when

- ∼ Poisson(`)
. =

√
G

� (. ) ≃ √
`

+ (. ) ≃ 1/4.

The log transformation

When the variance of - is proportional to a known power U of � (-), then the power transformation. = -V

will stabilize variance for V = 1−U/2. The angular and square root transformations are, of course, just special

cases of this, but a singular case of interest is the constant coefficient of variation situation + (-) ∝ � (-)2

which justifies the log transform, as follows

� (-) = `
+ (-) ∝ `2

. = log -

+ (. ) = :, a constant.

Introduction to 1-way ANOVA

As this is the most frequently encountered situation and is the model for subsequent variants it will be discussed

in some detail.
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This procedure is used when you have groups (i.e. samples) of normally distributed measurements with the

same variance and wish to test if all the population means are equal. With two groups it is equivalent to the

two-sample unpaired C test, so it can be regarded as an extension of this test to cases with more than two

groups. Suppose a random variable . is measured for groups 8 = 1, 2, . . . , : and subjects 9 = 1, 2, . . . =8 , and

it is assumed that the appropriate general linear model for the = =
∑:
8=1 =8 observations is

H8 9 = ` + U8 + 48 9

where

:∑
8=1

U8 = 0

and the errors 48 9 are independently normally distributed with zero mean and common variance f2.

Then the 1-way ANOVA null hypothesis is

�0 : U8 = 0, for 8 = 1, 2, . . . , :,

that is, the means for all : groups are equal, and the basic equations are as follows.

H̄8 =

=8∑
9=1

H8 9/=8

H̄ =

:∑
8=1

=8∑
9=1

H8 9/=

:∑
8=1

=8∑
9=1

(H8 9 − H̄)2
=

:∑
8=1

=8∑
9=1

(H8 9 − H̄8)2 +
:∑
8=1

=8 ( H̄8 − H̄)2

Total ((& =

:∑
8=1

=8∑
9=1

(H8 9 − H̄)2, with �� = = − 1

Residual ((& =

:∑
8=1

=8∑
9=1

(H8 9 − H̄8)2, with �� = = − :

Group ((& =

:∑
8=1

=8 ( H̄8 − H̄)2, with �� = : − 1.

Here Total ((& is the overall sum of squares, Group ((& is the between groups (i.e. among groups) sum of

squares, and Residual ((& is the residual (i.e. within groups, or error) sum of squares. The mean sums of

squares and � value can be calculated from these using

Total ((& = Residual ((& + Group ((&

Total �� = Residual �� + Group ��

Group "( =
Group ((&

Group ��

Residual MS =
Residual ((&

Residual ��

� =
Group "(

Residual "(
,

so that the degrees of freedom for the � variance ratio to test if the between groups "( is significantly larger

than the residual "( are : − 1 and = − :. The SimFIT 1-way ANOVA procedure allows you to include or

exclude selected groups, i.e., data columns, and to employ variance stabilizing transformations if required, but

it also provides a nonparametric test, and it allows you to explore which group or groups differ significantly

in the event of the � value leading to a rejection of �0.
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4.4.2 1-way ANOVA

Example 1

Open the SimFIT main menu, select the [Statistics] option, choose 1-way-ANOVA, indicate that untransformed

data are to be used, then analyze the test file provided which is a data matrix contained in anova.tf1. This

particular data set is for six replicate estimates for strontium concentrations (mg/ml) in five different locations,

and it is wished to test if there are significant differences between the mean levels as listed in the last row.

28.2 39.6 46.3 41.0 56.3

33.2 40.8 42.1 44.1 54.1

36.4 37.9 43.5 46.4 59.4

34.6 37.1 48.8 40.2 62.7

29.1 43.6 43.7 38.6 60.0

31.0 42.4 40.1 36.3 57.3

Means 32.1 40.2 44.1 41.1 58.3

The results, followed by a scatter plot, are as follows.

1-Way Analysis of Variance: Grand Mean 43.16

Transformation: x (untransformed data)

Source SSQ NDOF MSQ F p

Between Groups 2193 4 548.4 56.15 0.0000

Residual 244.1 25 9.765

Total 24383 29
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Clearly the null hypothesis of equal column means must be rejected at the 1% significance level as ? < 0.01.

However, this does not tell us which columns are significantly different from the rest, only that at least one

column differs significantly. The previous scatter plot does however suggests that column 5 appears atypical,

and possibly column 1 also.
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Another way to explore this data set is to plot the means with error bars representing the 95% confidence

limits as follows.

25

35

45

55

65

1 2 3 4 5

Data and Error-Bars

Columns

M
ea

ns

Example 2

The sample sizes need not be identical for 1-way ANOVA, and the next case to be considered is where there

are 5 groups of sizes 5, 8, 6, 8, and 8 for weight gain in pounds of pigs from 5 different litters.

23 29 38 30 31

27 25 31 27 33

26 33 28 28 31

19 36 35 22 28

30 32 33 33 30

28 36 34 24

30 34 29

31 32 30

As the sample sizes differ the data cannot be entered as a matrix this time, and must be entered as individual

column vectors, from a project archive, or as a library file which simply holds the locations of individual data

files for each of the columns.

So now repeat the above procedure, but this time select to supply a library file and input the test file anova.TFL

which then reads in data from the test files column1.tf1, column1.tf2, . . . , column1.tf5.
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1-Way Analysis of Variance: Grand Mean 29.89

Transformation: x (untransformed data)

Source SSQ NDOF MSQ F p

Between Groups 202.0 4 50.51 3.931 0.0111

Residual 385.5 30 12.85

Total 587.5 34

There is yet another way to display 1-way ANOVA data as illustrated by the next plot.

15

20

25

30

35

40

1 2 3 4 5

Range and Percentiles

Samples

P
er

ce
nt

ile
s

0%

25%

50%

75%100%

Here the lowest line segments join the lowest sample value for the corresponding groups, the upper line

segments join the largest sample values, while between them the line segments join the points corresponding

to the 25%, 50%, and 75% levels.

This time the results suggest rejecting the null hypothesis of equal means at the 5% significance level as

? < 0.05, but not the 1% significance level as ? > 0.01.

The Tukey post-ANOVA & test to further illuminate the results from this type of analysis will be described in

another tutorial document.
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4.4.3 1-way ANOVA (Kruskal-Wallis nonparametric)

If it is clear that the data are not normally distributed with the same variance then it is possible to perform the

nonparametric Kruskal-Wallis test, either alone, or at the same time as 1-way ANOVA to compare the results.

Of course, it would be usual to pre-determine which result to accept, otherwise the Bonferroni principle would

have to be used.

Example 1

Open the SimFIT main menu, select the [Statistics] option, choose 1-way-ANOVA, indicate that untransformed

data are to be used, then analyze the test file provided which is a data matrix contained in anova.tf1. This

particular data set is for six replicate estimates for strontium concentrations (mg/ml) in five different locations,

and it is wished to test if there are significant differences between the mean levels as listed in the last row.

28.2 39.6 46.3 41.0 56.3

33.2 40.8 42.1 44.1 54.1

36.4 37.9 43.5 46.4 59.4

34.6 37.1 48.8 40.2 62.7

29.1 43.6 43.7 38.6 60.0

31.0 42.4 40.1 36.3 57.3

Means 32.1 40.2 44.1 41.1 58.3

The results are as follows.

1-Way Analysis of Variance: Grand Mean 43.16

Transformation: x (untransformed data)

Source SSQ NDOF MSQ F p

Between Groups 2193 4 548.4 56.15 0.0000

Residual 244.1 25 9.765

Total 24383 29

Kruskal-Wallis Nonparametric One Way Analysis of Variance

Test statistic NDOF p

23.30 4 0.0001

Clearly the null hypothesis of equal column means and medians must be rejected at the 1% significance level

as ? < 0.01 for both parametric and nonparameteric 1-way ANOVA.

Example 2

The sample sizes need not be identical for 1-way ANOVA, and the next case to be considered is where there

are 5 groups of sizes 5, 8, 6, 8, and 8 for weight gain in pounds of pigs from 5 different litters.

23 29 38 30 31

27 25 31 27 33

26 33 28 28 31

19 36 35 22 28

30 32 33 33 30

28 36 34 24

30 34 29

31 32 30

As the sample sizes differ, the data cannot be entered as a matrix this time, and must be entered as individual

column vectors, from a project archive, or as a library file which simply holds the locations of individual data

files for each of the columns.

So now repeat the above procedure, but this time select to supply a library file and input the test file anova.TFL

which then reads in data from the test files column1.tf1, column1.tf2, . . . , column1.tf5.
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1-Way Analysis of Variance: Grand Mean 29.89

Transformation: x (untransformed data)

Source SSQ NDOF MSQ F p

Between Groups 202.0 4 50.51 3.931 0.0111

Residual 385.5 30 12.85

Total 587.5 34

Kruskal-Wallis Nonparametric One Way Analysis of Variance

Test statistic NDOF p

10.54 4 0.0323

Clearly the null hypothesis of equal column means and medians must be rejected at the 5% significance level,

but not the 1% level, as ? < 0.05 for both the parametric and nonparameteric 1-way ANOVA.

There is yet another way to display 1-way ANOVA data as illustrated by the next plot.
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This is more in keeping with a nonparameteric test and displays the ranges and medians as a box and whisker

plot, that is: the lowest value, the 25% point, the 50% median point, the 75% point, and the largest value.

The Kruskal-Wallis test

The null hypothesis for standard 1-way ANOVA is

�0: The groups (i.e., column vectors) are from the same normal distribution,
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while for the Kruskal-Wallis analysis of variance by ranks it is the weaker condition

�0: The groups (i.e., column vectors) are from the same distribution.

The Kruskal-Wallis test is in reality an extension of the Mann-Whitney U test to : independent samples, and

it is actually designed to test �0: the medians are all equal.

The pooled sample is ranked, with tied scores assigned average ranks, then a test statistic � for : groups, each

with =8 observations, is calculated as

� =
12

=(= + 1)

:∑
8=1

'2
8

=8
− 3(= + 1)

where = =

:∑
8=1

=8

and '8 is the sum of the ranks of the =8 observations in group 8.

This test is actually a 1-way ANOVA carried out on the ranks of the data. The ? value are calculated exactly

for small samples, but the fact that � approximately follows a j2
:−1

distribution is used for large samples.

If there are ties, then � is corrected by dividing by _ defined as

_ = 1 −

<∑
8=1

(C38 − C8)

=3 − =
where C8 is the number of tied scores in the 8th group of ties, and < is the number of groups of tied ranks.

The test is 3/c (i.e, 95%) as powerful as the 1-way ANOVA test when the parametric test is justified, but it is

more powerful, and should always be used if the assumptions of the linear normal model are not appropriate.

As it is unusual for the sample sizes to be large enough to verify that all the samples are normally distributed

and with the same variance, rejection of �0 in the Kruskal-Wallis test (which is the higher order analogue of

the Mann-Whitney U test, just as 1-way ANOVA is the higher analogue of the C test) should always be taken

seriously. This is one reason why SimFIT provides the convenient option to perform both 1-way ANOVA and

the Kruskal-Wallis test at the same time.
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4.4.4 Tukey Q post-ANOVA test

The ANOVA 1-way analysis tests for equality between the means in a number of samples but, if the null

hypothesis is rejected, it does not indicate for which samples the means are significantly different. In fact, for

: samples there are : (: − 1)/2 possible pairwise comparisons so alternative techniques have been developed.

The SimFIT ANOVA procedure provides the option to use the Tukey & post-ANOVA test for this multiple

comparison purpose.

Open the SimFIT main menu, select the [Statistics] option, choose 1-way-ANOVA, indicate that untransformed

data are to be used, then analyze the test file provided which is a data matrix contained in anova.tf1. This

particular data set is for six replicate estimates for strontium concentrations (mg/ml) in five different locations,

and it is wished to test if there are significant differences between the mean levels as listed in the last row.

28.2 39.6 46.3 41.0 56.3

33.2 40.8 42.1 44.1 54.1

36.4 37.9 43.5 46.4 59.4

34.6 37.1 48.8 40.2 62.7

29.1 43.6 43.7 38.6 60.0

31.0 42.4 40.1 36.3 57.3

Means 32.1 40.2 44.1 41.1 58.3

The results are as follows.

1-Way Analysis of Variance: Grand Mean 43.16

Transformation: x (untransformed data)

Source SSQ NDOF MSQ F p

Between Groups 2193 4 548.4 56.15 0.0000

Residual 244.1 25 9.765

Total 24383 29

Clearly the null hypothesis of equal column means must be rejected at the 1% significance level as ? < 0.01

so the following results were obtained for the Tukey test.

Tukey Q-test with 5 means and 10 comparisons

5% point = 4.189, 1% point = 5.125

Column Column Q p 5% 1% =� =�
5 1 20.55 0.0001 * * 6 6

5 2 14.16 0.0001 * * 6 6

5 4 13.48 0.0001 * * 6 6

5 3 11.14 0.0001 * * 6 6

3 1 9.406 0.0001 * * 6 6

3 2 3.018 0.2377 NS NS 6 6

3 4 [[2.338 0.4792]] No-Test No-Test 6 6

4 1 7.068 0.0005 * * 6 6

4 2 [[0.6793 0.9885]] No-Test No-Test 6 6

2 1 6.388 0.0013 * * 6 6

[ 5%] and/or [[ 1%]] No-Test results given for reference only

In this table, columns where means differ significantly are indicated by *, columns where means are not

significantly different are indicated by NS, and columns that were not tested are indicated by No-test with

hypothetical ? values in square brackets.

Note that, for the Tukey test, the means are ranked and columns with means between those of extreme columns

that differ significantly are not tested, according to the protocol that is recommended for this test. This involves

a systematic procedure where the largest mean is compared to the smallest, then the largest mean is compared

with the second largest, and so on. If no difference is found between two means then it is concluded that no

difference exists between any means enclosed by these two, and so no testing is done.
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The test statistic & for comparing columns � and � with means H̄�, H̄� and sample sizes =�, =� is

& =
H̄� − H̄�
(�

where (� =

√
B2

=
, if = = =� = =�

(� =

√
B2

2

(
1

=�
+ 1

=�

)
, if =� ≠ =�

B2 = error "(

and the significance level for & is calculated as a studentized range.

Evidently, for these data, we reach the conclusion that

• data in column 5 differs significantly from data in columns 1, 2, 3, and 4,

• data in column 3 differs significantly from data in column 1, and

• data in column 1 differs significantly from data in columns 2 and 4.

This conclusion is also fairly obvious from the plot of means with error bars representing the 95% confidence

limits as follows.
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4.4.5 2-way ANOVA

The difference between 1-way ANOVA and 2-way ANOVA is that, whereas 1-way ANOVA only tests for

differences between column means, 2-way ANOVA also considers the possibility of effects dependent on the

rows. Note that, because the number of observations is the same for each subject, the data can be input as a

data matrix into the SimFIT file selection control either from a data file, by typing in from the keyboard, or by

copying and pasting from a spreadsheet.

Worked example for treatments and clotting times

From the main SimFIT menus choose [Statistics] followed by [ANOVA] then select [2-way ANOVA] and,

instead of using the default test file anova2.tf1, use the [Browse] feature on the file selection control to

search for and then open the SimFIT test file anova2.tf2 which has the following data set.

Treatment

Subject 1 2 3 4

1 8.40 9.40 9.80 12.2

2 12.8 15.2 12.9 14.4

3 9.60 9.10 11.2 9.80

4 9.80 8.80 9.90 12.0

5 8.40 8.20 8.50 8.50

6 8.60 9.90 9.80 10.9

7 8.90 9.00 9.20 10.4

8 7.90 8.10 8.20 10.0

These are clotting times in minutes from eight subjects treated by four methods and analysis leads to the

following results, indicating both subject and treatment dependent effects.

2-Way Analysis of Variance: Grand mean 9.994

Source SSQ NDOF MSSQ F p

Between rows (Subjects) 78.99 7 11.28 17.20 0.0000

Between columns (Treatments) 13.02 3 4.339 6.615 0.0025

Residual 13.77 21 0.6559

Total 105.8 31

Note that now there are variance ratio test statistics � and corresponding ? values for both the rows and the

columns and the calculations involved in constructing this ANOVA 2-way table follow.

The assumed linear model

The 2-way ANOVA procedure is used when you want to include row and column effects in a completely

randomized design, i.e., assuming no interaction and one replicate per cell so that the appropriate linear model

is

H8 9 = ` + U8 + V 9 + 48 9
A∑
8=1

U8 = 0

2∑
9=1

V 9 = 0

for a data matrix with A rows and 2 columns, i.e. = = A2.
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Calculating the variance ratio statistics

The mean sums of squares and degrees of freedom for row and column effects are worked out, then the

appropriate � and ? values are calculated. Using '8 for the row sums, � 9 for the column sums, and

) =
∑A
8=1 '8 =

∑2
9=1 � 9 for the sum of observations, these are

Row ((& =

A∑
8=1

'2
8 /2 − )2/=, with �� = A − 1

Column ((& =

2∑
9=1

�2
9/A − )2/=, with �� = 2 − 1

Total ((& =

A∑
8=1

2∑
9=1

H2
8 9 − )2/=, with �� = = − 1

Residual ((& = Total ((& − Row ((& − Column ((&, with �� = (A − 1) (2 − 1)

where Row ((& is the between rows sums of squares, Column ((& is the between columns sum of squares,

Total ((& is the total sum of squares and Residual ((& is the residual, or error sum of squares. Now two �

statistics can be calculated from the mean sums of squares as

�' =
Rows "(

Residual "(

�� =
Column "(

Residual "(
.

The statistic �' is compared with � (A − 1, (A − 1) (2 − 1)) to test

�' : U8 = 0, 8 = 1, 2, . . . , A

i.e., absence of row effects, while �� is compared with � (2 − 1, (A − 1) (2 − 1)) to test

�� : V 9 = 0, 9 = 1, 2, . . . , 2

i.e., absence of column effects.

As with 1-way ANOVA, normality is assumed, and the technique can be extended to the case with replicates

if it is wished to study variation within cells.
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4.4.6 2-way ANOVA (Friedman nonparametric)

When the 2-way ANOVA assumptions are not justified, the Friedman nonparametric 2-way analysis of variance

by ranks is often used. This investigates the score differences between : matched sets of size ;. If : = 2 then

the sign test, or else the Wilcoxon signed rank test, should be used.

From the main SimFIT menu choose [Statistics], [ANOVA], then the Friedman test, and read in data from

the default test file anova2.tf1, which has data for scores for matched samples of eighteen rats under three

different patterns of enforcement as follows.

1.00 3.00 2.00

2.00 3.00 1.00

1.00 3.00 2.00

1.00 2.00 3.00

3.00 1.00 2.00

2.00 3.00 1.00

3.00 2.00 1.00

1.00 3.00 2.00

3.00 1.00 2.00

3.00 1.00 2.00

2.00 3.00 1.00

2.00 3.00 1.00

3.00 2.00 1.00

2.00 3.00 1.00

2.50 2.50 1.00

3.00 2.00 1.00

3.00 2.00 1.00

2.00 3.00 1.00

Analysis then leads to the results below.

Friedman Nonparametric 2-way ANOVA

Test Statistic (�') 8.583

Number of degrees of freedom 2

Significance (i.e., p-value) 0.0137

As the data matrix represents scores rather than normally distributed variables with identical variances, the

matrix was analyzed as a two way table using the nonparametric Friedman 2-way ANOVA procedure to test

�0 : all medians are equal, against the alternative,

�1 : they come from different populations.

For this analysis SimFIT first rearranges these data into a : = 3 by = = 18 matrix, then ranks column scores

for this transposed matrix as A8 9 for row 8 and column 9 , assigning average ranks for ties, works out rank sums

as C8 =
∑;
9=1 A8 9 , then calculates �' given by

�' =
12

=: (: + 1)

:∑
8=1

(C8 − =(: + 1)/2)2 .

For small samples, exact significance levels are calculated, while for large samples it is assumed that �'

follows a j2
:−1

distribution.
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4.4.7 Repeat measures ANOVA

Repeat measures ANOVA is a special type of 2-way ANOVA where the rows in the data matrix are subjects

but the columns are now repeated observations of the same variable in some sequence, for instance at fixed

intervals of time. It is usual to investigate the data for sphericity, which is when the covariance matrix of

orthonormal contrasts is a multiple of the identity matrix, as this is required before the repeat measures

ANOVA procedure is valid. Note that SimFIT also provides the options for Hotelling )2 and Friedman

nonparametric ANOVA tests at the same time, in case the hypothesis of sphericity is not supported but the

indication of a column effect is still of interest.

Open the main SimFIT menu, choose [Statistics], [ANOVA], then repeat measures, and analyze the default

data set contained in test file anova6.tf1, which has four measurements of the same variable for each of five

subjects arranged as follows.

Subject Measurement 1 Measurement 2 Measurement 3 Measurement 4

A 30 28 16 34

B 14 18 10 22

C 24 20 18 30

D 38 34 20 44

E 26 28 14 30

Now choose to analyze without a data transformation which leads to the following result where a likelihood

ratio test statistic (!')() is calculated to test for sphericity.

Repeat-Measures Analysis of Variance

Data file: anova6.tf1

Sphericity test on �+ of Helmert orthonormal contrasts

�0: Covariance matrix = :*Identity (for some : > 0)

Number of small eigenvalues 0 i.e. < 1.00� − 07

Number of variables (<) 4

Sample size (=) 5

Determinant of �+ 154.9

Trace of �+ 28.20

Mauchly, statistic 0.1865

!')((−2 log(_)) 4.572

Degrees of Freedom 5

%(j2 ≥ !')() 0.4704

4(Geisser-Greenhouse) 0.6049

4 (Huynh-Feldt) 1.0000

4 (lower bound) 0.3333

Clearly the hypothesis of sphericity cannot be rejected for these data.

The next table displays the ANOVA results with, in this example, the optional Friedman nonparametric test,

and Hotelling )2 test also included.
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Results for repeat-measures ANOVA: Grand mean 24.90

Source SSQ NDOF MSSQ F p

Subjects 6.808E+02 4

Treatments 6.982E+02 3 232.7 24.76 0.0000

0.0006 Greenhouse-Geisser

0.0000 Huyhn-Feldt

0.0076 Lower-bound

Remainder 112.8 12 9.400

Total 1492 19

Results for Friedman Nonparametric Two-Way Analysis of Variance

Test Statistic 13.56

Number of degrees of freedom 3

Significance 0.0036

Results for the Hotelling one sample )2 test

�0: Column means are all equal

Number of rows 5

Number of columns 4

Hotelling )2 170.5

� Statistic (�)() 28.41

Degrees of Freedom (31, 32) 3, 2

%(� (31, 32) ≥ �)() 0.0342 Reject �0 at 5% significance level

Note that, for these data, all three tests reject the null hypothesis of the absence of a column effect.

Theory

The repeat measures procedure is used when you have paired measurements, and wish to test for absence of

treatment effects. With two samples it is equivalent to the two-sample paired C test, so it can be regarded

as an extension of this test to cases with more than two columns. If the rows of a data matrix represent the

effects of different column-wise treatments on the same subjects, so that the values are serially correlated,

and it is wished to test for significant treatment effects irrespective of differences between subjects, then

repeated-measurements design is appropriate. The simplest, model-free, approach is to treat this as a special

case of 2-way ANOVA where only between-column effects are considered and between-row effects, i.e.,

between subject variances, are expected to be appreciable, but are not considered. Many further specialized

techniques are also possible, when it is reasonable to attempt to model the treatment effects, e.g., when the

columns represent observations in sequence of, say, time or drug concentration, but often such effects are best

fitted by nonlinear rather than linear models. A useful way to visualize repeated-measurements ANOVA data

with small samples (≤ 12 subjects) is to input the matrix into the exhaustive analysis of a matrix procedure

and plot the matrix with rows identified by different symbols.

The previous tables show the results from analyzing data in the test file anova6.tf1 in three sections, a

Mauchly sphericity test, an ANOVA table, and a Hotelling )2 test, all of which will now be discussed.

In order for the normal two-way univariate ANOVA to be appropriate, sphericity of the covariance matrix of

orthonormal contrasts is required. The test is based on a orthonormal contrast matrix, for example a Helmert

matrix of the form

� =

©­­­
«

1/
√

2 −1/
√

2 0 0 0 . . .

1/
√

6 1/
√

6 −2/
√

6 0 0 . . .

1/
√

12 1/
√

12 1/
√

12 −3/
√

12 0 . . .

. . . . . . . . . . . . . . . . . .

ª®®®¬
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which, for < columns, has dimensions < − 1 by <, and where every row sum is zero, every row has length

unity, and all the rows are orthogonal. Such Helmert conrasts compare each successive column mean with

the average of the preceding (or following) column means but, in the subsequent discussion, any orthonormal

contrast matrix leads to the same end result, namely, when the covariance matrix of orthonormal contrasts

satisfies the sphericity condition, then the sums of squares used to construct the � test statistics will be

independent chi-square variables and the two-way univariate ANOVA technique will be the most powerful

technique to test for equality of column means.

The sphericity test uses the sample covariance matrix ( to construct the Mauchly, statistic given by

, =
|�(�) |

[)A (�(�) )/(< − 1)]<−1
.

If ( is estimated with a degrees of freedom then

j2
= −

[
a − 2<2 − 3< + 3

6(< − 1)

]
log,

is approximately distributed as chi-square with <(< − 1)/2 − 1 degrees of freedom. Clearly, the results in

the previous tables show that the hypothesis of sphericity cannot be rejected, and the results from two-way

ANOVA can be tentatively accepted. However, in some instances, it may be necessary to alter the degrees of

freedom for the � statistics as discussed next.

The model for univariate repeated measures with < treatments used once on each of = subjects is a mixed

model of the form

H8 9 = ` + g8 + V 9 + 48 9 ,
where g8 is the fixed effect of treatment 8 so that

∑<
8=1 g8 = 0, and V 9 is the random effect of subject 9 with

mean zero, and
∑=
9=1 V 9 = 0. Hence the decomposition of the sum of squares is

<∑
8=1

=∑
9=1

(H8 9 − H̄. 9 )2
= =

<∑
8=1

( H̄8. − H̄..)2 +
<∑
8=1

=∑
9=1

(H8 9 − H̄8. − H̄. 9 + H̄..)2,

that is

((&Within subjects = ((&treatments + ((&Error

with degrees of freedom

=(< − 1) = (< − 1) + (< − 1) (= − 1) .
To test the hypothesis of no treatment effect, that is

�0 : g8 = 0 for 8 = 1, 2, . . . , <,

the appropriate test statistic would be

� =
((&treatment/(< − 1)

((&Error/[(< − 1) (= − 1)]

but, to make this test more robust, it may be necessary to adjust the degrees of freedom when calculating

critical levels. In fact the degrees of freedom should be taken as

Numerator degrees of freedom = n (< − 1)
Denominator degrees of freedom = n (< − 1) (= − 1)

where there are four possibilities for the correction factor n , all with 0 ≤ n ≤ 1.

1. The default epsilon.

This is n = 1, which is the correct choice if the sphericity criterion is met.
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2. The Greenhouse-Geisser epsilon.

This is

n =
(∑<−1

8=1 _8)2

(< − 1)∑<−1
8=1 _2

8

where _8 are the eigenvalues of the covariance matrix of orthonormal contrasts, and it could be used if

the sphericity criterion is not met, although some argue that it is an ultraconservative estimate.

3. The Huyhn-Feldt epsilon.

This is can also be used when the sphericity criterion is not met, and it is constructed from the

Greenhouse-Geisser estimate n̂ as follows

0 = =(< − 1) n̂ − 2

1 = (< − 1) (= − � − (< − 1) n̂)
n = min(1, 0/1),

where � is the number of groups. It is generally recommended to use this estimate if the ANOVA

probabilities given by the various adjustments differ appreciably.

4. The lower bound epsilon.

This is defined as

n = 1/(< − 1)

which is the smallest value and results in using the � statistic with 1 and = − 1 degrees of freedom.

If the sphericity criterion is not met, then it is possible to use multivariate techniques such as MANOVA as

long as = > <, as these do not require sphericity, but these will always be less powerful than the univariate

ANOVA just discussed.

One possibility is to use the Hotelling )2 test to see if the column means differ significantly, and the results

displayed in the previous tables were obtained in this way. Again a matrix � of orthonormal contrasts is used

together with the vector of column means

H̄ = ( H̄1, H̄2, . . . , H̄<))

to construct the statistic

)2
= =(�H̄)) (�(�) )−1(�H̄)

since
(= − < + 1))2

(= − 1) (< − 1) ∼ � (< − 1, = − < + 1)

if all column means are equal.
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4.4.8 3-way ANOVA (Latin square)

Experimental design seeks to optimize ANOVA in order to eliminate systematic effects, and one such design

is the Latin square. This requires a < by < matrix of observations, but also a corresponding < by < Latin

square matrix of treatments, so that

• each row of the Latin square contains all of the < treatments;

• the order of treatments is different within every row; and

• the observations are arranged according to the pattern dictated by the Latin square.

Note that SimFIT provides the option to generate random Latin squares to avoid systematic effects with

repeated experiments.

From the SimFIT main menu choose [Statistics], [ANOVA], then [Latin squares] and open the test file

anova3.tf1 which contains a 10 by 5 data matrix as follows.

5 4 1 3 2

2 5 4 1 3

3 2 5 4 1

1 3 2 5 4

4 1 3 2 5

6.67 7.15 8.29 8.95 9.62

5.40 4.77 5.40 7.54 6.93

7.32 8.53 8.50 9.99 9.68

4.92 5.00 7.29 7.85 7.08

4.88 6.16 7.83 5.38 8.51

Here the upper 5 by 5 matrix colored red is the Latin square, which corresponds to the lower 5 by 5 matrix

of observations. In other words, observation(5 + 8, 9) corresponds to treatment(8, 9) for 8 = 1, 2, . . . , 5 and

9 = 1, 2, . . . 5. For example, observation(1,1) which is 6.67 resulted from treatment 5, observation(1,2)

which is 7.15 resulted from treatment 4, observation(5,4) which is 5.38 resulted from treatment 2, etc.

Analysis leads to the following table.

Three Way Analysis of Variance: Grand mean 7.186

Data file: anova3.tf1

Data title: Latin square ANOVA Data ... see NAG routine G04ADF

Source NDOF SSQ MSQ F p

Rows 4 29.42 7.356 9.027 0.0013

Columns 4 22.99 5.749 7.055 0.0037

Treatments 4 0.5423 0.1356 0.1664 0.9514

Error 12 9.779 0.8149

Total 24 62.74 2.614

Mean Values

Row means 8.136 6.008 8.804 6.428 6.552

Column means 5.838 6.322 7.462 7.942 8.364

Treatment means 7.318 7.244 7.206 6.900 7.260
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Theory for Latin square ANOVA

The linear model for a < by < Latin square ANOVA is

H8 9: = ` + U8 + V 9 + W: + 48 9:
<∑
8=1

U8 = 0

<∑
9=1

V 9 = 0

<∑
:=1

W: = 0

where U8 , V 9 and W: represent the row, column and treatment effect, and 48 9: is assumed to be normally

distributed with zero mean and variance f2. The sum of squares partition is now

Total ((& = Row ((& + Column ((& + Treatment ((& + Residual ((&

where the <2 observations are arranged in the form of a < by < matrix so that every treatment occurs once

in each row and column. This design, which is used for economical reasons to account for row, column, and

treatment effects, leads to the three variance ratios

�' =
Row "(

Residual "(

�� =
Column "(

Residual "(

�) =
Treatment "(

Residual "(

to use in � tests with < − 1, and (< − 1) (< − 2) degrees of freedom. Note that SimFIT data files for Latin

square designs with < treatment levels have 2< rows and < columns, where the first < by < block identifies

the treatments, and the next < by < block of data are the observations. When designing such experiments,

the particular Latin square used should be chosen randomly if possible as described later. For instance, study

the test file anova3.tf1, which should be consulted for details, noting that integers (1, 2, 3, 4, 5) are used

instead of the usual letters (A, B, C, D, E) in the data file header to indicate the position of the treatments.

Note that in the Latin square results table there are now three ? values for significance testing between rows,

columns, and treatments.

Generating random Latin squares

This section describes how to generate a data file so that SimFIT can perform Latin square analysis. This

involves three procedures.

1. Generate a random Latin square

2. Organize the observations according to the design

3. Fuse the Latin square and Observations to make a data matrix

From the SimFIT main menu choose [A/Z], open rannum, choose random permutations, then generate a Latin

square like this next one.
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Random : by : Latin square: : = 5

5 2 4 1 3

3 5 2 4 1

4 1 3 5 2

2 4 1 3 5

1 3 5 2 4

Equivalent alphabetical representation

E B D A C

C E B D A

D A C E B

B D A C E

A C E B D

Now proceed as follows.

• Save the : by : data from rannum to a file in integer format, not alphabetical format.

• Create a : by : data-only file with the observations arranged according to the saved Latin square

• Fuse the two files to make a 2: by : data file where the upper matrix contains the Latin square integers.

In order to fuse the two files you can use editmt to combine the two files but it is very easy to proceed as

follows.

• Open the Latin square matrix in a text editor such as Notepad

• Select the : by : Latin square integer matrix and copy to the clipboard

• Open the : by : data matrix in a text editor

• Paste the : by : Latin square integer matrix before the data section

• Edit the edited data matrix at line 1 to indicate the changes

• Change the matrix dimension on line 2 from : : into 2: :

• Save the edited data file.

Alternatively, as data files copied from the clipboard into SimFIT do not require titles and array dimensions,

you can easily paste the following data matrix directly into SimFIT from the clipboard.

5 4 1 3 2

2 5 4 1 3

3 2 5 4 1

1 3 2 5 4

4 1 3 2 5

6.67 7.15 8.29 8.95 9.62

5.40 4.77 5.40 7.54 6.93

7.32 8.53 8.50 9.99 9.68

4.92 5.00 7.29 7.85 7.08

4.88 6.16 7.83 5.38 8.51



Groups and subgroups ANOVA 169

4.4.9 Groups and subgroups ANOVA

In order to appreciate what is involved in groups and subgroups ANOVA, consider the following data set

contained in the SimFIT test file anova4.tf1 and made available after opening the main SimFIT menu,

followed by choosing [Statistics], [ANOVA], then the groups and subgroups option.

Groups Subgroups Observations

1 1 2.1

1 1 2.4

1 1 2.0

1 1 2.0

1 1 2.0

1 2 2.4

1 2 2.1

1 2 2.2

1 3 2.4

1 3 2.2

1 3 2.6

1 4 2.4

1 4 2.4

1 4 2.5

1 5 1.9

1 5 1.7

2 1 2.1

2 1 1.5

2 1 2.0

2 2 1.9

2 2 1.7

2 2 1.9

2 2 1.9

2 2 1.9

2 3 2.0

2 3 2.1

2 3 2.3

The first column is the group number (in nondecreasing order), the second column is the subgroup within the

group (in nondecreasing order), and the third column holds the corresponding observations. Note that there

are no limits to the number of groups, nor to the sizes of the subgroups, but any data file supplied for groups

and subgroups ANOVA must be arranged exactly as above.

These data were obtained as follows.

• The two groups represent data obtained in two consecutive years.

• The subgroups of size five and three are consignments of materials in those two years.

• The observations are replicates for percentages of stretch of the material within the groups and sub-

groups.

It is wished to test if there are significant differences between the properties of material delivered in the two

years, and also between the samples drawn, and analysis then leads to the following results table.
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Results for Groups/Subgroups 2-Way ANOVA

Transformation = G (i.e. untransformed data)

Source SSQ NDOF F p

Between Groups 0.4748 1 16.15 0.0007

Subgroups 0.8162 6 4.626 0.0047

Residual 0.5587 19

Total 1.850 26

Group Subgroup Mean

1 1 2.100

1 2 2.233

1 3 2.400

1 4 2.433

1 5 1.800

2 1 1.867

2 2 1.860

2 3 2.133

Description Mean Sample size

Group 1 2.206 16

Group 2 1.936 11

Grand 2.096 27

These results could be interpreted to suggest a between groups effect (? = 0.0007) and also a subgroup effect

(? = 0.0047) and the requisite theory will be presented next.

Theory

The linear models for ANOVA are easy to manipulate mathematically and trivial to implement in computer

programs, and this has lead to a vast number of possible designs for ANOVA procedures. This situation is

likely to bewilder users, and may easily mislead the unwary, as it stretches credulity to the limit to believe

that experiments, which almost invariably reflect nonlinear non-normal phenomena, can be analyzed in a

meaningful way by such elementary models. Nevertheless, ANOVA remains valuable for preliminary data

exploration, or in situations like clinical or agricultural trials, where only gross effects are of interest and

precise modelling is out of the question. So groups and subgroups ANOVA is a versatile and flexible technique

provided by SimFIT for two-way hierarchical classification with subgroups of possibly unequal size, assuming

a fixed effects model.

Suppose, for instance, that there are : ≥ 2 treatment groups, with group 8 subdivided into ;8 treatment

subgroups, where subgroup 9 contains =8 9 observations. That is, observation H<8 9 is observation < in

subgroup 9 of group 8 where

1 ≤ 8 ≤ :, 1 ≤ 9 ≤ ;8 , 1 ≤ < ≤ =8 9 .

The between groups, between subgroups within groups, and residual sums of squares are

Group ((& =

:∑
8=1

=8. ( H̄.8. − H̄...)2

Subgroup ((& =

:∑
8=1

;8∑
9=1

=8 9 ( H̄.8 9 − H̄.8.)2

Residual ((& =

8∑
8=1

;8∑
9=1

=8 9∑
<=1

(H<8 9 − H̄.8 9 )2
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which, using ; =
∑:
8=1 ;8 and = =

∑:
8=1 =8. , and normalizing give the variance ratios

�� =
Group ((&/(: − 1)

Residual ((&/(= − ;)

�( =
Subgroup ((&/(; − :)
Residual ((&/(= − ;)

to test for between groups and between subgroups effects.

Of course, there are now two ? values for significance testing and, also note that, because this technique

allows for many designs that cannot be represented by rectangular matrices. However, the data files must have

three columns and = rows: column one containing the group numbers, column two containing the subgroup

numbers, and column three containing the = observations as a sample vector in the order of groups, and

subgroups within groups.

Note that, by defining groups and subgroups correctly in this way, a large number of ANOVA techniques can

be performed using this groups and subgroups ANOVA procedure.
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4.4.10 Factorial ANOVA

Factorial ANOVA is designed to analyze the effects of categorical or quantitative variables, called factors, on

observed quantities in order to detect the influence of these factors both separately and jointly.

Example 1

Open the SimFIT main menu, select[Statistics], [ANOVA], then [Factorial ANOVA], and analyze the data set

below for no blocks but two factors, � and �, contained in the default SimFIT test file anova5.tf1.

Block Factor � Factor � Observation

1 1 1 16.5

1 1 1 18.4

1 1 1 12.7

1 1 1 14.0

1 1 1 12.8

1 1 2 14.5

1 1 2 11.0

1 1 2 10.8

1 1 2 14.3

1 1 2 10.0

1 2 1 39.1

1 2 1 26.2

1 2 1 21.3

1 2 1 35.8

1 2 1 40.2

1 2 2 32.0

1 2 2 23.8

1 2 2 28.8

1 2 2 25.0

1 2 2 29.3

In order to perform factorial ANOVA using SimFIT the data matrix must have a very precise structure which,

in the case of the two factors above, is in standard order as follows.

1. Column 1 contains block numbers (in this case all 1 as there are no blocks)

2. Column 2 contains levels of factor � (in this case Level 1 = no hormone, Level 2 = hormone)

3. Column 3 contains levels of factor � (in this case Level 1 = female, level 2 = male)

4. Column 4 contains observed values (in this case of blood calcium in mg/100ml with 5 replicates)

5. Block numbers must be in nondecreasing order

6. Levels of � must be in nondecreasing order within each block

7. Levels of � must be in nondecreasing order within each level of �

8. There must be the same number of replicates in each group

9. Block numbers and factor levels must be consecutive integers ≥ 1

After analyzing the data in test file anova5.tf1 SimFIT displays the following results table.
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Table 1: Results for Factorial ANOVA with test file anova5.tf1

Transformation: G (untransformed data)

Source ((& #�$� "( � ?

Blocks 0.000 0 0.000 0.000 0.0000

Effect 1 (�) 1386 1 1386 60.53 0.0000

Effect 2 (�) 70.31 1 70.31 3.071 0.0989

Effect 3 (� ∗ �) 4.900 1 4.900 0.2140 0.6499

Residual 366.4 16 22.90

Total 1828 19

Treatment Means and Standard Errors

Overall mean 21.82

Treatment means

Effect 1 13.50 30.15

Standard Error of difference in means: 2.140

Effect 2 23.70 19.95

Standard Error of difference in means: 2.14

Effect 3 14.88 12.12 32.52 27.78

Standard Error of difference in means: 3.026

Note that in factorial ANOVA tables the treatment effects are always output in standard order as follows.

Effect 1: �1, �2

Effect 2: �1, �2

Effect 3: �1�1, �1�2, �2�1, �2�2

Also, after analyzing the data, a plot like the next one can be useful to illustrate the effects of the factors.
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Example 2

To further emphasize the format required for factorial ANOVA, consider the following data set contained in

SimFITtest file anova5.tf2.
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Block Factor � Factor � Observation

1 1 2 361

1 1 3 253

1 2 1 325

1 2 2 317

1 2 3 339

1 3 1 326

1 3 2 402

1 3 3 336

1 4 1 379

1 4 2 345

1 4 3 361

1 5 1 352

1 5 2 334

1 5 3 318

1 6 1 339

1 6 2 393

1 6 3 358

2 1 1 350

2 1 2 340

2 1 3 203

2 2 1 397

2 2 2 356

2 2 3 298

2 3 1 382

2 3 2 376

2 3 3 355

2 4 1 418

2 4 2 387

2 4 3 379

2 5 1 432

2 5 2 339

2 5 3 293

2 6 1 322

2 6 2 417

2 6 3 342

3 1 1 82

3 1 2 297

3 1 3 133

3 2 1 306

3 2 2 352

3 2 3 361

3 3 1 220

3 3 2 333

3 3 3 270

3 4 1 388

3 4 2 379

3 4 3 274

3 5 1 336

3 5 2 307

3 5 3 266

3 6 1 389

3 6 2 333

3 6 3 353
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This data set is for the yields of turnips in an agricultural experiment with 3 blocks, 6 levels of � (phosphate),

and 3 levels of � (lime).

Table 2: Results for Factorial ANOVA with test5 file anova5.tf2

Transformation: G (untransformed data)

Source ((& #�$� "( � ?

Blocks 30120 2 15060 7.685 0.0018

Effect 1 (�) 73010 5 14600 7.451 0.0001

Effect 2 (�) 21600 2 10800 5.510 0.0085

Effect 3 (� ∗ �) 31190 10 3119 1.592 0.1513

Residual 66630 34 1960

Total 222500 53

Treatment Means and Standard Errors

Overall mean 331.1

Block means 339.6 354.8 298.8

Treatment means

Effect 1 254.8 339.0 333.3 367.8 330.8

360.7

Standard Error of difference in means: 20.87

Effect 2 334.3 353.8 305.1

Standard Error of difference in means: 14.76

Effect 3 235.3 332.7 196.3 342.7 341.7

332.7 309.3 370.3 320.3 395.0

370.3 338.0 373.3 326.7 292.3

350.0 381.0 351.0

Standard Error of difference in means: 36.14

Theory

The appropriate linear model for factorial ANOVA is

H8 9: = ` + U8 + V 9 + W8 9 + 48 9:
where there are 0 levels of factor �, 1 levels of factor � and = replicates per group, that is, n observations at

each fixed pair of 8 and 9 values.

As usual, ` is the mean, U8 is the effect of � at level 8, V 9 is the effect of � at level 9 , W8 9 is the effect of the

interaction between � and � at levels 8 and 9 , and 48 9: is the random error component at replicate :.

Also there are the necessary constraints on the parameters estimated, that is

0∑
8=1

Û8 = 0

1∑
9=1

V̂ 9 = 0

0∑
8=1

Ŵ8 9 = 0, for each 9 , and

1∑
9=1

Ŵ8 9 = 0 for each 8.
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The null hypotheses would be

�0 : U8 = 0, for 8 = 1, 2, . . . , 0

to test for the effects of factor �,

�0 : V 9 = 0, for 9 = 1, 2, . . . , 1

to test for the effects of factor �, and

�0 : W8 9 = 0, for all 8, 9

to test for possible �� interactions.

The analysis of variance table is based upon calculating � statistics as ratios of sums of squares that arise

from the partitioning of the total corrected sum of squares as follows

0∑
8=1

1∑
9=1

=∑
:=1

(H8 9: − H̄...)2
=

0∑
8=1

1∑
9=1

=∑
:=1

[( H̄8.. − H̄...) + ( H̄. 9 . − H̄...)

+ ( H̄8 9. − H̄8.. − H̄. 9 . + H̄...) + (H8 9: − H̄8 9.)]2

= 1=

0∑
8=1

( H̄8.. − H̄...)2 + 0=
1∑
9=1

( H̄. 9 . − H̄...)2

+ =
0∑
8=1

1∑
9=1

( H̄8 9. − H̄8.. − H̄. 9 . + H̄...)2 +
0∑
8=1

1∑
9=1

=∑
:=1

( H̄8 9: − H̄8 9.)2

It is clear from the � statistics and significance levels ? in Table 1 table for anova5.tf1 that, with these data,

� has a large effect, � has a small effect, and there is no significant interaction. From table 2 for anova5.tf2

the effects of blocking as well as � and � are significant, but the interaction between � and � is small.

Note that the factorial ANOVA table always outputs results in standard order, e.g. �1�1, �1�2, �2�1, �2�2

and so on, while the actual coefficients U8 , V 9 , W8 9 in the model can be estimated by subtracting the grand

mean from the corresponding treatment means. In the previous marginals plot, the line connecting the circles

is for observations with � at level 1 and the line connecting the triangles is for observations with � at level 2.

The squares are the overall means of observations with factor � at level 1 (13.5) and level 2 (30.15), while

the diamonds are the overall means of observations with factor � (i.e. 23.7 and 19.95) from the results table.

Parallel lines indicate the lack of interaction between factors � and � while the larger shift for variation in

� as opposed to the much smaller effect of changes in levels of � merely reinforces the conclusions reached

previously from the ? values in the results table.

If the data set contains blocking, as with test files anova5.tf2 and anova5.tf4, then there will be extra

information in the ANOVA table corresponding to the blocks, e.g., to replace the values shown as zero in the

results table for anova5.tf1, as there is no blocking with the data in anova5.tf1.

The SimFIT factorial ANOVA test files illustrate the following examples of data formatting, and these can be

consulted and subsequently analyzed if further clarification is required.

anova5.tf1: 0 blocks and 2 factors

anova5.tf2: 3 blocks and 2 factors

anova5.tf3: 0 blocks and 3 factors

anova5.tf4: 3 blocks and 3 factors
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4.5 Analysis of frequencies and proportions

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

4.5.1 Introduction

Many experiments record frequencies with which events occur, and then these frequencies are used to calculate

proportions to be used as estimates for population probabilities.

As a simple example, consider tossing a coin # times resulting in ℎ heads and # − ℎ tails. Then the frequency

of heads would be the integer ℎ, while the proportion of heads would be the floating point number ℎ/# , which

would converge to the true probability of a head occurring for large values of # . In this case of dichotomous

data we could define a variable G8 to have a value of 1 for a success (e.g. heads) and 0 for failure (e.g. tails) at

the 8’th trial, leading to a random variable - as the sum of the G8 values as follows

- = G1 + G2 + · · · + G# .

Then the appropriate statistical model would be the binomial distribution with parameters # and ?, so that

the probability of observing ℎ successes in # independent trials would be

%(- = ℎ) =
(
#

ℎ

)
?ℎ (1 − ?)#−ℎ where lim

#→∞

ℎ

#
= ?.

More generally, suppose that a total of # observations can be classified into : categories with frequencies

consisting of H8 observations in category 8, so that 0 ≤ H8 ≤ # and
∑:
8=1 H8 = # , then there are : proportions,

that is ratios A8 of frequencies to sample size, defined as

A8 = H8/#,

of which only : − 1 are independent since A1 + A2 + · · · + A: = 1. If these proportions are then interpreted as

estimates of the multinomial probabilities and it is wished to make inferences about these probabilities, then

we are in a situation that can be described as the analysis of proportions, or the analysis of categorical data.

Since the observations are integer frequencies and not measurements, they are not normally distributed, so

techniques like ANOVA should not be used, instead specialized methods to analyze frequencies must be

employed. In particular, exact estimates for variances and confidence limits are not always available, and

approximate confidence range estimates often exceed the theoretically possible limits since, for an estimate,

say ?̂, with lower 95% confidence limit �! , and upper 95% confidence limit �* we must have

0 ≤ �! ≤ ?̂ ≤ �* ≤ 1.

Furthermore, although exact confidence limits will not be symmetrical, approximate confidence limits will

be. For example, with 2 successes in 10 trials the estimate for the binomial parameter would be

?̂ = 0.2,

but the exact 95% confidence range calculated by SimFIT was found to be

0.0252 ≤ 0.2 ≤ 0.5561

so that �! = 0.2 − 0.1748 while �* = 0.2 + 0.3561. This illustrates a typical result that, for probability

estimates less than 0.5 confidence ranges are skewed to the right,while for estimates greater than 0.5 confidence

ranges are skewed to the left. So it is not accurate to report estimates as, e.g. ?̂ = (ℎ/#) ± U for some U.
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4.5.2 Binomial proportions (dichotomous data)

If there only two categories, such as success or failure, male or female, dead or alive, etc., the data are referred

to as dichotomous, and there is only one parameter to consider. So the analysis of two–category data is

based on the binomial distribution which is required when H events (e.g., successes) have been recorded in

# independent trials with constant probability of success (i.e., Bernoulli trials) and it is wished to explore

possible variations in the binomial parameter estimate

?̂ = H/#,

and its unsymmetrical confidence limits, possibly as ordered by an indexing parameter G.

Analyzing binomial proportions

From the main SimFIT menu choose [Statistics], [Analysis of proportions], then [Binomial proportions], and

examine the default test file binomial.tf3 which has the following format.

y N x

23 84 1

12 78 2

31 111 3

65 92 4

71 93 5

The columns in this data format must be as follows.

• Column 1: The number of successes 0 ≤ H ≤ #

• Column 2: The number of Bernoulli trials # > 0

• Column 3: An optional indexing parameter G

Note that the indexing parameter G is not used for any calculations, it is only required in order to identify,

label, and space the data for subsequent plotting. If this third column is missing, as in binomial.tf2, SimFIT

simply appends a third column of successive integers 1, 2, . . . , # . Typically G could be sample identifiers,

concentrations of chemical, time from start of treatment, etc.

The SimFIT analysis of proportions procedure accepts a matrix of such H, # data then calculates the binomial

parameters and derived parameters such as the Odds

Odds = ?̂/(1 − ?̂), where 0 < ?̂ < 1,

and log(Odds), along with standard errors and confidence limits. It also performs a chi-square contingency

table test and a likelihood ratio test for common binomial parameters as in the next table.

To test �0 : equal binomial ?-values for data in test file binomial.tf3

Sample-size i.e. number of pairs 5

Overall sum of H 202

Overall sum of # 458

Overall estimate of ? 0.4410

Lower 95% confidence limit 0.3950

Upper 95% confidence limit 0.4879

−2 log_ (−2!!) 118.3 #�$� = 4

p = %(j2 ≥ −2!!) 0.0000 Reject �0 at 1% significance level

Chi-square test statistic (�) 112.9 #�$� = 4

p = %(j2 ≥ �) 0.0000 Reject �0 at 1% significance level

After choosing to analyze the parameter estimates, the next table with the data, ? estimates, and exact 95%

confidence limits is displayed.
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H # lower-95% ?̂ upper-95%

23 84 0.18214 0.27381 0.38201

12 78 0.08210 0.15385 0.25332

31 111 0.19829 0.27928 0.37241

65 92 0.60242 0.70652 0.79688

71 93 0.66404 0.76344 0.84542

Plotting binomial proportions

These results can then be plotted as individual sample estimates with 95% confidence limits, as in this graph

where the overall estimate with overall confidence limits is also displayed.
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A useful rule of thumb is to analyze such plots for the position of confidence limits for the individual estimates

with respect to the other individual confidence limits and the overall confidence limits shown as dotted lines.

It is clear that samples 1, 2, and 3 lie below the overall confidence limits, while samples 4 and 5 lie above the

overall confidence limits, confirming the previous conclusions from the j2 test.

Plotting log odds

It should be emphasized that everything that can be done with binomial proportions can be done by calculating

and plotting parameter estimates ?̂ and confidence limits as just discussed. However, many experimentalists

prefer to work with log odds in order to emphasize differences in order of magnitudes. For instance, the data

can be plotted as log odds as in this next figure. However, to perform advanced graphics editing SimFIT always

transfers raw data not transformed data into the advanced editing, so it is necessary to transfer G, H/(#− H) into

the advanced editing option first of all, followed by choosing a reverse H-semilog interactive transformation

using logs to base ten. In addition, for finishing touches, the legends were edited and the H-axis moved to the

central position indicated.
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Binomial parameter confidence limits

It is obvious that a binomial parameter estimate ?̂ = H/# for the true population parameter ? must satisfy

0 ≤ ?̂ ≤ 1

and so the confidence limits should also be constrained to this range. Hence any accurate confidence limits

cannot be symmetrical but must be skewed and so, when a binomial parameter is estimated, it is not possible

to report the result in the usual way as ?̂ ± B̂, or as ?̂( ?̂ − B̂, ?̂ + B̂), where B̂ is estimated from the sample

and percentiles of a standard normal distribution. Nevertheless, many users of computer packages do not

understand this and prefer an approximate expression using the normal distribution because, as long as the

sample is large and ? ≈ 0.5, a binomial distribution can be approximated by a normal distribution. For that

reason a large sample 95% approximate central confidence range for the true population parameter ? is often

constructed using

?̃ − B̃ ≤ ? ≤ ?̃ + B̃, where B̃ = /U/2

√
?̃(1 − ?̃)/#̃

with #̃ = # + 4, and ?̃ = (H + 2)/#̃.

It is clear that for large samples with H ≈ #/2 the normal approximation will be adequate but, in order to

check the closeness of the approximate limits to the exact ones in any given case, SimFIT provides tables to

check the values. For instance, analysis of the test file binomial.tf4 yields the following comparison.
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?̂ = (H/#) with exact unsymmetrical small sample limits

y N Lower-95% ?̂ Upper-95%

23 84 0.182144 0.273810 0.382008

12 78 0.082102 0.153846 0.253321

31 111 0.198289 0.279279 0.372414

91 92 0.940922 0.989130 0.999725

1 93 0.000272 0.010753 0.058458

?̃ = (H + 2)/(# + 4) with approximate central limits [ ?̃ ± B̃]
y N Lower-95% ?̃ Upper-95% B̃

23 84 0.189866 0.284091 0.378316 0.094225

12 78 0.089290 0.170732 0.252173 0.081442

31 111 0.204283 0.286957 0.369630 0.082673

91 92 0.933945 0.968750 1.003555 0.034805 ***

1 93 -0.003524 0.030928 0.065380 0.034452 ***

*** Indicates parameter limits outside range (0,1)

The column B̂ indicates the amount B̂ added to and subtracted from ?̂ to derive the limits so that the results

can be reported as ?̂ ± B̂. It will be seen that modifying the data in test file binomial.tf3 to make test

file binomial.tf4 by editing in a couple of extreme values causes the approximate method to overflow or

underflow as indicated by ***. Actually the numerical calculation to estimate the exact confidence takes

much longer than estimation of the normal approximation, so SimFIT allows users to choose the method to

use when analyzing large samples.

Differences between probability estimates

For cases where the number of samples is relatively small, it is also sometimes helpful to examine tables that

highlight significant differences between estimates as follows, using the test file binomial.tf4.

3 (8, 9) = ?̂8 − ?̂ 9 , ##) = 1/|3 (8, 9) |
8 9 Lower-95% 3 (8, 9) Upper-95% Result p_sig. +0A (3 (8, 9)) ##) (95%cl)

1 2 -0.00455 0.11996 0.24448 Not significant 0.0590 0.00404 8 (*.*) NS

1 3 -0.13219 -0.00547 0.12125 Not significant 0.9326 0.00418 183 (*.*) NS

1 4 -0.81300 -0.71532 -0.61764 (1) < (4) 0.0000 0.00248 1 (*.*) NC

1 5 0.16542 0.26306 0.36069 (1) > (5) 0.0000 0.00248 4 (3,6)

2 3 -0.24109 -0.12543 -0.00977 (2) < (3) 0.0355 0.00348 8 (4,102) NNH

2 4 -0.91811 -0.83528 -0.75246 (2) < (4) 0.0000 0.00179 1 (*.*) NC

2 5 0.06033 0.14309 0.22586 (2) > (5) 0.0007 0.00178 7 (4,17) NC

3 4 -0.79596 -0.70985 -0.62374 (3) < (4) 0.0000 0.00193 1 (*.*) NC

3 5 0.18247 0.26853 0.35458 (3) > (5) 0.0000 0.00193 4 (3,5)

4 5 0.94857 0.97838 1.00818 (4) > (5) 0.0000 0.00023 1 (*.*) NC

p_sig. = significance, NNH = No. needed to harm, NS = Not significant, NC = Not calculated

Note that when the lower limit is negative and the upper limit is positive the confidence range includes zero so

that the difference between estimates is not significantly different from zero. When the parameters are listed

as different, the result can be interpreted as stricter (since U/2 is used) than a one–sided lower tail or upper

tail test (where U would normally be used). A purist would argue that, as three tests are being done on the

same data, the Bonferroni principle would require that significance levels should be divided by three anyway.

It should be noted that the number needed to treat (##)) is simply the reciprocal of the absolute difference

3 (8, 9) = ?8 − ? 9 , except that, to avoid overflow, this is constrained to the range 1 ≤ ##) ≤ 106. Where

confidence limits for ##) cannot be estimated, this is indicated by #�, and when the probability difference

is negative the number needed to harm is indicated by ##� instead of the confidence range, as will be seen

in the above table.



182 Statistical analysis

Often it is required to calculate pairwise differences between adjacent lines of the data file, this will happen

automatically if the sample size exceeds a certain limiting size. For instance a sample size of size # requires(#
2

)
lines of table to output the results from all pairwise comparisons whereas restricting analysis to adjacent

pairs only requires #/2. Here, for instance, is the result from analyzing the test file binomial.tf5 where

there are twenty lines of data requiring a table with only ten rows.

3 (8, 9) = ?̂8 − ?̂ 9 , ##) = 1/|3 (8, 9) |
8 9 Lower-95% 3 (8, 9) Upper-95% Result p_sig. +0A (3 (8, 9)) ##) (95%cl)

1 2 0.06707 0.20000 0.33293 (1) > (2) 0.0032 0.00460 5 (3,15)

3 4 0.01315 0.15000 0.28685 (3) > (4) 0.0317 0.00488 7 (3,76)

5 6 0.06707 0.20000 0.33293 (5) > (6) 0.0032 0.00460 5 (3,15)

7 8 0.07604 0.20000 0.32396 (7) > (8) 0.0016 0.00400 5 (3,13)

9 10 0.08322 0.20000 0.31678 (9) > (10) 0.0008 0.00355 5 (3,12)

11 12 0.11684 0.21000 0.30316 (11) > (12) 0.0000 0.00226 5 (3,9)

13 14 -0.23118 -0.14000 -0.04882 (13) < (14) 0.0026 0.00216 7 (4,20) NNH

15 16 -0.46386 -0.35000 -0.23614 (15) < (16) 0.0000 0.00338 3 (2,4) NNH

17 18 -0.15509 -0.05000 0.05509 Not sig. 0.3511 0.00288 20 (*.*) NS

19 20 -0.12002 0.00000 0.12002 Not sig. 1.0000 0.00375 >999999 (*.*) NS

p_sig. = significance, NNH = No. needed to harm, NS = Not significant, NC = Not calculated

Confidence limits for analysis of two proportions

Given two proportions ?8 and ? 9 estimated as

?̂8 = H8/#8
?̂ 9 = H 9/# 9

it is often wished to estimate confidence limits for the relative risk ''8 9 , the difference between proportions

�%8 9 , and the odds ratio $'8 9 , defined as

''8 9 = ?̂8/?̂ 9
�%8 9 = ?̂8 − ?̂ 9

$'8 9 =
?̂8/(1 − ?̂8)
?̂ 9/(1 − ?̂ 9 )

.

First of all note that, for small proportions, the odds ratios and relative risks are similar in magnitude. Further,

unlike the case of single proportions, exact confidence limits for these derivedparameters can not be calculated.

However, approximate central 100(1 − U)% confidence limits can be obtained using the large sample normal

approximations

log(''8 9) ± /U/2

√
1 − ?̂8
#8 ?̂8

+
1 − ?̂ 9
# 9 ?̂ 9

�%8 9 ± /U/2

√
?̂8 (1 − ?̂8)

#8
+
?̂ 9 (1 − ?̂ 9 )

# 9

log($'8 9 ) ± /U/2

√
1

H8
+ 1

#8 − H8
+ 1

H 9
+ 1

# 9 − H 9

provided ?̂8 and ?̂ 9 are not too close to 0 or 1. Here /U/2 is the upper 100U/2 percentage point, i.e., the lower

100(1− U/2) percentage point for the standard normal distribution, and confidence limits for ''8 9 and$'8 9
can be obtained using the exponential function.
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If the confidence regions estimated by this procedure include zero the significance is reported in the table of

differences as not significant. Otherwise only the relative magnitudes of the pair in question are indicated.

When the difference between two probabilities is positive, a very approximate estimate for the confidence

limits for ##) can be obtained using the values for �%8 9 .

As elsewhere in SimFIT the significance level can be set by the user, and either natural or base ten logarithms

can be plotted.
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4.5.3 Trinomial proportions (trichotomous data)

The trinomial distribution is encountered in the analysis of trichotomous data, where # observations are made

in a situation where there are only three possible disjoint categories, say G, H, or I. Data triples of counts in

categories G, H, I can be any partitions, such as the number of male, female or dead hatchlings from a batch of

eggs where it is hoped to determine a shift from equi-probable sexes.

From the main SimFIT menu select [A/Z], open program binomial, choose to plot trinomial confidence limits,

then analyze the default data set trinom.tf1 which has the following format.

#G #H #

2 2 6

20 20 60

200 200 600

2000 2000 6000

The format for trinomial analysis must be as in this data set as now summarized.

• Column 1: #G > 0 . . . The number of times category G was observed

• Column 2: #H > 0 . . . The number of times category H was observed

• Column 3: # = #G + #H + #I . . . The total number of observations

Clearly, the values in such a data matrix must all be non-negative integers subject to the constraint that column

1 plus column 2 cannot exceed column 3 in any row. After performing a chi-square test the following plot

is displayed which powerfully demonstrates the contraction of the confidence regions as the sample size

increases
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The main value of this graphical technique is to examine confidence regions for overlap in order to better

interpret the results from the chi-square test that SimFIT always performs on such data matrices. Also, the

plot can provide insight into the comparison of several different experiments using the following argument.
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A useful rule of thumb to see if parameter estimates differ significantly is to check their approximate central

95% confidence regions. If the regions are disjoint it indicates that the parameters differ significantly and, in

fact, parameters can differ significantly even with limited overlap. If two or more parameters are estimated, it

is valuable to inspect the joint confidence regions defined by the estimated covariance matrix and appropriate

chi-square critical value. Consider, for example, this figure generated by the contour plotting function of

program binomial.
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The contours are defined by

(( ?̂G − ?G), ( ?̂H − ?H))
[
?G (1 − ?G)/# −?G ?H/#
−?G ?H/# ?H (1 − ?H)/#

]−1 (
?̂G − ?G
?̂H − ?H

)
= j2

2:0.05

where

# = #G + #H + #I
?̂G = #G/#

and ?̂H = #H/#

When # = 20 the triples 9,9,2 and 7,11,2 cannot be distinguished, but when # = 200 the orbits are becoming

elliptical and converging to asymptotic values. By the time # = 600 the triples 210,330,60 and 270,270,60

can be seen to differ significantly.
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Theory

If, in a trinomial distribution, the probability of category 8 is ?8 for 8 = 1, 2, 3, then the probability % of

observing =8 in category 8 in a sample of size # = =1 + =2 + =3 from a homogeneous population is given by

% =
#!

=1!=2!=3!
?
=1

1
?
=2

2
?
=3

3

and the maximum likelihood estimates, of which only two are independent, are

?̂1 = =1/#,
?̂2 = =2/#,

and ?̂3 = 1 − ?̂1 − ?̂2.

The bivariate estimator is approximately normally distributed, when # is large, so that[
?̂1

?̂2

]
∼ "#2

([
?1

?2

]
,

[
?1(1 − ?1)/# −?1?2/#
−?1?2/# ?2(1 − ?2)/#

])

where "#2 signifies the bivariate normal distribution. Consequently

(( ?̂1 − ?1), ( ?̂2 − ?2))
[
?1 (1 − ?1)/# −?1?2/#
−?1?2/# ?2(1 − ?2)/#

]−1 (
?̂1 − ?1

?̂2 − ?2

)
∼ j2

2

and hence, with probability 95%,

( ?̂1 − ?1)2

?1 (1 − ?1)
+ ( ?̂2 − ?2)2

?2(1 − ?2)
+ 2( ?̂1 − ?1) ( ?̂2 − ?2)

(1 − ?1) (1 − ?2)
≤ (1 − ?1 − ?2)
# (1 − ?1) (1 − ?2)

j2
2;0.05 .

Such inequalities define regions in the (?1, ?2) parameter space which can be examined for statistically

significant differences between ?8 ( 9) in samples from populations subjected to treatment 9 .

Hence, where regions are clearly disjoint for groups treated differently or for different samples, it can be

concluded that parameters have been significantly affected by the treatments, as illustrated previously.
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4.5.4 Cochran-Mantel-Haenszel meta analyis

Meta analysis is widely used in areas such as evidence based medicine in order to examine several studies of

the same problem by different analysts, then extract the most plausible and objective overall conclusions. One

common situation is where there are : alternative 2 by 2 contingency tables available, and worked examples

to demonstrate the options available in SimFIT to analyze this type of data set will now be presented.

Open the SimFIT main menu, choose [Statistics], [Analysis of proportions], then [Meta Analysis] and examine

the default test file meta.tf1 which is formatted as follows.

H # G

126 226 1

35 96 1

908 1596 2

497 1304 2

913 1660 3

336 934 3

235 407 4

58 179 4

402 710 5

121 336 5

182 338 6

72 170 6

60 159 7

11 54 7

104 193 8

21 57 8

The format for SimFIT meta analysis data files must be exactly as now summarized.

• The number of rows in the data matrix must be an even number.

• Distinct 2 by 2 contingency tables are included as sequential pairs of adjacent rows.

• Column 1 at row 8 must contain the number of critical outcomes H8 ≥ 0, e.g. successful recovery.

• Column 2 at row 8 must contain the total number of observations #8 ≥ H8 , and not #8 − H8 which would

be the complement of H8 , i.e. the number of failures to respond to treatment.

• Column 3 at row 8 must contain the control variable G for use in plotting.

Note that control variable G is not used in subsequent calculations, and it is only used for identifying the

adjacent 2 by 2 contingency tables, and as a coordinate for plotting, which will be explained subsequently.

Obviously, the value of G in rows 9 and 9 + 1 must be the same for 9 = 1, 3, . . . , : − 1.

For instance, the first 2 by 2 contingency table that can be constructed from the data set is

126 100 and not 126 226

35 61 35 96

so we would have the probability estimates ?̂1 = 126/226 and ?̂2 = 35/96 and the odds ratio for this 2 by 2

contingency table would then be

2.196 =
?1/(1 − ?1)
?2/(1 − ?2)

.

Reading in this data set produces the following summary table.
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To test �0: equal binomial ?-values

Number of 2 by 2 tables 8

Overall sum of . 4081

Overall sum of # 8419

Overall estimate of ? 0.4847 95% confidence limits = (0.4740,0.4955)

−2 log_ (−2!!) 310.9 #�$� = 15

%(j2 ≥ −2!!) 0.0000 Reject �0 at 1% significance level

Chi-square test statistic (�) 306.9 #�$� = 15

%(j2 ≥ �) 0.0000 Reject �0 at 1% significance level

Subsequent analysis leads to these results

Cochran-Mantel-Haenszel 2 by 2 by : Meta Analysis

H # Odds Ratio � [=(1, 1)] +0A [=(1, 1)]
126 226 2.19600 113.00000 16.89720

35 96

908 1596 2.14296 773.23448 179.30144

497 1304

913 1660 2.17526 799.28296 149.27849

336 934

235 407 2.85034 203.50000 31.13376

58 179

402 710 2.31915 355.00000 57.07177

121 336

182 338 1.58796 169.00000 28.33333

72 170

60 159 2.36915 53.00000 9.00000

11 54

104 193 2.00321 96.50000 11.04518

21 57

�0: conditional independence (all odds ratios = 1)

�"� Test Statistic = 279.4

%(j2 ≥ �"�) = 0.0000 Reject �0 at 1% significance level

Common Odds Ratio = 2.174, 95% confidence limits = (1.914,2.471)

Overall 2 by 2 contingency table

H # − H
2930 2359

1151 1979

Overall Odds Ratio = 2.1360, 95% confidence limits = (1.950, 2.338)

The default log-odds plot for these 2 by 2 contingency tables can be easily viewed but to perform the editing

necessary to create the next plot the following procedure has to be used.

1. Read in data and perform the meta analysis.

2. Display the default log odds plot using logarithms to base 4 or 10 as required.

3. Choose the [Advanced] option.

4. Select the [Avanced editing] option to transfer the data into the simplot procedure.

5. Note: this always transfers data into simplot in original not transformed coordinates.

6. Select the [Tansform] option, then the reverse H-semilog transformation.

7. The [Titles], [Labels], and [Legends] options can then be used for fine tuning as required.
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Note that the sold circle represents the overall log odds ratio, while the dotted vertical line represents the

reference position corresponding to the special case ?1 = ?2, which serves to indicate orders of magnitude

deviation of the odds from the ideal case where the Odds = 1.

As the Odds are all greater than 1 with these data, the points displayed all lie to the right of this reference line.
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Various other tables can be displayed, such as the next one which summarizes the differences and calculate

##) , the approximate number needed to treat.

38, 9 = ?̂8 − ?̂ 9 , ##) = 1/|38, 9 |
Row(8) Row( 9) 38, 9 lower-95% upper-95% Conclusion +0A (38, 9 ) ##) (95%c.l.)

1 2 0.19294 0.07691 0.30897 ?1 > ?2 0.00350 6 (3,14)

3 4 0.18779 0.15194 0.22364 ?3 > ?4 0.00033 6 (4,7)

5 6 0.19026 0.15127 0.22924 ?5 > ?6 0.00040 6 (4,7)

7 8 0.25337 0.16969 0.33706 ?7 > ?8 0.00182 4 (2,6)

9 10 0.20608 0.14312 0.26903 ?9 > ?10 0.00103 5 (3,7)

11 12 0.11493 0.02360 0.20626 ?11 > ?12 0.00217 9 (4,43)

13 14 0.17365 0.04245 0.30486 ?13 > ?14 0.00448 6 (3,24)

15 16 0.17044 0.02682 0.31406 ?15 > ?16 0.00537 6 (3,38)

Zero cells

Contingency table analysis is compromised when cells have zero frequencies, as many of the usual summary

statistics become undefined. Structural zeros can be handled by applying loglinear GLM analysis but sampling

zeros presumably arise from small samples with extreme probabilities. Such tables can be analyzed by exact

methods, but usually a positive constant is added to all the frequencies to avoid the problems.
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The next table illustrates how this problem is handled in SimFIT when analyzing data in the test file meta.tf4;

the correction of adding 0.01 to all contingency tables frequencies being indicated.

Values ranging from 0.00000001 to 0.5 have been suggested elsewhere for this purpose, but all such choices

are a compromise and, if possible, sampling should be continued until all frequencies are nonzero.

Cochran-Mantel-Haenszel 2 x 2 x : Meta Analysis

H # Odds Ratio � [=(1, 1)] +0A [=(1, 1)]
*** 0.01 added to all cells for next calculation

0 6 0.83361 0.01091 0.00544

0 5

*** 0.01 added to all cells for next calculation

3 6 601.00000 1.51000 0.61686

0 6

*** 0.01 added to all cells for next calculation

6 6 1199.00995 4.01000 0.73008

2 6

*** 0.01 added to all cells for next calculation

5 6 0.00825 5.51000 0.25454

6 6

*** 0.01 added to all cells for next calculation

2 2 0.40120 2.01426 0.00476

5 5

�0: conditional independence (all odds ratios = 1)

�"� Test Statistic = 386.2

%(j2 ≥ �"�) = 0.0494, Reject �0 at 5% significance level

Common Odds Ratio = 6.749, 95% confidence limits = (1.144, 39.81)

Overall 2 by 2 table

H # − H
16 10

13 15

Overall Odds Ratio = 1.842, 95% confidence limits = (0.6241,5.435)

Creating composite log odds plots

It is often necessary to create extensive log odds plots for three main reasons.

1. A single large data set is presented for analysis.

This presents no problems if the control variables have been set correctly. However, if the graph

becomes crowded it will need to be stretched.

2. Several data sets are available.

These can be combined into a single data set by copying and pasting, or by using the SimFIT program

editmt. However the control variables must already be consistent for this purpose or can be made so by

editing at the same time.

3. Several individual log odds plots are available.

In this case individual coordinate files can be saved then combined as a library file for SimFIT program

simplot to make a composite plot. For this purpose the control variables on the individual data sets

must be consistent to control spacing.

To illustrate these issues of spacing and stretching a worked example follows.
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(1) The data

Test files meta.tf1, meta.tf2, and meta.tf3

were analyzed in sequence using the SimFIT

Meta Analysis procedure. Note that, in these

files, column 3 contains spacing coordinates so

that data will be plotted consecutively.

(2) The ASCII coordinate files

During Meta Analysis, 100(1−U)% confidence

limits on the Log-Odds-Ratio resulting from a

2 by 2 contingency tables with cell frequencies

=8 9 can be constructed from the approximation

4̂ where

4̂ = /U/2

√
1

=11

+ 1

=12

+ 1

=21

+ 1

=22

.

When Log-Odds-Ratios with error bars are dis-

played, the overall values (shown as filled sym-

bols) with error bars are also plotted with a G

coordinate one less than smallest G value on the

input file. For this figure, error bar coordinates

were transferred into the project archive using

the [Advanced] option to save ASCII coordinate

files.

(3) Creating the composite plot

Program simplot was opened and the six er-

ror bar coordinate files were retrieved from the

project archive. Experienced users would do

this more easily using a library file of course.

Reverse H-semilog transformation was selected,

symbols were chosen, axes, title, and legends

were edited, then half bracket hooks identifying

the data were added as arrows and extra text.

(4) Creating the PostScript file

Vertical format was chosen then, using the op-

tion to stretch PostScript files, the H coordinate

was stretched by a factor of two.

(5) Editing the PostScript file

To create the final PostScript file for LATEX

a tighter bounding box was calculated using

gsview then, using notepad, clipping coordi-

nates at the top of the file were set equal to the

BoundingBox coordinates, to suppress excess

white space. This can also be done using the

[Style] option to omit painting a white back-

ground, so that PostScript files are created with

transparent backgrounds, i.e. no white space,

and clipping is irrelevant.
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Theory

A pair of success/failure classifications with H successes in # trials, i.e. with frequencies =11 = H1, =12 =

#1 − H1, =21 = H2, and =22 = #2 − H2, results in a 2 by 2 contingency table, and meta analysis is used for

exploring : sets of such 2 by 2 contingency tables. That is, each row of each table is a pair of numbers of

successes and number of failures, so that the Odds ratio in contingency table : can be defined as

Odds ratio: =
H1:/(#1: − H1: )
H2:/(#2: − H2: )

=
=11:=22:

=12:=21:

.

Typically, the individual contingency tables would be for partitioning of groups before and after treatment,

and a common situation would be where the aim of the meta analysis would be to assess differences between

the results summarized in the individual contingency tables, or to construct a best possible Odds ratio taking

into account the sample sizes for appropriate weighting. Suppose, for instance, that contingency table number

: is

=11: =12: =1+:
=21: =22: =2+:
=+1: =+2: =++:

where the marginals are indicated by plus signs in the usual way. Then, assuming conditional independence

and a hypergeometric distribution, the mean and variance of =11: are given by

� (=11: ) = =1+:=+1:/=++:
+ (=11:) =

=1+:=2+:=+1:=+2:

=2
++: (=++: − 1)

,

and, to test for significant differences between< contingency tables, the Cochran-Mantel-Haenszel test statistic

�"�, given by

�"� =

{�����
<∑
:=1

(=11: − � (=11: ))
�����− 1

2

)2

<∑
:=1

+ (=11:)

can be regarded as an approximately chi-square variable with one degree of freedom. Some authors omit the

continuity correction and sometimes the variance estimate is taken to be

+̂ (=11: ) = =1+:=2+:=+1:=+2:/=3
++: .

The estimated common odds ratio \̂"� presented in the previous tables is calculated allowing for random

effects using

\̂"� =

<∑
:=1

(=11:=22:/=++: )

<∑
:=1

(=12:=21:/=++: )
,
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while the variance is used to construct the confidence limits from

f̂2 [log(\̂"� )] =

<∑
:=1

(=11: + =22: )=11:=22:/=2
++:

2

(
<∑
:=1

=11:=22:/=++:

)2

+

<∑
:=1

[(=11: + =22: )=12:=21: + (=12: + ==21: )=11:=22: ]/=2
++:

2

(
<∑
:=1

=11:=22:/=++:

) (
<∑
:=1

=12:=21:/=++:

)

+

<∑
:=1

(=12: + =21: )=12:=21:/=2
++:

2

(
<∑
:=1

=12:=21:/=++:

)2
.

Also, in these tables, the overall 2 by 2 contingency table using the pooled sample assuming a fixed effects

model is listed for reference, along with the overall odds ratio and estimated confidence limits calculated using

the expressions presented elsewhere for an arbitrary log odds ratio.

The table of differences illustrates another technique to study sets of 2 by 2 contingency tables. SimFIT

can calculate all the standard probability statistics for sets of paired experiments. In this case the pairwise

differences are illustrated along with the number needed to treat i.e. ##) = 1/|3 |, but it should be remembered

that such estimates have to be interpreted with care. For instance, the differences and log ratios change sign

when the rows are interchanged.

Again, it should be emphasized that SimFIT outputs values and confidence limits both for the differences

31,2 = ?̂1 − ?̂2 and the calculated ##) = 1/31,2 values, but the choice between these quantities for data

interpretation is controversial. To appreciate the reason why a value of ##) calculated from a sample is just

a coarse estimate of the size of a sample needed to treat in order to obtain one additional cure, and could be

very misleading, consider the situation of binomial trials with exactly known probabilities ?1 and ?2, and

?1 > ?2. The condition that the expectation of a binomial variable -1 with probability ?1 should be one

greater than than a binomial variable -2 with probability ?2 given a sample size # is

� (-1) = � (-2) + 1

#?1 = #?2 + 1, so that

# =
1

?1 − ?2

.

Of course ##) calculated from data is not the exact # as just derived but is given by the random function

##) =
1

?̂1 − ?̂2

where there is experimental uncertainty in the parameter estimates. This is one reason why many experts

recommend relying on conclusions based directly on the difference 31,2, because this quantity is more robust

for the purpose of hypothesis testing than ##) where reciprocation exaggerates random effects. Another

reason is that it is possible to calculate accurate confidence limits for the difference 31,2, but confidence limits

calculated for ##) are unsymmetrical and much less intuitive. It just seems more informative to say, for

instance, that with a possible error of up to 5%, a treatment improves the chance of cure from approximately

10 to 20%, or say from 60 to 70%, than to simply report NNT = 10 to cover all possible 10% improvements
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4.5.5 Bioassay, dose response curves and LD50

It is often of interest to fit a model to data in order to estimate parameters such as the 50% point from

dose-response curves, and SimFIT provides several dedicated programs for this purpose such as the following.

• exfit: fits one or sums of exponentials and calculates the area under the curve (AUC).

• mmfit: fits one or sums of Michaelis-Menten models and calculates the apparent  <.

• hlfit: fits one or sums of binding models and calculates the apparent  0 .

• sffit: fits cooperative binding models and calculates half saturation points.

• gcfit: fits nonlinear growth models and calculates maximal growth rates.

• inrate: fits several models and calculates initial rates.

• polnom: fits polynomials and calculates H given G.

• calcurve: fits cubic splines and calculates H given G.

• qnfit: fits user defined models and calculates H given G.

These programs all assume uncorrelated normally distributed errors, but there are many procedures, such

as bioassay, dose-response curves, determination of LD50, or EC50 etc. where binomially distributed errors

would be more appropriate, and so it would be better to fit general linear models (GLM)

This would be a situation such as the following dose-response data set contained in the default test file

ld50.tf1 which can be inspected after opening the main SimFIT menus, followed by selecting [Statistics],

[Analysis of proportions], then [Bioassay, dose response curves and LD50].

H # G

1 10 1

4 20 2

4 10 3

5 10 4

15 30 5

7 10 6

9 10 7

12 15 8

9 10 9

8 10 10

Data for determination of LD50 by GLM requires the above format as follows for : groups and 8 = 1, 2, . . . , :.

• Column 1: H8 ≥ 0, the number of animals dying in group 8

• Column 2: #8 ≥ H8 , the number of animals tested in group 8

• Column 3: G8 ≥ 0, the amount of poison being tested on group 8

If the : groups are all independent and each group is homogeneous, i.e., each animal in the group has exactly

the same probability ? of dying given the same time of exposure to poison at amount G for the same period of

time, then H is binomially distributed and ?8 can be estimated as ?̂8 = H8/#8 , together with exact confidence

limits.
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It is usual to investigate a data set to choose a model with the lowest deviance and the next table shows the

results from analysis of the data in the default test file using the three GLM link functions indicated.

Method: GLM with binomial errors, Link: Logistic

Number of groups = 10, Deviance = 4.246

Parameter Value Standard error Lower 95%cl Upper 95%cl ?

Constant -2.0986 0.4733 -3.190 -1.007 0.0022

Slope 0.45070 0.08725 0.2495 0.6519 0.0009

50% point 4.6564 0.4441 3.632 5.681 0.0000

Method: GLM with binomial errors, Link: Probit

Number of groups = 10, Deviance = 4.564

Parameter Value Standard error Lower 95%cl Upper 95%cl ?

Constant -1.2513 0.2708 -1.876 -0.6269 0.0017

Slope 0.26678 0.04855 0.1548 0.3787 0.0006

50% point 4.6902 0.4463 3.661 5.719 0.0000

Method: GLM with binomial errors, Link: Complementary log-log

Number of groups = 10, Deviance = 6.600

Parameter Value Standard error Lower 95%cl Upper 95%cl ?

Constant -1.6696 0.3295 -2.429 -0.9097 0.0010

Slope 0.26635 0.05079 0.1492 0.3835 0.0008

50% point 4.89220 0.5182 3.697 6.087 0.0000

In this case the logistic and probit models give a similar fit, which is somewhat better than the complementary

log-log, and so the standard probit graph is shown next.
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Various options are available for testing the goodness of fit by plotting residuals or inspecting tables of

residuals as shown next.

Number . -value Theory Deviance Leverages

1 1 1.624 -0.5692 0.2308

2 4 4.729 -0.3912 0.3731

3 4 3.260 0.4907 0.1391

4 5 4.270 0.4645 0.1030

5 15 15.99 -0.3612 0.2652

6 7 6.366 0.4227 0.09853

7 9 7.311 1.328 0.1282

8 12 12.17 -0.1118 0.2492

9 9 8.749 0.2476 0.1985

10 8 9.217 -1.219 0.2143

Note that exact 95% confidence limits can also be plotted but, as these can be large and very distracting with

small samples, they can be switched off.

A further point can be made about this GLM procedure. Suppose that, instead of a file with H, #, G for the

proportion failing, we input a file with # − H, #, G. This would then be the proportion surviving as plotted

below.

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10

(N - y), N, X Values from LD50.TF1

Group Number

P
ro

po
rt

io
n 

S
ur

vi
vi

ng

Note that this change from proportion failing to the complement, that is the proportion surviving, leads to

exactly the same estimate for LD50.

Another variant of the this technique is that a parameter can be changed in order to estimate other percentiles

than the 50% point, e.g., LD25, LD75, EC25, ID25, ED75, etc.
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Theory 1: GLM

It is important to understand that fitting dose-response curves in the manner just described does not correspond

to the usually understood technique of adjusting the parameters of a deterministic mathematical model by

optimization to obtain a best-fit curve that minimizes the sum of squared residuals. For this reason a brief

overview of generalized linear modeling (GLM) is now presented.

To understand the motivation for this technique, it is usual to refer to a typical doubling dilution experiment

in which diluted solutions from a stock containing infected organisms are plated onto agar in order to count

infected plates, and hence estimate the number of organisms in the stock. Suppose that before dilution the

stock had # organisms per unit volume, then the number per unit volume after G = 0, 1, . . . , < dilutions will

follow a Poisson dilution with `G = #/2G . Now the chance of a plate receiving no organisms at dilution G

is the first term in the Poisson distribution , that is exp(−`G), so if ?G is the probability of a plate becoming

infected at dilution G, then

?G = 1 − exp(−`G), G = 1, 2, . . . , <.

Evidently, where the ?G have been estimated as proportions from HG infected plates out of =G plated at dilution

G, then # can be estimated using

log[− log(1 − ?G)] = log# − G log 2

considered as a maximum likelihood fitting problem of the type

log[− log(1 − ?G)] = V0 + V1G

where the errors in estimated proportions ?G = HG/=G are binomially distributed. So, to fit a generalized

linear model, you must have independent evidence to support your choice for an assumed error distribution for

the dependent variable. from the normal, binomial, Poisson, or gamma distributions, in which it is supposed

that the expectation of . is to be estimated, i.e.,

� (. ) = `.

The associated pdfs are parameterized as follows.
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It is a mistake to make the usual unwarranted assumption that measurements imply a normal distribution,

while proportions imply a binomial distribution, and counting processes imply a Poisson distribution, unless

the error distribution assumed has been verified for your data. Another very questionable assumption that has

to made is that a predictor function [ exists, which is a linear function of the < covariates, i.e., independent

explanatory variables, as in

[ =

<∑
9=1

V 9G 9 .

Finally, yet another dubious assumption must be made, that a link function 6(`) exists between the expected

value of . and the linear predictor. The choice for

6(`) = [
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depends on the assumed distribution as follows. For the binomial distribution, where H successes have been

observed in # trials, the link options are the logistic, probit or complementary log-log

logistic: [ = log

(
`

# − `

)

probit: [ = Φ
−1

( `
#

)
complementary log-log: [ = log

(
− log

(
1 − `

#

))
.

Where observed values can have only one of two values, as with binary or quantal data, it may be wished

to perform binary logistic regression. This is just the binomial situation where H takes values of 0 or 1,

# is always set equal to 1, and the logistic link is selected. However, for the normal, Poisson and gamma

distributions the link options are

exponent: [ = `0

identity: [ = `

log: [ = log(`)
square root: [ =

√
`

reciprocal: [ =
1

`
.

In addition to these possibilities, you can supply weights and install an offset vector along with the data set,

the regression can include a constant term if requested, the constant exponent 0 in the exponent link can be

altered, and variables can be selected for inclusion or suppression in an interactive manner. However, note

that the same strictures apply as for all regressions: you will be warned if the SVD has to be used due to

rank deficiency and you should redesign the experiment until all parameters are estimable and the covariance

matrix has full rank, rather than carry on with parameters and standard errors of limited value.

Theory 2: 95% confidence range in inverse prediction

The calculation of confidence limits for derived values, such as LD50 in the present case, that are obtained

from the parameter estimates from fitting along with the estimated parameter covariance matrix should be

noted.

polnom estimates non-symmetrical confidence limits assuming that the # values of H for inverse prediction

and weights supplied for weighting are exact, and that the model fitted has = parameters that are justified

statistically. calcurve uses the weights supplied, or the estimated coefficient of variation, to fit confidence

envelope splines either side of the best fit spline, by employing an empirical technique developed by simulation

studies. Root finding is employed to locate the intersection of the H8 supplied with the envelopes. The AUC,

LD50, half-saturation, asymptote and other inverse predictions in SimFIT use a C distribution with # − =
degrees of freedom, and the variance-covariance matrix estimated from the regression. That is, assuming a

prediction parameter defined by ? = 5 (\1, \2, . . . , \=), a central 95% confidence region is constructed using

the prediction parameter variance estimated by the propagation of errors formula

+̂ (?) =
=∑
8=1

(
m 5

m\8

)2

+̂ (\8) + 2

=∑
8=2

8−1∑
9=1

m 5

m\8

m 5

m\ 9
�̂+ (\8 , \ 9 ) .

Note that this formula for the propagation of errors can be used to calculate parameter standard errors for

parameters that are calculated as functions of parameters that have been estimated by fitting, such as apparent

maximal velocity when fitting sums of Michaelis-Menten functions. However, such estimated standard errors

will only be very approximate.
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5.1 Power and sample size

Hypothesis testing is based upon specifying a null hypothesis �0 then testing to see if a statistic calculated

from the data is sufficiently extreme to justify rejecting the null hypothesis. There are two possible errors.

• Type I error

The null hypothesis is rejected when it is true and the probability of this happening is U.

• Type II error

The null hypothesis is accepted when it is false and the probability of this happening is V.

The significance level is U while the power is 1 − V, often expressed as a percentage. The situation can be

summarized in the following table.

Decision �0 is true �0 is false

Reject �0 Type I error Correct

U 1 − V
Accept �0 Correct Type II error

1 − U V

Calculations related to power as a function of sample size can be performed as long as the statistical dis-

tributions and parameters required for the null hypothesis are correct and specified. Unfortunately, while

calculation of U is straightforward, calculation of V requires that an alternative hypothesis �� be specified

and can be much more difficult.

In any given situation it may be necessary to estimate the sample size = required given U and V, or to estimate

V given U and =, as it is not possible to simultaneously minimize U and V. If = is fixed, then increasing U

decreases V, while decreasing U increases V. The following cases are discussed here.

1. One binomial sample

2. Two binomial samples

3. One normal sample

4. Two normal samples

5. Multiple normal samples

6. One and two variances

7. One and two correlations

8. The chi-squared test

For each of these cases, the minimum essential theoretical details are given followed by typical examples.

Plots of power as a function of sample size can also be created. Finally, a more comprehensive description of

the underlying theory is given.
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1. Power calculations for 1 binomial sample

The calculations are based on the binomial test, the binomial distribution, and the normal approximation to it

for large samples and ? not close to 0 or 1.

If the theoretical binomial parameters ?0 and @0 = 1− ?0 are not too close to 0 or 1 and it is wished to estimate

this with an error of at most X, then the sample size required is

= =

/2
U/2?0@0

X2
,

where %(/ > /U/2) = U/2,
or Φ(/U/2) = 1 − U/2,

which, for many purposes, can be approximated by = ≈ 1/X2. The power in a binomial or sign test can be

approximated, again if the sample estimates ?1 and @1 = 1 − ?1 are not too close to 0 or 1, by

1 − V = %

(
/ <

?1 − ?0√
?0@0/=

− /U/2
√
?1@1

?0@0

)
+ %

(
/ >

?1 − ?0√
?0@0/=

+ /U/2
√
?1@1

?0@0

)
.

Example 1

This demonstrates calculations that are possible when, in a sample of size =, G successes are used to estimate

the binomial parameter ?̂ = G/=. Given a binomial distribution with �0 : parameter ? = ?0, �� : parameter

? = ?1, and U specified, then three calculations are possible, namely

1. Calculate =(X), i.e. = giving an error at most X

2. Calculate =(V), i.e. = given V

3. Calculate V(=), i.e. V given =

as summarized in the next table.

Example 1: Power analysis for 1 binomial sample

For =(X) U = 0.05 ? = 0.5 X = 0.1 = = 96

For =(V) U = 0.05 V = 0.2 ?0 = 0.5 ?1 = 0.6 = = 192

For V(=) U = 0.05 ?0 = 0.5 ?1 = 0.6 power = 80% = = 192

The conclusion is that a sample size of 96 is required to ensure that the parameter estimated is within 0.1 of

the true parameter ? = 0.5 for 95% of the results from repeated samples, while to confirm that the parameter

is distinct from ? = 0.6 with 80% power requires a sample size of 192.

2. Power calculations for 2 binomial samples

For two sample proportions ?1 and ?2 that are similar and not too close to 0 or 1, as in a 2 by 2 contingency

table, the sample size = and power 1 − V associated with a binomial test for �0 : ?01 = ?02 can be estimated

using one of numerous methods based upon normal approximations. For example

= =
(?1@1 + ?2@2) (/U/2 + /V)2

(?1 − ?2)2
,

/V =

√
=(?1 − ?2)2

?1@1 + ?2@2

− /U/2,

V = %(/ ≥ /V),
1 − V = Φ(/V) .
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Example 2a

This deals with the situation where two samples of size = are analyzed to determine if the estimates ?̂1 = G1/=
and ?̂2 = G2/= differ significantly. Parameters can also be input as log odds ratios.

Example 2a. Power analysis for 2 binomial samples

V(=) U = 0.05 ?1 = 0.6 ?2 = 0.7 power = 32% n = 100

V(=) U = 0.05 ?1 = 0.6 ?2 = 0.7 power = 56% n = 200

V(=) U = 0.05 ?1 = 0.6 ?2 = 0.7 power = 73% n = 300

=(V) U = 0.05 V = 0.2 ?1 = 0.6 ?2 = 0.7 n = 353

Note that, for ?1 = 0.6 and ?2= 0.7 the power increases from 32%, to 56%, to 73% as = increases from 100,

to 200, to 300, while a sample of size = = 353 is required to achieve 80% power.

Example 2b

Power for the Fisher exact test with sample size = used to estimate both ?1 and ?2, as for the binomial test,

can be calculated using

1 − V = 1 −
2=∑
A=0

∑
�A

(
=

G

) (
=

A − G

)
,

where A = total successes,

G = number of successes in the group,

and �A = the critical region.

This can be inverted by SimFIT to estimate =, but unfortunately the sample sizes required may be too large

to implement by the normal procedure of enumerating probabilities for all 2 by 2 contingency tables with

consistent marginals.

Example 2b. Power analysis for the Fisher Exact Test

V(=) U = 0.05 ?1 = 0.6 ?2 = 0.7 power = 37% = = 100

V(=) U = 0.05 ?1 = 0.6 ?2 = 0.7 power = 64% = = 200

=(V) U = 0.05 V = 0.2 ?1 = 0.6 ?2 = 0.7 = = 304

For sample sizes of 100 and 200 the power is 37% and 64% but sample sizes of 304 are required for 80%

power.

3. Power calculations for 1 normal sample

The calculations for a 1 sample C test are based upon the confidence limit formula for the population mean `

from a sample of size =, using the sample mean Ḡ, sample variance B2 and the C distribution, as follows

%

(
Ḡ − CU/2,=−1

B
√
=
≤ ` ≤ Ḡ + CU/2,=−1

B
√
=

)
= 1 − U,

where Ḡ =

=∑
8=1

G8/=,

B2 =

=∑
8=1

(G8 − Ḡ)2/(= − 1),

%(C ≤ CU/2,a) = 1 − U/2,
and a = = − 1.
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You input the sample variance, which should be calculated using a sample size comparable to those predicted

above. Power calculations can be done using the half width ℎ = CU/2,=−1B/
√
=, or using the absolute difference

X between the population mean and the null hypothesis mean as argument. The following options are available:

❑ =(ℎ), i.e. to calculate the sample size necessary to estimate the true mean within a half width ℎ

= =

B2C2
U/2,=−1

ℎ2
;

❑ =(X), i.e. to calculate the sample size necessary for an absolute difference X

= =
B2

X2
(CU/2,=−1 + CV,=−1)2; or

❑ V(=), i.e. to estimate the power

CV,=−1 =
X√
B2/=

− CU/2,=−1 .

It should be noted that the sample size occurs in the degrees of freedom for the C distribution, necessitating an

iterative solution to estimate =.

Example 3

Example 3. Power analysis for 1 sample C test

=(ℎ) ℎ = 1 U = 0.05 B2 = 1 = = 7

=(X) X = 1 U = 0.05 V = 0.2 B2 = 1 = = 10

X(=, V) = = 10 U = 0.05 V = 0.2 B2 = 1 X = 0.9947

V(=) = = 10 X = 1 U = 0.05 B2 = 1 V = 0.1958

4. Power calculations for 2 normal samples

These calculations are based upon the same type of C test approach as just described for 1 normal sample,

except that the pooled variance B2? should be input as the estimate for the common variance f2, i.e.,

B2? =

=G∑
8=1

(G8 − Ḡ)2 +
=H∑
9=1

(H 9 − H̄)2

=G + =H − 2

where - has sample size =G and . has sample size =H . The following options are available:

❍ To calculate the sample size necessary to estimate the difference between the two population means

within a half width ℎ

= =

2B2?C
2
U/2,2=−2

ℎ2
;

❍ To calculate the sample size necessary to detect an absolute difference X between population means

= =
2B2?

X2
(CU/2,2=−2 + CV,2=−2)2; or

❍ To estimate the power

CV,2=−2 =
X√

2B2?/=
− CU/2,2=−2 .
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The C test has maximum power when =G = =H but, if the two sample sizes are unequal, calculations based on

the the harmonic mean =ℎ should be used, i.e.,

=ℎ =
2=G=H

=G + =H
,

so that =H =
=ℎ=G

2=G − =ℎ
.

Example 4

In order to perform calculations it is necessary to assume that both samples are from normal distributions

with the same variance and then input those of the following parameters as required.

• The significance level U

• An accurate estimate for the common variance B2

• Choice of a 2-tail test or 1-tail test

• The half width ℎ to determine a 95% confidence range 2ℎ for the difference between the sample means

• The minimum absolute difference X between the sample means that can be detected

• The power 100(1 − V)%

• The sample size =

The following table was created using the analysis of power and sample size option from the statistical

calculations procedure available from the [Statistics] menu on the SimFIT main menu, or by using the [A/Z]

option to open program simstat.

Example 4. Power analysis for the C test

=(ℎ) ℎ = 1 U = 0.05 B2 = 1 = = 9

=(X) X = 1 U = 0.05 V = 0.2 B2 = 1 = = 17

X(=) = = 17 U = 0.05 V = 0.2 B2 = 1 X = 0.9912

V(=) = = 17 X = 1 U = 0.05 B2 = 1 V = 0.1931

=(ℎ) ℎ = 0.5 U = 0.05 B2 = 0.5193 = = 18

=(X) X = 0.5 U = 0.05 V = 0.1 B2 = 0.5193 = = 45

V(=) = = 15 X = 1 U = 0.05 B2 = 0.5193 V = 0.0454

The last three entries in the above table would be typical. They are for two samples of size = = 15 with pooled

variance B2 = 0.5193, and the results would be interpreted as follows.

• =(ℎ) shows that a sample size of = = 18 would be required to have a 95% confidence interval for the

difference between the true means no larger than 1, that is with ℎ = 0.5.

• =(X) illustrates that a sample size of = = 45 is necessary in order for a 90% chance of detecting a

difference X between the true means as small as 0.5.

• V(=) demonstrate that the power for detecting a difference of X = 1 between the true means has a power

of 95.46%.

5. Power calculations for : normal samples

The calculations are based on the 1-way analysis of variance technique, i.e. ANOVA. Note that the SimFIT

power as a function of sample size procedure also allows you to plot power as a function of sample size, which

is particularly useful with ANOVA designs where the number of columns : can be of interest, in addition



204 Statistical calculations

to the number per sample =. The power calculation involves the � and non-central � distributions and you

calculate the required = values by using graphical estimation to obtain starting estimates for the iteration. If

you choose a = value that is sufficient to make the power as a function on = plot cross the critical power, the

program then calculates the power for sample sizes adjacent to the intersection, which is of use when studying

: and = for ANOVA.

Example 5

All the power procedures available in SimFIT provide the ability to plot power as a function of sample size

but this particularly useful with ANOVA, as will now be explained.

It is important in the design of experiments to be able to estimate the sample size needed to detect a significant

effect. For such calculations you must specify all the parameters of interest except one, then calculate

the unknown parameter using numerical techniques. For example, the problem of deciding whether one

or more samples differ significantly is a problem in the Analysis of Variance, as long as the samples are

all normally distributed and with the same variance. You specify the known variance, f2, the minimum

detectable difference between means, Δ , the number of groups, :, the significance level, U, and the sample

size per group, =. Then, using nonlinear equations involving the � and noncentral � distributions, the power,

100(1 − V) can be calculated. It can be very confusing trying to understand the relationship between all

of these parameters so, in order to obtain an impression of how these factors alter the power, a graphical

technique is very useful, as in this figure.
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simstat was used to create this graph. The variance, significance level, minimum detectable difference and

number of groups were fixed, then power was plotted as a function of sample size. The ASCII text coordinate

files from several such plots were collected together into a library file to compose the joint plot using simplot.

Note that, if a power plot reaches the current power level of interest, the critical power level is plotted (80%

in the above plot) and the = values either side of the intersection point are displayed.
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6. Power calculations for 1 and 2 variances

The calculations depend on the fact that, for a sample of size = from a normal distribution with true variance

f2
0
, the function j2 defined as

j2
=

(= − 1)B2

f2
0

is distributed as a chi-square variable with = − 1 degrees of freedom. Also, given variance estimates B2G and

B2H obtained with sample sizes =G and =H from the same normal distribution, the variance ratio � defined as

� = max

(
B2G

B2H
,
B2H

B2G

)

is distributed as an � variable with either =G , =H or =H , =G degrees of freedom. If possible =G should equal =H ,

of course. The 1-tailed options available are:

❑ �0 : f2 ≤ f2
0

against �1 : f2 > f2
0

1 − V = %(j2 ≥ j2
U,=−1f

2
0 /B2);

❑ �0 : f2 ≥ f2
0

against �1 : f2 < f2
0

1 − V = %(j2 ≤ j2
1−U,=−1f

2
0 /B

2); or

❑ Rearranging the samples, if necessary, so that B2G > B
2
H then

�0 : f2
G = f

2
H against �1 : f2

G ≠ f
2
H

/V =

√
2<(=H − 2)
< + 1

log

(
B2G

B2H

)
− /U

where < =
=G − 1

=H − 1
.

Example 6a

This example shows the results from performing a one-tail test on a variance estimate B2
1

of 2.6898 obtained

with a sample size of 8 compared to a theoretical value of B2
0

of 1.5. A confidence interval for the sample

variance is calculated as well as the actual power, followed by the sample size needed for 90% power.

Example 6a: Test for �0 : f2 ≤ 1.5, �1 : f2 > 1.5

Sample variance B2
1

2.6898

Sample size used to calculate B2
1

8

95% confidence interval for B2
1

1.1758, 11.142

Test statistic (�) 12.552

%(j2 ≥ �) 0.0838

Power of this test 34.6486% (for U = 0.05)

Minimal sample size 51 (for U = 0.05, V = 0.1)

Example 6b

This example explores the power as a function of sample size for a two-tail variance ratio test using samples

with variances B2
1
= 21.87(=1 = 11) and B2

2
= 15.36(=2 = 8), i.e. for the null hypothesis�0 : f2

1
= f2

2
. Details

for two-tail tests are also given for the additional hypothetical cases with the same variances but estimated

with sample sizes =1 = =2 = 60 and =1 = 20, =2 = 30.
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Example 6b. Two-tailed variance ratio (�) test

Sample variance B2
1

21.87

Sample variance B2
2

15.36

Sample size =1 11

Sample size =2 8

Variance ratio (+') 1.4238

%(� ≥ +') 0.3284

Power of this actual test 15.359% (for U = 0.05)

Minimal sample size 86 (for U = 0.05, V = 0.1)

Hypothetical sample size =1 60

Hypothetical sample size =2 60

Variance ratio (+') 1.4238

%(� ≥ +') 0.0889

Power of this hypothetical test 76.763% (for U = 0.05)

Hypothetical sample size =1 20

Hypothetical sample size =2 30

Variance ratio (+') 1.4238

%(� ≥ +') 0.1908

Power of this hypothetical test 38.348% (for U = 0.05)

7. Power calculations for 1 and 2 correlations

The correlation coefficient A calculated from a normally distributed sample of size = has a standard error

BA =

√
1 − A2

= − 2

and is an estimator of the population correlation d. A test for zero correlation, i.e., �0 : d = 0, can be based

on the statistics

C =
A

BA
,

or � =
1 + |A |
1 − |A | ,

where C has a C distribution with = − 2 degrees of freedom, and � has an � distribution with = − 2 and = − 2

degrees of freedom. The Fisher I transform and standard error BI , defined as

I = tanh−1 A,

=
1

2
log

(
1 + A
1 − A

)
,

BI =

√
1

= − 3
,

are also used to test �0 : d = d0, by calculating the unit normal deviate

/ =
I − Z0

BI

where Z0 = tanh−1 d0. The power is calculated using the critical value

A2 =

√√√
C2
U/2,=−2

C2
U/2,=−2

+ = − 2
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which leads to the transform I2 = tanh−1 A2 and

/V = (I − I2)
√
= − 3

then the sample size required to reject �0 : d = 0, when actually d is nonzero, can be calculated using

= =

(
/V + /U/2

Z0

)2

+ 3.

For two samples, - of size =G and . of size =H , where it is desired to test �0 : dG = dH , the appropriate /

statistic is

/ =
IG − IH
BGH

where BGH =

√
1

=G − 3
+ 1

=H − 3

and the power and sample size are calculated from

/V =
|IG − IH |
BGH

− /U/2,

and = = 2

(
/U/2 + /V
IG − IH

)2

+ 3.

Example 7a

A sample correlation coefficient '1 = 0.87 was calculated from a sample of size 12 and a population

correlation '0 = 0.5 was assumed, resulting in the following calculations.

Example 7a. �0 : d = 0, �1 : |d | > 0( or > '0)
Current U 0.05

Current V 0.01

Correlation coefficient '1 0.87

Correlation coefficient '0 0.5

Sample size 12

95% confidence limits 0.5893, 0.9633

Two tailed C-test, ? 0.0002

Power of this test 97.882%

# for �1 : |d | > 0 14 ('1 given)

# for �1 : |d | > '0 64 ('1 arbitrary)

These results indicate that a 95% confidence interval for '1 is (0.5893, 0.9633) and that the power for this

test was 97.882%. The sample size would have to be increased to 14 to obtain 99% power with the current

sample correlation coefficient '1, while a sample size of 64 would be required to ensure 99% power in a test

for |d | ≥ 0.5 before a sample is taken in order to calculate '1.

Example 7b

Two samples were analyzed to investigate equality of correlation coefficients and estimate the power and

sample size needed for specified power for hypothetical samples with the same correlation coefficients but

with equal hypothetical sample sizes.
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Example 7b. �0 : d1 = d2, �1 : |d1 − d2 | > 0

Current U 0.05

Current V 0.2

'1, #1, /1 0.78, 98, 1.045

'2, #2, /2 0.84, 95, 1.221

Two-tailed /-test, ? 0.2294

Power of this test 22.42%

For a /-diff |I1 − I2 | 0.1758

sample size # required 511

These results show that, for samples with '1 estimated from a sample of size 98, and '2 estimated from a

sample of size 95 the power was 22.42%. For a hypothetical sample with the same correlation coefficients

but estimated from samples with size # then, for 80% power, # would have to be at least 511.

8. Power calculations for a chi-square test

The calculations are based on the chi-square test for either a contingency table, or sets of observed and

expected frequencies. However, irrespective of whether the test is to be performed on a contingency table or

on samples of observed and expected frequencies, the null hypotheses can be stated in terms of : probabilities

as

�0 : the probabilities are ?0 (8) , for 8 = 1, 2, . . . , :,

�1 : the probabilities are ?1 (8) , for 8 = 1, 2, . . . , :.

The power can then be estimated using the non-central chi-square distribution with non-centrality parameter

_ and a degrees of freedom given by

_ = =&,

where & =

:∑
8=1

(?0(8) − ?1 (8))2

?0(8)
,

= = total sample size,

and a = : − 1 − no. of parameters estimated.

You can either input the & values directly, or read in vectors of observed and expected frequencies. If you do

input frequencies 58 ≥ 0 they will be transformed internally into probabilities, i.e., the frequencies only have

to be positive integers as they are normalized to sum unity using

?8 = 58
/ :∑
8=1

58 .

In the case of contingency table data with A rows and 2 columns, the probabilities are calculated from the

marginals ?8 9 = ?(8)?( 9) in the usual way, so you must input : = A2, and the number of parameters estimated

as A + 2 − 2, so that a = (A − 1) (2 − 1).

Example 8

We demonstrate this procedure using the example of a weighted die discussed by William C Guenther in The

American Statistician 31 (1977) pp 83–85 using table look-up. Here the sum of squares was & = 0.05 with a

sample size of = = 120 so that the degrees of freedom were _ = 6 and V was calculated to be approximately

0.5671. Further calculations showed that a sample size of = > 330 was required to achieve V = 0.1, while the

results calculated by SimFIT were as follows.

Example 8. Power analysis for a chi-square test �0 : ?0(8) = ?1(8)
U = 0.05 V = 0.5761 & = 0.05 _ = 6 j2 = 12.59 # = 128

U = 0.05 V = 0.1000 & = 0.05 _ = 6 j2 = 12.59 # = 352
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Theory

Experiments often generate random samples from a population so that parameters estimated from the samples

can be use to test hypotheses about the population parameters. So it is natural to investigate the relationship

between sample size and the absolute precision of the estimates, given the expectation � (-) and variance

f2 (-) of the random variable. For a single observation, i.e., = = 1, the Chebyshev inequality

% (|- − � (-) | < n) ≥ 1 − f2 (-)
n2

with n > 0, indicates that, for an unspecified distribution,

% (|- − � (-) | < 4.5f(-)) ≥ 0.95,

and % (|- − � (-) | < 10f(-)) ≥ 0.99,

but, for an assumed normal distribution,

% ( |- − � (-) | < 1.96f(-)) ≥ 0.95,

and % ( |- − � (-) | < 2.58f(-)) ≥ 0.99.

However, provided that � (-) ≠ 0, it is more useful to formulate the Chebyshev inequality in terms of the

relative precision, that is, for X > 0

%

(����- − � (-)
� (-)

���� < X
)
≥ 1 − 1

X2

f2 (-)
�2 (-)

.

Now, for an unspecified distribution,

%

(����- − � (-)
� (-)

���� < 4.5
f(-)
|� (-) |

)
≥ 0.95,

and %

(���� - − � (-)
� (-)

���� < 10
f(-)
|� (-) |

)
≥ 0.99,

but, for an assumed normal distribution,

%

(����- − � (-)
� (-)

���� < 1.96
f(-)
|� (-) |

)
≥ 0.95,

and %

(����- − � (-)
� (-)

���� < 2.58
f(-)
|� (-) |

)
≥ 0.99.

So, for high precision, the coefficient of variation 2E%

2E% = 100
f(-)
|� (-) |

must be as small as possible, while the signal-to-noise ratio (# (-)

(# (-) = |� (-) |
f(-)

must be as large as possible. For instance, for the single measurement to be within 10% of the mean 95% of

the time requires (# ≥ 45 for an arbitrary distribution, or (# ≥ 20 for a normal distribution. A particularly
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valuable application of these results concerns the way that the signal-to-noise ratio of sample means depends

on the sample size =. From

-̄ =
1

=

=∑
8=1

G8 ,

+0A ( -̄) = 1

=2

=∑
8=1

+0A (-)

=
1

=
f2 (-),

it follows that, for arbitrary distributions, the signal-to-noise ratio of the sample mean (# ( -̄) is given by

(# ( -̄) =
√
=(# (-), that is

(# ( -̄) =
√
=
� (-)
f(-) .

This result, known as the law of
√
=, implies that the signal-to-noise ratio of the sample mean as an estimate

of the population mean increases as
√
=, so that the the relative error in estimating the mean decreases like

1/
√
=.

If 5 (G) is the density function for a random variable - , then the null and alternative hypotheses can sometimes

be expressed as

�0 : 5 (G) = 50(G)
�1 : 5 (G) = 51(G)

while the error sizes, given a critical region �, are

U = %�0
(reject �0) (i.e., the Type I error)

=

∫
�

50 (G) 3G

V = %�1
(accept �0) (i.e., the Type II error)

= 1 −
∫
�

51 (G) 3G.

Usually U is referred to as the significance level, V is the operating characteristic, while 1 − V is the power,

frequently expressed as a percentage, i.e., 100(1 − V)%, and these will both alter as the critical region is

changed.

0.00
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1.50

2.25

-2.00 -1.00 0.00 1.00 2.00

Distribution of the mean as a function of sample size

x̄

pd
f

n = 2

n = 4

n = 8

n = 16

n = 32
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0.60

0.80
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Significance Level and Power

x̄

pd
f

αβ

H0 H1

C = 0.4

This figure illustrates the concepts of signal-to-noise ratio, significance level, and power. The family of curves

on the left are the probability density functions for the distribution of the sample mean Ḡ from a normal
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distribution with mean ` = 0 and variance f2 = 1. The curves on the right illustrate the significance level U,

and operating characteristic V for the null and alternative hypotheses

�0 : ` = 0, f2
= 4

�1 : ` = 1, f2
= 4

for a test using the sample mean from a sample of size = = 25 from a normal distribution, with a critical point

� = 0.4. The significance level is the area under the curve for �0 to the right of the critical point, while the

operating characteristic is the area under the curve for �1 to the left of the critical point. Clearly, increasing

the critical value � will decrease U and increase V, while increasing the sample size = will decrease both U

and V.

Often it is wished to predict power as a function of sample size, which can sometimes be done if distributions

50 (G) and 51(G) are assumed, necessary parameters are provided, the critical level is specified, and the test

procedure is defined. Essentially, given an implicit expression in : unknowns, this option solves for one given

the other : − 1, using iterative techniques. For instance, you might set U and V, then calculate the sample size

= required, or you could input U and = and estimate the power. Note that 1-tail tests can sometimes be selected

instead of 2-tail tests (e.g., by replacing /U/2 by /U in the appropriate formula) and also be very careful to

make the correct choice for supplying proportions, half-widths, absolute differences, theoretical parameters

or sample estimates, etc.

A word of warning is required on the subject of calculating = required for a given power. The values of =

will usually prove to be very large, probably much larger than can be used. So, for pilot studies and typical

probing investigations, the sample sizes should be chosen according to cost, time, availability of materials,

past experience, and so on. Sample size calculations are only called for when Type II errors may have serious

consequences, as in clinical trials, so that large samples are justified.

Of course, the temptation to choose 1-tail instead of 2-tail tests, or use variance estimates that are too small,

in order to decrease the = values should be avoided, but it happens.
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5.2 Parameter confidence limits

Given a sample from a known distribution it is generally easy to estimate the population parameters using the

sample estimates, but it is not always so easy to determine the confidence limits, such as a 95% confidence

interval. From the main SimFIT menu you can select [Statistics] then the option to perform statistical

calculations. Here you can choose the distribution required and the significance level of interest, then input

the estimates and sample sizes required. Note that the well-known case of a normal distribution leads many

to believe that a confidence interval is always symmetrical about a parameter estimate, but many confidence

intervals will be asymmetric for those distributions (Poisson, binomial) where exact methods are used, not

calculations based on the normal approximation.

Confidence limits for a Poisson parameter

Given a sample G1, G2, . . . , G= of = non-negative integers from a Poisson distribution with parameter _, the

parameter estimate _̂, i.e., the sample mean, and confidence limits _1, _2 are calculated as follows

 =

=∑
8=1

G8 ,

_̂ =  /=,

_1 =
1

2=
j2

2 ,U/2,

_2 =
1

2=
j2

2 +2,1−U/2,

so that exp(−=_1)
∞∑
G= 

(=_1) G
G!

=
U

2
,

exp(−=_2)
 ∑
G=0

(=_2) G
G!

=
U

2
,

and %(_1 ≤ _ ≤ _2) = 1 − U,

using the lower tail critical points of the chi-square distribution. The following very approximate rule-of-

thumb can be used to get a quick idea of the range of a Poisson mean _ given a single count G and exploiting

the fact that the Poisson variance equals the mean

%(G − 2
√
G ≤ _ ≤ G + 2

√
G) ≈ 0.95.

Example

The number of weed seeds in 98 samples of meadow grass yielded these counts with a mean of 3.0204.

Number 0 1 2 3 4 5 6 7 8 9 10

Frequency 3 17 26 16 18 9 3 5 0 1 0

The 95% and 99% noncentral confidence intervals from the estimate were found to be as follows.

Sample size Mean Level Interval

98 3.0204 95% 2.68608 ≤ _ ≤ 3.38483

98 3.0204 99% 2.58737 ≤ _ ≤ 3.50272
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Confidence limits for a binomial parameter

For : successes in = trials, the binomial parameter estimate ?̂ is :/= and three methods are used to calculate

confidence limits ?1 and ?2 so that

=∑
G=:

(
=

G

)
?G1 (1 − ?1)=−G = U/2,

and

:∑
G=0

(
=

G

)
?G2 (1 − ?2)=−G = U/2.

❍ If max(:, = − :) < 106, the lower tail probabilities of the beta distribution are used as follows

?1 = V:,=−:+1,U/2 ,

and ?2 = V:+1,=−:,1−U/2 .

❍ If max(:, = − :) ≥ 106 and min(:, = − :) ≤ 1000, the Poisson approximation with _ = =? and the

chi-square distribution are used, leading to

?1 =
1

2=
j2

2:,U/2,

and ?2 =
1

2=
j2

2:+2,1−U/2 .

❍ If max(:, =− :) > 106 and min(:, =− :) > 1000, the normal approximation with mean =? and variance

=?(1 − ?) is used, along with the lower tail normal deviates /1−U/2 and /U/2, to obtain approximate

confidence limits by solving

: − =?1√
=?1(1 − ?1)

= /1−U/2,

and
: − =?2√
=?2(1 − ?2)

= /U/2.

The following very approximate rule-of-thumb can be used to get a quick idea of the range of a binomial mean

=? given G and exploiting the fact that the binomial variance variance equals =?(1 − ?)

%(G − 2
√
G ≤ =? ≤ G + 2

√
G) ≈ 0.95.

Example

In a study the number of deaths among pensioners in a six year period were as follows.

Sample size Deaths Probability 95% confidence interval

Non-smokers 1067 117 0.109653 0.091533 ≤ ? ≤ 0.129957

Smokers 402 54 0.134328 0.102548 ≤ ? ≤ 0.171609

Again, note the noncentral 95% confidence intervals for the probability estimates ?̂ as summarized below.

Deaths/Subjects ?̂ 95% Confidence Interval Group

117/1067 0.1097 0.1097 - 0.0182, 0.1097 + 0.0203 Non-smokers

54/402 0.1343 0.1343 - 0.0318, 0.1343 + 0.0373 Smokers
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Confidence limits for a normal mean and variance

If the sample mean is Ḡ, and the sample variance is B2, with a sample of size = from a normal distribution

having mean ` and variance f2, the confidence limits are defined by

%(Ḡ − CU/2,=−1B/
√
= ≤ ` ≤ Ḡ + CU/2,=−1B/

√
=) = 1 − U,

and %((= − 1)B2/j2
U/2,=−1 ≤ f2 ≤ (= − 1)B2/j1−U/2,=−1) = 1 − U

where the upper tail probabilities of the C and chi-square distribution are used.

Example

The body temperature of 25 intertidal crabs was recorded in ℃ as follows: 24.3, 25.8, 24.6, 26.1, 22.9,

25.1, 27.3, 24.0, 24.5, 23.9, 26.2, 24.3, 24.6, 23.3, 25.5, 28.1, 24.8, 23.5, 26.3, 25.4, 25.5, 23.9, 27.0, 24.8,

22.9, 25.4. The sample mean, variance and standard deviation were Ḡ = 25.03, B2 = 1.8, and B = 1.3416408

leading to the following central confidence intervals for the mean and unsymmetrical confidence limits for the

variance.

Sample size Level Parameter Estimate Interval

25 95% Mean 25.03 24.4762 ≤ ` ≤ 25.5838

25 99% Mean 25.03 24.2795 ≤ ` ≤ 25.7805

25 95% Variance 1.8 1.09745 ≤ f2 ≤ 3.48355

25 99% Variance 1.8 0.948231 ≤ f2 ≤ 4.36971

Confidence limits for a correlation coefficient

If a Pearson product-moment correlation coefficient A is calculated from two samples of size = that are jointly

distributed as a bivariate normal distribution, the confidence limits for the population parameter d are given

by

%

(
A − A2
1 − AA2

≤ d ≤ A + A2
1 + AA2

)
= 1 − U,

where A2 =

√√√
C2
U/2,=−2

C2
U/2,=−2

+ = − 2
.

Example

The wing and tail lengths in cm for 12 birds were as in this next table.

Wing 10.4 10.8 11.1 10.2 10.3 10.2 10.7 10.5 10.8 11.2 10.6 11.4

Tail 7.4 7.6 7.9 7.2 7.4 7.1 7.4 7.2 7.8 7.7 7.8 8.3

This gives a correlation coefficient of A = 0.87 with a sample size of = = 12, leading to the nonsymmetrical

95% confidence interval.

0.589337 ≤ d ≤ 0.963279

Confidence limits for trinomial parameters

If, in a trinomial distribution, the probability of category 8 is ?8 for 8 = 1, 2, 3, then the probability % of

observing =8 in category 8 in a sample of size # = =1 + =2 + =3 from a homogeneous population is given by

% =
#!

=1!=2!=3!
?
=1

1
?
=2

2
?
=3

3
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and the maximum likelihood estimates, of which only two are independent, are

?̂1 = =1/#,
?̂2 = =2/#,

and ?̂3 = 1 − ?̂1 − ?̂2.

The bivariate estimator is approximately normally distributed, when # is large, so that

[
?̂1

?̂2

]
∼ "#2

([
?1

?2

]
,

[
?1(1 − ?1)/# −?1?2/#
−?1?2/# ?2(1 − ?2)/#

])

where "#2 signifies the bivariate normal distribution. Consequently

(( ?̂1 − ?1), ( ?̂2 − ?2))
[
?1 (1 − ?1)/# −?1?2/#
−?1?2/# ?2(1 − ?2)/#

]−1 (
?̂1 − ?1

?̂2 − ?2

)
∼ j2

2

and hence, with probability 95%,

( ?̂1 − ?1)2

?1 (1 − ?1)
+ ( ?̂2 − ?2)2

?2(1 − ?2)
+ 2( ?̂1 − ?1) ( ?̂2 − ?2)

(1 − ?1) (1 − ?2)
≤ (1 − ?1 − ?2)
# (1 − ?1) (1 − ?2)

j2
2;0.05 .

Such inequalities define regions in the (?1, ?2) parameter space which can be examined for statistically

significant differences between ?8 ( 9) in samples from populations subjected to treatment 9 . Where regions

are clearly disjoint, parameters have been significantly affected by the treatments, as illustrated next.

Plotting trinomial parameter joint confidence regions

A useful rule of thumb to see if parameter estimates differ significantly is to check their approximate central

95% confidence regions. If the regions are disjoint it indicates that the parameters differ significantly and, in

fact, parameters can differ significantly even with limited overlap. If two or more parameters are estimated, it

is valuable to inspect the joint confidence regions defined by the estimated covariance matrix and appropriate

chi-square critical value. Consider, for example, this figure generated by the contour plotting function of

binomial. Data triples G, H, I can be any partitions, such as number of male, female or dead hatchlings from

a batch of eggs where it is hoped to determine a shift from equi-probable sexes. The contours are defined by

(( ?̂G − ?G), ( ?̂H − ?H))
[
?G (1 − ?G)/# −?G ?H/#
−?G ?H/# ?H (1 − ?H)/#

]−1 (
?̂G − ?G
?̂H − ?H

)
= j2

2:0.05

where # = G + H + I, ?̂G = G/# and ?̂H = H/# as discussed in connection with the trinomial distribution.

When # = 20 the triples 9,9,2 and 7,11,2 cannot be distinguished, but when # = 200 the orbits are becoming

elliptical and converging to asymptotic values. By the time # = 600 the triples 210,330,60 and 270,270,60

can be seen to differ significantly.



216 Statistical calculations

0.15

0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75

Trinomial Parameter 95% Confidence Contours

px

p y

7,11,12

70,110,20

210,330,60

9,9,2

90,90,20

270,270,60



Robust analysis of 1 sample 217

5.3 Robust analysis of 1 sample

It is obvious that outliers in a sample lead to biased parameters estimates. In some instances an experimenter

is able to examine the data and make a decision to eliminate certain observations, usually extremely low or

high values, that indicate a systematic source of variation beyond the usual spread of observational errors.

Alternatively, to avoid subjective doctoring of data, a robust method can be used which generally involves

discarding extreme values and using more appropriate numerical methods that do not assume that the sample

is normally distributed.

As an example, choose statistics from the main SimFIT menu, navigate to [Data exploration] and open the

option for [Robust analysis of one sample]. The results from examining the test file robust.tf1 after

trimming 10% off the extreme values are shown below, followed by the results from handling the full data set

without any trimming in the exhaustive analysis procedure.

Robust analysis

Data: 50 N(0,1) random numbers with 5 outliers

Total sample size 50

Median value 0.2019

Median absolute deviation 1.0311

Robust standard deviation 1.5288

Trimmed mean (TM) 0.2227

Variance estimate for TM 0.0192

Winsorized mean (WM) 0.2326

Variance estimate for WM 0.0192

Number of discarded values 10

Number of included values 40

Percentage of sample used 80% (for TM and WM)

Hodges-Lehmann estimate (HL) 0.2586

Exhaustive analysis

Minimum, Maximum values -2.208, 7.000

Lower and Upper Hinges -0.829, 1.307

Coefficient of skewness 1.690

Coefficient of kurtosis 3.566

Median value 0.202

Sample mean 0.512

Sample standard deviation 1.853: CV% = 361.736%

Standard error of the mean 0.262

Upper 2.5% t-value 2.010

Lower 95% confidence limit for mean -0.014

Upper 95% confidence limit for mean 1.039

Variance of the sample 3.435

Lower 95% confidence limit for variance 2.397

Upper 95% confidence limit for variance 5.335

Shapiro-Wilks W statistic 0.851

Significance level for W 0.000 Reject normality at 1% sig.level

Clearly the exhaustive analysis indicates that the presence of outliers has created a sample that is not normally

distributed and the results from robust analysis yield better estimates for the population mean and variance

which, before adding outliers, were ` = 0, f2 = 1. An outline of the theory and definitions used in this robust

analysis follows.
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Theory

If the sample vector is G1, G2, . . . , G= the following calculations are done.

1. Using the whole sample and the inverse normal function Φ
−1(.), the median " , median absolute

deviation � and a robust estimate of the standard deviation ( are calculated as

" = median(G8)
� = median(|G8 − " |)
( = �/Φ−1(0.75) .

2. The percentage of the sample chosen by users to be eliminated from each of the tails is 100U%, then

the trimmed mean )" , and Winsorized mean," , together with variance estimates +) and +, , are

calculated as follows, using : = [U=] as the integer part of U=.

)" =
1

= − 2:

=−:∑
8=:+1

G8

," =
1

=

{
=−:∑
8=:+1

G8 + :G:+1 + :G=−:

}

+) =
1

=2

{
=−:∑
8=:+1

(G8 − )")2 + : (G:+1 − )")2 + : (G=−: − )")2

}

+, =
1

=2

{
=−:∑
8=:+1

(G8 −,")2 + : (G:+1 −,")2 + : (G=−: −,")2

}
.

3. If the assumed sample density is symmetrical, the Hodges-Lehman location estimator �! can be used

to estimate the center of symmetry. This is

�! = median
{ G8 + G 9

2
, 1 ≤ 8 ≤ 9 ≤ =

}
,

and it is calculated along with 95% confidence limit. This would be useful if the sample was a vector

of differences between two samples - and . for a Wilcoxon signed rank test that - is distributed � (G)
and . is distributed � (G − \).
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5.4 Robust analysis of 2 samples

Sometimes a robust estimate is required for the difference in location (with corresponding confidence limits)

for two samples, not necessarily of the same size, but without assuming normality or any other distribution.

From the main SimFIT menu choose [Statistics], navigate to [Data exploration] and open the option for [Robust

analysis of two samples]. The two default test files are ttest.tf4 and ttest.tf5 with these values

ttest.tf4 ttest.tf5

134 70

146 118

104 101

119 85

124 107

161 132

107 94

83

113

129

97

123

while analysis produces the following results.

Robust analysis of two samples

--sample size 12

. -sample size 7

Difference in location -18.501

Lower confidence limit -40.009

Upper confidence limit 2.997

Percentage confidence limit 95.30%

Lower Mann-whitney U-value 19.000

Upper Mann-Whitney U-value 66.000

The procedure is based on the assumption that - of size =G is distributed as � (G) and. of size =H as � (G− \),
so an estimate \̂ for the difference in location is calculated as

\̂ = median(H 9 − G8 , 8 = 1, 2, . . . , =G , 9 = 1, 2, . . . , =H) .

100U% confidence limits*! and*� are then estimated by inverting the Mann-Whitney U statistic so that

%(* ≤ *!) ≤ U/2
%(* ≤ *! + 1) > U/2
%(* ≥ *� ) ≤ U/2

%(* ≥ *� − 1) > U/2.
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5.5 Shannon-Brillouin-Simpson indices of diversity

It is often required to define functions that estimate or merely summarize the entropy or degree of randomness

in the distribution of observations into categories.

Typically there would be = observations in total divided into : categories with nonnegative frequencies

58 , for 8 = 1, 2, . . . , :, so that = =
∑:
8=1 58 , as for example with this extreme sample where there is clearly no

evidence of differences between the groups

Group Frequency

1 5

2 5

3 5

4 5

or this equally extreme example where the non-homogeneity is obvious.

Group Frequency

1 1

2 1

3 1

4 17

To analyze such data choose [Statistics] from the main SimFIT menu then [Statistical calculations] followed

by selecting [Shannon/Brilllouin indices of diversity]. Note that data sets must be supplied as samples of

frequencies and these can be as vector files, or columns of frequencies pasted in from the clipboard. However,

it is often the case when repetitive analysis of small data sets is required, that it is useful to temporarily switch

off the speed-up option that suppresses input from the terminal and simply enter the frequencies manually.

Of course such problems arise constantly in data analysis but especially in ecology where several well known

indices of diversity are used, as illustrated in the next table for these two extreme cases.

Data: 5,5,5,5

Number of groups 4

Total sample size 20

Pielou � ′ evenness 1.0000 [complement = 0.0000]

Brillouin � evenness 1.0000 [complement = 0.0000]

Shannon � ′ 0.6021(log10) 1.386(log4) 2.000(log2)

Brillouin � 0.5035(log10) 1.159(log4) 1.672(log2)

Simpson _ 0.2500 [complement = 0.7500]

Simpson _′ 0.2105 [complement = 0.7895]

Data: 1,1,1,17

Number of groups 4

Total sample size 20

Pielou � ′ evenness 0.4238 [complement = 0.5762]

Brillouin � evenness 0.3809 [complement = 0.6191]

Shannon � ′ 0.2551 (log10) 0.5875(log4) 0.8476(log2)

Brillouin � 0.1918 (log10) 0.4415(log4) 0.6370(log2)

Simpson _ 0.7300 [complement = 0.2700]

Simpson _′ 0.7158 [complement = 0.2842]
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Definitions

Given positive integer frequencies 58 > 0 in : > 1 groups with = observations in total, then proportions

?8 = 58/= can be defined, leading to the Shannon � ′, Brillouin �, and Simpson _ and _′ indices, and the

evennness parameters � and � ′ defined as follows.

Shannon diversity � ′
= −

:∑
8=1

?8 log ?8

= [= log = −
:∑
8=1

58 log 58]/=

Pielou evenness � ′ = � ′/log :

Brilloin diversity � = [log =! − log

:∏
8=1

58!]/=

Brilloin evenness � = =�/[log =! − (: − 3) log 2! − 3 log(2 + 1)!]

Simpson lambda _ =

:∑
8=1

?2
8

Simpson lambda prime _′ =
:∑
8=1

58 ( 58 − 1)/[=(= − 1)]

where 2 = [=/:] and 3 = = − 2:. Note that � and � ′ are given using logarithms to bases ten, e, and two,

while the forms � and � ′ have been normalized by dividing by the corresponding maximum diversity and so

are independent of the base. The complements 1 − �, 1 − � ′, 1 − _, and 1 − _′ are also tabulated within the

square brackets.

In the above tables we see that evenness is maximized when all categories are equally occupied, so that

58 = 1/: and � ′ = log :, and is minimized when one category dominates.

Of course SimFIT provides numerous techniques to test hypotheses about the distribution of frequencies into

groups, e.g. a j2 test on observed and expected frequencies.
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5.6 Non-central statistical distributions

Non-central distributions are frequently used in statistical analysis, especially for studies to estimate the power

of hypothesis tests as functions of sample size.

SimFIT uses many discrete and continuous central and non-central distributions for modelling and hypothesis

tests, and provides numerous options as well as dedicated programs such as binomial, chisqd, F, and normal

to plot or obtain percentage points to replace table look-up. However, you can also obtain values and plots for

the following special distributions, given the appropriate arguments.

• non-central V

• non-central j2

• non-central �

• non-central C

To obtain percentage points and create plots for non-central distributions choose [Statistics] followed by

[Statistical calculations] from the main SimFIT menu.

For instance, this figure illustrates the chi-square distribution with 10 degrees of freedom for non-centrality

parameter _ at values of _ = 0, 5, 10, 15, and 20.
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5.7 Ligand-binding cooperativity analysis

Cooperative ligand binding models are used in the situation where a protein or receptor has more than one type

of binding site and these are linked in such a way as to display deviations from normal hyperbolic binding. If

a receptor has = > 1 binding sites that differ in binding constants but are independent this can only give rise to

apparent negative cooperativity. If the sites are linked in that the binding to one site influences the subsequent

binding of further ligands then positive or mixed cooperativity can be exhibited.

Ligand binding theory will be presented under the following headings.

1. Historical introduction

2. Binding polynomials

3. The Hessian of a binding polynomial

4. Definition of cooperativity

5. Zeros of the binding polynomial

6. Statistical interpretation of saturation functions

7. Cooperativity analysis

Historical Introduction

In 1910 Hill [1] proposed that the sigmoid binding curve for oxygen binding to haemoglobin �1 could be

analyzed in terms of the binding of = ligands - in one step with no appreciable intermediates, i.e. the mass

action description

�1 + =- ⇋ �1-=.

This leads to the Hill equation describing the fractional saturation H as a function of concentration G, and the

Hill plot of log[H/(1 − H)] as a function of log G as follows

H =
 G=

1 +  G=

log

(
H

1 − H

)
= = log G + log .

It is now realized that the Hill equation is simply an empirical equation that is at best a poor approximation to

any real binding situation since:

1. it is only an appropriate representation for a one-site binding process, i.e. for = = 1 ;

2. when = < 1 it has an infinite slope at the origin and cannot model any realistic binding situation;

3. when = > 1 it has zero slope at the origin and cannot model any realistic binding situation;

4. when = is not a positive integer it is pure nonsense; and

5. using it to discuss the effect of cooperativity on graphical features such as sigmoidicity in the H(G)
curve, or convexity in Lineweaver-Burke or Scatchard space, has resulted in considerable confusion.

Of course, before the days of computers and nonlinear regression, fitting a straight line to a Hill plot to get a

non-integer value for the estimated slope was all that could be done, and this non-integer value was correctly

taken to mean that this was a result of a cooperative binding model.

Nowadays no one would dream of discussing cooperative binding in terms of the Hill equation or fitting a

straight line to a Hill plot but, by a serendipitous coincidence, it turns out that the variable slope of the curve

obtained by transforming a saturation curve into Hill space still provides an unambiguous definition of the
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sign and magnitude of cooperativity that has got nothing at all to do with the Hill equation. That is because,

to use receptor terminology,
H

1 − H =
[Bound]
[Free] .

Binding polynomials and their Hessians

In 1925 Adair [2] improved the description of binding isotherms by defining binding constants for the

individual binding events, and later it came to be appreciated that these have to be normalized by statistical

factors in order to discuss the affinity of receptor for ligand in adjacent binding events. In 1967 Wyman [3]

rationalized the situation by pointing out that, for a non-aggregating macromolecule with = binding sites and

only one ligand G varied, there would be binding polynomial which would act like a partition function in that

successive terms of degree 8 in the polynomial are proportional to the amount of macromolecule with 8 ligands

attached.

So now the binding of ligands to receptors can be defined for all possible cooperative binding schemes in

terms of a binding polynomial ?(G) in the free ligand activity G, as follows

?(G) = 1 +  1G +  2G
2 + · · · +  =G=

= 1 + �1G + �1�2G
2 + · · · +

=∏
8=1

�8G
=

= 1 +
(
=

1

)
�1G +

(
=

2

)
�1�2G

2 + · · · +
(
=

=

) =∏
8=1

�8G
=,

where the only difference between these alternative expressions concerns the meaning and interpretation of the

binding constants. The fractional saturation H(G) is just the scaled derivative of the log of the polynomial with

respect to log(G), and an important auxiliary function is ℎ(G), the scaled Hessian of the binding polynomial

and these are defined as follows

H(G) =
(
1

=

)
3 log ?(G)
3 log G

=

(
1

=

)
G?′(G)
?(G) , and

ℎ(G) = =??′′ − (= − 1)?′2.

Definition of the Hessian of a binding polynomial

To investigate the algebraic properties of arbitrary polynomials 5 (G) of degree = it is useful to consider the

homogeneous form* (G, H) as in

5 (G) = ?0 + ?1G + ?2G
2 + . . . + ?=G=, in the equivalent form

* (G, H) =
(
=

0

)
�0G

= +
(
=

1

)
�1G

=−1H +
(
=

2

)
�2G

=−2H2 + . . . +
(
=

=

)
�=H

=

where H is a dummy variable. Then the Hessian of the polynomial� ( 5 ) can be derived from the symmetrical

formula for � (*) leading to the expression for ℎ(G) in the Hill plot slope as follows

� (*) = 1

=2(= − 1)2
[*GG*HH −*2

GH]

� ( 5 ) = ℎ(G)
=2(= − 1)
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using Euler’s theorem on homogeneous functions and setting H = 1 after differentiating.

Definition of cooperativity

Given a binding polynomial of degree = there are = − 1 cooperativity coefficients 28 defined as

28 = �8+1 − �8 for 8 = 1, 2, . . . , = − 1,

or alternatively as log(�8+1/�8), and the interpretation of these is perfectly clear: in a situation where 28 > 0

the macromolecule has greater affinity for binding the 8 + 1th ligand after the 8th ligand has been bound and it

is perfectly reasonable to describe this as mechanistic positive cooperativity. Hence every binding situation

for = ligands can be summarized by a succession of = − 1 signs and it might be thought that during the

actual saturation of macromolecule with ligand there would be a succession of phases with possibly differing

cooperativity. For instance, the sequence + − + might be supposed to give a saturation curve with positive,

then negative, then positive cooperativity. Unfortunately the cooperativity coefficients cannot be interpreted

in this way and they are not a unique indicator of the sign and magnitude of the type of cooperativity exhibited

during the saturation process. The reason for this is simply that binding does not occur in a succession of

isolated steps and at every stage for 0 < G < ∞ every species that is possible is present, that is no ligands

bound, one ligand bound, two ligands bound, etc. up to = ligands bound.

At every point in the range 0 < G < ∞ there is a one site binding curve H0?? with a uniquely defined apparent

binding constant  0?? according to the scheme

[Free sites] + - ⇋ [Occupied sites]

that is

H0?? (G) =
 0??G

1 +  0??G
.

Surely all would agree that the sign and magnitude of cooperativity at that point in the saturation curve would

depend on whether  0?? is increasing or decreasing as a function of G. It turns out that

 0?? =
?′(G)

=?(G) − G?′(G) and

3 0??

3G
=

ℎ(G)
(=?(G) − G?′(G))2

so that increasing affinity (i.e. positive cooperativity) requires that the Hessian of the binding polynomial

ℎ(G) has ℎ(G) > 0, decreasing affinity (i.e. negative cooperativity) requires ℎ(G) < 0 while at a point where

ℎ(G) = 0 cooperativity changes sign. Bardsley and Wyman [4] emphasized that the magnitude of the Hill

slope with respect to 1 is the unambiguous indicator of cooperativity which also depends on the sign of the

Hessian ℎ(G) as follows
3 log[H/(1 − H)]

3 log G
= 1 + Gℎ(G)

?′(G) (=?(G) − G?′(G)) .

and Wood and Bardsley [5] proved that the Hessian can have at most = − 2 positive zeros.
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Zeros of the binding polynomial

If the = zeros of the binding polynomial are U8 then the fractional saturation H can be expressed as

H =
( G
=

) =∑
8=1

1

G − U8
,

but further discussion depends on the nature of the zeros.

First observe that, for a set of < groups of receptors, each with =8 independent binding sites and binding

constant :8 , then the zeros are all real and

?(G) =
<∏
8=1

(1 + :8G)=8 ,

and H =
1∑<
8=1 =8

<∑
8=1

=8:8G

1 + :8G
,

so H is just the sum of simple binding curves, giving concave down double reciprocal plots, etc.

Actually Bardsley et al [6] and [7] proved that, if a binding polynomial factorizes into < polynomials ?8 with

positive coefficients according to

?(G) = ?1(G)?2(G) . . . ?<(G)

then the Hill plot slope cannot exceed that of the Hill plot slope for any of the individual factors. As a binding

polynomial can always be factorized into a product of linear factors with real negative zeros and complex

conjugate pairs forming quadratic factors it might be supposed that the Hill slope can never exceed two.

However, if a binding polynomial of degree > 2 has complex conjugate zeros, the Hill slope may exceed two

and there may be evidence of strong positive cooperativity. That is why Hill plot slopes up to a maximum of

the degree of the binding polynomial can be achieved if there are quadratic factors with negative coefficients,

corresponding to a group of at least three linked binding sites.

For instance, the binding polynomial for a four site Monod-Wyman-Changeux model is

?(U) = 1

1 + !

(
(1 + U)4 + !(1 + 2U)=

)

and this can factorize into the form

@(G) = (1 + 01G + 11G
2) (1 − 02G + 12G

2)

with 01 > 0, 02 > 0, 11 > 0, 12 > 0 under certain constraints so that the meaningless quadratic factor with a

negative term allows Hill slopes greater than two.

Edelstein and Bardsley [8] subsequently explored the relationship between the Hill slope at half-saturation

and the Hessian of the binding polynomial.

Statistical interpretation of saturation functions

The species fractional populations B8 which are defined for 8 = 0, 1, . . . , = as

B8 =
 8G

8

 0 +  1G +  2G2 + · · · +  =G=

with  0 = 1, are interpreted as the proportions of the receptors in the various states of ligation as a function

of ligand activity. The species fractions defined as H8 = 8B8/= for 8 = 1, 2, . . . , = are the contributions of the
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species to the overall saturation. Note that

=∑
8=0

B8 = 1, , while

=∑
8=1

H8 = (1/=)3 log ?/3 log G.

Such expressions are very useful when analyzing cooperative ligand binding data and they can be generated

from the best fit binding polynomial after fitting binding curves with program sffit, or by interactive input of

binding constants into program simstat. At the same time other important analytical results like factors of

the Hessian and minimax Hill slope are also calculated.

The species fractional populations can be also used in a probability model to interpret ligand binding in several

interesting ways. For this purpose, consider a random variable * representing the probability of a receptor

existing in a state with 8 ligands bound. Then the the probability mass function, expected values and variance

are

%(* = 8) = B8 (8 = 0, 1, 2, . . . , =),

� (*) =
=∑
8=0

8B8 ,

� (*2) =
=∑
8=0

82B8 ,

+ (*) = � (*2) − [� (*)]2

= G

(
?′(G) + G?′′(G)

?(G)

)
−

(
G?′(G)
?(G)

)2

= =
3H

3 log G
,

as fractional saturation H is � (*)/=. In other words, the slope of a semi-log plot of fractional saturation data

indicates the variance of the number of occupied sites, namely; all unoccupied when G = 0, distribution with

variance increasing as a function of G up to the maximum semi-log plot slope, then finally approaching all

sites occupied as G tends to infinity. You can input binding constants into the statistical calculations procedure

to see how they are mapped into all spaces, cooperativity coefficients are calculated, zeros of the binding

polynomial and Hessian are estimated, Hill slope is reported, and species fractions and binding isotherms are

displayed, as is done automatically after every = > 1 fit by program sffit.

Cooperativity analysis

After fitting a model, program sffit outputs the binding constant estimates in all the conventions and, when

= > 2 it also outputs the zeros of the best fit binding polynomial and those of the Hessian of the binding

polynomial ℎ(G).

The positive zeros of ℎ(G) indicate points where the theoretical one-site binding curve coinciding with the

actual saturation curve at that G value has the same slope as the higher order saturation curve, which are

therefore points of cooperativity change. The SimFIT cooperativity procedure allows users to input binding

constant estimates retrospectively to calculate zeros of the binding polynomial and Hessian, and also to plot

species population fractions.
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For instance, for 4 sites with

 1 = 100,  2 = 10,  3 = 1, and  4 = 0.1,

the Hessian has these characteristic features

positive zero at G = 5.86139

minimum Hill slope in the range plotted is 0.0842, at G = 0.28607

maximum Hill slope is 1.44479, at G = 17.059, and

the slope at half saturation is 1.0847, at G = 6.5808.

The next graph shows the plot of the Hill slope and illustrates how it varies for these  8 values leading to the

maximum and minimum slopes indicated along with the point where the positive zero of the Hessian occurs.
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The next graph is the actual Hill plot obtained using these  8 values which shows the sort of complicated Hill

plots that can be obtained when there are more than two cooperatively linked sites, that is, where up to = − 2

zeros of the Hessian of the binding polynomial can occur.

The asymptotes are for the equation

H =
:G

1 + :G
with : =  1/= as G → 0 and : = = =/ =−1 as G → ∞, and the zero of the Hessian is where the slope changes

from less than 1 to greater than one,
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5.8 Gaussian kernel density estimation using FFT

Kernel density estimation is a technique used to create a numerical approximation to a density function given

a random sample of observations for which there is no known density.

To use this method choose [Statistics] from the main SimFIT menu then [Statistical calculations] and select

[Kernel density estimation].

At this stage it is necessary to input a sample of observations and the following figure illustrates the results

when this was done with a data set simulated from a normal distribution with ` = 0 and f2 = 1, using 5 bins

for the histogram in the top row of figures, but using 10 bins for the histogram in the bottom row.
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The parameters used for the method are adjusted until a satisfactory fit has been obtained when it is then

possible to save the best-fit kernel to be used retrospectively as a representation of the data set. However it

should be noted that users have to exert considerable control over the parameters chosen as these will greatly

affect the kernel estimated. Understanding of the meaning of the parameters selected helps, but naturally a

visual display of the fit of the kernel estimate using a reasonable number of bins is recommended.

For instance, in this example changing the number of bins : alters the density estimate since, given a sample

of = observations G1, G2, . . . , G= with � ≤ G8 ≤ �, the Gaussian kernel density estimate 5̂ (G) is defined as

5̂ (G) = 1

=ℎ

=∑
8=1

 
( G − G8

ℎ

)

where  (C) = 1
√

2c
exp(−C2/2)

and in this case ℎ = (� − �)/(: − 2) .

Clearly, a window width ℎ similar to the bin width, as in the top row, can generate an unrealistic over-smoothed

density estimate, while using narrower many bins, as in the second row, can lead to over-fitting.
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Details are as follows.

• The calculation involves four steps.

1. From the = data points G8 choose a lower limit 0, an upper limit 1, and < equally spaced points C8
where

0 = � − 3ℎ ≤ C8 ≤ � + 3ℎ = 1,

and < is power of 2. The value of < can be altered interactively from the default value of 128 if

necessary for better representation of multi-modal profiles. Data are discretized by binning the G8
at points C8 to generate weights b; .

2. Compute FFT of the weights, b; to give .;.

3. Compute b; = .; exp (ℎ2B2
;
/2) where B; = 2c;/(1 − 0)

4. Find the inverse FFT of b; to give 5̂ (G).

• The histograms shown on the left use : bins to contain the sample, and the height of each bin is the

fraction of sample values in the bin. The value of : can be changed interactively, and the dotted curves

are the density estimates for the < values of C. The program generates additional empty bins for the

FFT outside the range set by the data to allow for tails. However, the total area under the histogram is

one, and the density estimate integrates to one between −∞ and ∞.

• In addition to the definition of the smoothing parameter ℎ depending on the number of bins chosen for

display in the above figure the default setting, which is

ℎ = 1.06f̂=−1/5,

uses the sample standard deviation and sample size, as recommended for a normal distribution. Users

can also set arbitrary smoothing parameters and, with these two options, the histograms plotted simply

illustrate the fit of the kernel density estimate to the data and do not alter the smoothing parameter ℎ.

• The sample cumulative distributions shown on the right have a vertical step of 1/= at each sample value,

and so they increase stepwise from zero to one. The density estimates are integrated numerically to

generate the theoretical cdf functions, which are shown as dashed curves. They will attain an asymptote

of one if the number of points < is sufficiently large to allow accurate integration, say ≥ 100.

• The density estimates are unique given the data, ℎ and <, but they will only be meaningful if the

sample size is fairly large, say ≥ 50 and preferably much more. Further, the histogram bins will only

be representative of the data if they have a reasonable content, say =/: ≥ 10.

• The histogram, sample distribution, pdf estimate and cdf estimate can be saved to file by selecting the

[Advanced] option then creating ASCII text coordinate files.
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5.9 False discovery rates FDR(BH)

Multiple testing is when several statistical tests are performed on the same data so it is necessary to control

false results. One procedure is the Bonferroni correction where, for< tests and ? values, results are considered

significant at level U if ? ≤ U/<, rather than ? ≤ U for single tests.

If at least one of the ? values satisfies the Bonferroni restriction, the FDR(BH) false discovery rate technique

(Benjamini and Hochberg J.R.satist.Soc. B (1995) 57,1, 289–300, and Benjamini et al Behavioural Brain

Research 125 (2001) 279–284) is available to see if there other ? values, not necessarily satisfying the

Bonferroni restriction, that could also be regarded as possibly significant.

Example 1: FDR(BH) for a vector of ? values

From the main SimFIT menu choose [Statistics] then [Statistical calculations] and then [False discovery rates

from a vector p(i)] and scrutinize the default test file fdr_bh.tf1 provided. After selecting to calculate the

false discovery rates, view the table of results for all the data arranged into order of rank which is displayed

next. Here < is the number of tests and 8 is the rank of the sample in terms of the ordered ? values.

False discovery rates for a vector of p(i) values: 1

Title: Data for BH False Discovery rate calculation

Sample size = 17

Number rejected = 0

Number analysed = 17

Significance level, U = 0.05

? < ∗ ?/8 U ∗ 8/<
Rank Sample p-value p-adjusted BH-level Result

1 12 0.000001 0.000017 0.002941 1

2 1 0.000013 0.000110 0.005882 1

3 3 0.000065 0.000368 0.008824 1

4 6 0.000630 0.002678 0.011765 1

5 5 0.000800 0.002720 0.014706 1

6 16 0.001700 0.004817 0.017647 1

7 2 0.003200 0.007771 0.020588 1

8 7 0.006500 0.013813 0.023529 1

9 11 0.014800 0.027956 0.026471 1

10 13 0.049000 0.083300 0.029412 0

11 14 0.094000 0.145273 0.032353 0

12 17 0.110000 0.155833 0.035294 0

13 9 0.150000 0.196154 0.038235 0

14 8 0.240000 0.291429 0.041176 0

15 15 0.450000 0.510000 0.044118 0

16 10 0.560000 0.595000 0.047059 0

17 4 0.870000 0.870000 0.050000 0

There are other options to view the results in sample order or to just show significant results, but the above

table is the easiest to understand and follows the example given by Benjamini et al on this same data set.

In order to understand the FDR(BH) technique we shall explain the meanings of the above columns and, in

particular, the interpretation of the colors and meaning of the 1’s and 0’s in the last column.
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1. Column 1

This is the rank 8 of the sample with respect to the ? values. That is, the rows of the table are arranged

so that the samples in row 8 are arranged in order of increasing ? values.

2. Column 2

This registers the actual number of the sample in the original order.

3. Column 3

Here are the ? values corresponding to the rank recorded in column 1 for the sample identified in

column 2.

4. Column 4

If this is table line for rank 8 then this is the ? value adjusted by the rank and the sample size <. In

other words, the adjusted ? value is <?/8. Note that this column only depends on ?, 8 and <, and the

last adjusted ? value is always the same as the uncorrected ? value since 8 = <.

5. Column 5

Here are listed the BH-levels, i.e., the BH threshold values U8/<. Note that these only depend on U, 8

and <, and they have the following sequence. The value at row 1 is the Bonferroni corrected level for

significance testing, and the value at line < is the significance level U, while between these extremes

the values slowly increase as a function of the rank.

6. Column 6

This column has a 1 if the sample is in the FDR(BH) set and a 0 otherwise

The systematic FDR(BH) procedure

The technique starts at row < and advances up the table until the first rank is encountered, say :, where the

? value is less than or equal to the BH threshold. We then conclude that all samples from line 1 up to line :

must be considered as possibly significant. So the set of possibly significant samples contains those where

? ≤ U8/<,
or equivalently <?/8 ≤ U.

So now the importance of the color change will be clear and the interpretation of the table is obvious.

All samples numbered in column 2 up to level : with a 1 in column 6 are colored blue, which makes

identification of the set of possibly significant samples easy to recognize.

The table can also be rearranged into sample order and can be displayed in such a way as to only identify the

set of possibly significant samples. Also, for very large samples it is possible to scroll through the table to

select sections or even to write the whole table to file.

Example 2: FDR(BH) for a matrix of ? values

Some procedures result in matrices of ? values, and this requires a more complicated approach because we

have to keep track of the row and column indices. As a typical example, select the option for false discovery

rate for a matrix and read in the default test file matrix_p.tf1 which is as follows

0.00023 0.00060 0.40906 0.41318

0.00050 0.00005 0.32055 0.23282

0.00560 0.01362 0.43751 0.06327

This results from the directed correlation procedure in the multivariate statistics options using the default test

files matrix_a.tf1 for the � matrix which has dimensions 30 by 3, and matrix_b.tf1 for the � matrix

which has dimensions 30 by 4.
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Proceeding with the false discovery option we obtain the following table in rank order.

False discovery rates for a matrix of p(i,j) values: 1

Title: Data from directed correlation

Number of columns = 4

Number of rows = 3

Number out of range = 0

Significance level, U = 0.05

�(8) �( 9) ?-value ?-adjusted BH-level Result

2 2 0.000053 0.000632 0.004167 1

1 1 0.000231 0.001387 0.008333 1

2 1 0.000500 0.002000 0.012500 1

1 2 0.000598 0.001793 0.016667 1

3 1 0.005602 0.013446 0.020833 1

3 2 0.013624 0.027247 0.025000 1

3 4 0.063269 0.108461 0.029167 0

2 4 0.232822 0.349234 0.033333 0

2 3 0.320548 0.427398 0.037500 0

1 3 0.409063 0.490875 0.041667 0

1 4 0.413176 0.450738 0.045833 0

3 3 0.437508 0.437508 0.050000 0

As before the set of possibly significant samples is easy to identify by the 1 in the last column or blue color,

but columns 1 and 2 need some explanation.

In this example column 1 indicates what the row indices of ? values are, because the matrix of ? values had

3 rows which originated from the 3 columns of the � matrix in the directed correlation. The second column

identifies column indices for the 4 columns corresponding to the 4 columns of the � matrix. This situation

is valid only for this particular matrix, and results from the convention dictating the way that the matrix of ?

values was constructed.
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6 Multivariate analysis

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

6.1 Introduction

Multivariate analysis is used to study = by < data matrices where the = rows represent subjects while the <

columns are values for variables observed for the = subjects.

To be precise, consider the possible outcome from testing eight people exposed to mosquito attacks with five

different types of clothing as follows, where a 1 indicates attacked by mosquitos and a 0 indicates freedom

from attack.

Blocks Groups (Clothing Type)

(Subjects) Light-loose Light-tight Dark-long Dark-short None

1 0 0 0 1 0

2 1 1 1 1 1

3 0 0 0 1 1

4 1 1 0 1 0

5 0 1 1 1 1

6 0 1 0 0 1

7 0 0 1 1 1

8 0 0 1 1 0

Here there are 8 subjects and 5 variables, but in addition there is a first column identifying the subjects. So

the actual data matrix used for analysis would have dimensions = = 8 and < = 5, whereas the above table has

= = 8 and < = 6 because, with some multivariate techniques provided by SimFIT, the additional first column

can be used to identify subjects if the data are rearranged into groups, or if some subjects are excluded from

analysis. Note also that it is often useful to exclude selected variables from an analysis and so, if this is done,

the remaining columns will be re-numbered.

So, from now on, we shall consider a matrix - with elements G8 9 as follows

- =



G11 G12 · · · G1<

G21 G22 · · · G2<

· · · · · · · · · · · ·
G=1 G=2 · · · G=<


where all the values are to be used in a current analysis.

Almost all multivariate techniques require that the vector of column means and the covariance matrix should

be estimated from - and, in addition, subsequent analysis will usually require a singular value decomposition

((+�) because it is the most reliable method for determining the rank of a matrix. SimFIT provides the

ability to check the rank of any matrix in this way, and this should be done with any data matrices that prove

problematical to analyze.

It should be obvious that the units of measurements for the variables should lead to similar values for the

G8 9 so that all < variables have comparable means and variances, otherwise columns with large values will

dominate columns with small values. This can be achieved by centralizing the matrix by subtracting the
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column means, and then normalizing by dividing by the column standard deviation. If this is required then

the SimFIT program editmt can be used to pre-process data matrices, or it can be done interactively before the

data are submitted for analysis, or performed automatically by the routine. However, care must be exercised

when centralizing and normalizing because some techniques can give biased results if this is done uncritically.

For instance, partial least squares will give biased predictions if data sets for calibration and prediction are

pre-processed uncritically before analysis.
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6.2 Correlation

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

6.2.1 introduction

Correlation analysis is used to study the possible dependence of two or more columns in a = by< data matrix.

For instance, consider any two columns in a = by < data matrix such as



011 012 · · · 01<

021 022 · · · 02<

· · · · · · · · · · · ·
0=1 0=2 · · · 0=<


where we can select column 9 where 1 ≤ 9 ≤ <, and refer to it as - , and column : where 1 ≤ : ≤ <, and

refer to it as . , as long as 9 ≠ :. As the data matrix will consist of observations subject to random variation

and experimental error the following situations are possible.

1. - and . are completely independent and there is no relationship whatsoever between them.

2. - and . are linearly dependent, that is, components G8 and H8 are related in that H8 ≈ UG8 for some

parameter U.

3. - and. are monotonically dependent, that is, components G8 and H8 are related in that, roughly speaking,

H8 tend to be large when G8 are large, or some similar nonlinear tendency exists.

4. - and . are nonlinearly dependent, that is, components G8 and H8 are related in that 5 (G8 , H8) ≈ 0 for

some nonlinear implicit function 5 (G, H) = 0.

5. - and. are dependent because they are separately dependent on another column or columns in the data

matrix, or else some other factor not represented in the data matrix.

Actually, given any set of = nonsingular (G8 , H8) pairs, a correlation coefficient A can always be calculated as

A =

=∑
8=1

(G8 − Ḡ) (H8 − H̄)
√√

=∑
8=1

(G8 − Ḡ)2

=∑
8=1

(H8 − H̄)2

where −1 ≤ A ≤ 1 and, using 1GH for the slope of the regression of - on . , and 1HG for the slope of the

regression of . on -

A2
= 1HG1GH .

However, only when - is normally distributed given . , and . is normally distributed given - can simple

statistical tests be used for significant linear correlation. The most well known facts about A are as follows.

• When - and . are linearly related with H8 ≈ UG8 and U > 0 then A → 1.

• When - and . are linearly related with H8 ≈ UG8 and U < 0 then A → −1.

• When - and . are not linearly related then A → 0.



238 Multivariate analysis

• When the (G8 , H8) pairs are from a bivariate normal distribution with population correlation coefficient

d0 equal to zero, then the statistic

C = A

√
= − 2

1 − A2

has a Student’s C-distribution with = − 2 degrees of freedom.

Example 1: Uncorrelated data

Consider this data set

x y

2.3556 9.9096

0.0165 3.1851

0.3103 7.2811

3.9954 9.3582

7.9854 2.7311

4.3243 7.0423

4.6832 9.7970

7.2031 8.4710

7.5664 7.1706

3.9607 6.4083

which can be displayed as the following scattergram.
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10

0 2 4 6 8

Uncorrelated Data: r=-0.0111, p=0.9757

X

Y

Note that, in a correlation scattergram, it is arbitrary which column of the data matrix is chosen for - , and

which is chosen for . . Hence, as it makes no sense to just show the regression line for . as a function of

- , or - as a function of . , SimFIT allows you to plot both regression lines. If these regression lines are

approximately at right angles it indicates that - and . are not linearly correlated. Of course the visual check

for perpendicularity is best when the same range and scale is used for the coordinates axes, and when a square

aspect ratio is employed.
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The conclusion is obvious from the scattergram, A value, ? value, and almost perpendicular regression lines

that these two data columns are not linearly correlated. Note that the usual type of regression line is based on

the supposition that the - values are known exactly, but SimFIT also provides other techniques for plotting a

best-fit single regression line when there is variation in both - and . .

Example 2: Linearly correlated data

Consider this data set

x y

1.7215 0.3048

0.6453 1.5455

3.8647 2.6689

3.9793 4.1100

3.0151 5.5931

5.2616 7.5528

9.1775 7.7276

6.6972 7.0932

9.8648 8.8121

11.8088 10.0993

which can be displayed as the following scattergram.

0
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12

0 4 8 12

Linearly Correlated Data: r=0.9043, p=0.0003

X

Y

The conclusion is obvious from the scattergram, A value, ? value, and almost parallel regression lines that

these two data columns are linearly correlated.

Note however, that such strong evidence for linear correlation does not imply that . is really a linear function

of - in the sense that - causes . or vice versa. Often a strong correlation will be due to the dependence of

both variables on some other factor such as time, population size, or age. For instance, one study examined

that incidence of crime in several cities along with other variables such as the number of churches and reported
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a strong positive correlation between the incidence of crime and the number of churches. This does not, of

course, mean that churches cause crime, but merely reflects the fact that large cities will tend to have more

crimes but also more churches. SimFIT provides techniques for studying these sorts of induced correlations.

Example 3: non-linearly correlated data

Consider this data set

x y

1.0000 0.0000

0.8090 0.5878

0.3090 0.9511

-0.3090 0.9511

-0.8090 0.5878

-1.0000 0.0000

-0.8090 -0.5878

-0.3090 -0.9511

0.3090 -0.9511

0.8090 -0.5878

which can be displayed as the following scattergram.

-1

0

1

-1 0 1

Nonlinear Correlation Data: r= 0.0000, p=1.0000

X

Y

The conclusion is obvious from the scattergram, A value, ? value, and perpendicular regression lines that

these two data columns are not linearly correlated.

This example emphasizes an extremely widespread misunderstanding in the application of correlation analysis.

It would be harder to find a more obvious example of a data set displaying such extreme nonlinear correlation

as this one. Yet the standard technique of relying on A and ? values would only conclude an absence of linear

correlation, and would not exclude nonlinear correlation. Scatter diagrams showing both regression lines, as

in these examples, should always be inspected before making conclusions about possible correlations.
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6.2.2 Pearson product-moment correlation

The Pearson product-moment method is used to estimate the amount of linear correlation between paired

columns, say - and . , of a = by < data matrix where it is assumed that the values are of the continuous type

from a normal bivariate distribution, and not integers such as frequencies or categorical variables. The null

hypothesis is that - and . are independent, i.e. have zero covariance, that is

�0 : - and . are from a bivariate normal distribution with d = 0.

Example 1

From the SimFIT main menu choose [Statistics], [Multivariate], [Correlation], then analyze g02baf.tf1, the

test file provided, using the Pearson product-moment technique. This file contains the following 5 by 3 data

matrix

2.0 3.0 3.0

4.0 6.0 4.0

9.0 9.0 0.0

0.0 12.0 2.0

12.0 -1.0 5.0

and analysis leads first to the correlation coefficients and corresponding ? values

Matrix �, Pearson correlation results

Upper triangle = A

Lower triangle = corresponding two-tail ? values

..... -0.5704 0.1670

0.3153 ..... -0.7486

0.7883 0.1455 .....

which is in the following simplified but comprehensive format

� =


· · · A12 A13

?12 · · · A23

?13 ?23 · · ·


where the values 08 9 for matrix � in the table are interpreted as now described. For 9 > 8 in the strict upper

triangle, then 08 9 = A8 9 = A 98 are the correlation coefficients, while for 8 > 9 in the strict lower triangle

08 9 = ?8 9 = ? 98 are the corresponding two-tail probabilities. In other words, since A8 9 = A 98 , ?8 9 = ? 98 , while

A88 = 1, there will only be <(< − 1)/2 independent correlations coefficients, and so the diagonal A88 = 1

are shown as dots. For instance A12 = −0.5704 is the correlation coefficient for columns 1 and 2, while

?12 = 0.3153 is the two-tail ? value for this correlation coefficient. The table indicates that none of the

correlations are significant in this case, that is, the probability of obtaining such pairwise linearity in a random

swarm of points from a multivariate normal distribution is not low.

This is then followed by a likelihood ratio test that the full correlation matrix ' = A8 9 for the data matrix is the

identity matrix with the following results.

Test for absence of any significant correlations

�0: correlation matrix is the identity matrix

Determinant 0.2290

Test statistic ()() 3.194

Degrees of freedom 3

%(j2 ≥ )() 0.3627

To test the hypothesis of no significant correlations, i.e.

�0: the covariance matrix is diagonal, or equivalently

�0: the correlation matrix ' is the identity matrix, the likelihood ratio test statistic )(, i.e.

−2 log_ = −(= − (2< + 11)/6) log |' |
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is used, where |' | is the determinant of the full correlation matrix (not the previous � matrix) which has the

asymptotic chi-square distribution with <(< − 1)/2 degrees of freedom.

Example 2

This example illustrates the analysis of SimFIT test file cluster.tf1 which contains the following data set

1.0 4.0 2.0 11.0 6.0 4.0 3.0 9.0

8.0 5.0 1.0 14.0 19.0 7.0 13.0 21.0

3.0 1.0 3.0 1.0 3.0 6.0 23.0 37.0

9.0 0.0 7.0 7.0 1.0 2.0 21.0 2.0

7.0 12.0 9.0 5.0 14.0 9.0 12.0 14.0

2.0 13.0 15.0 2.0 23.0 6.0 34.0 8.0

11.0 7.0 2.0 1.0 4.0 17.0 11.0 4.0

6.0 3.0 7.0 12.0 11.0 8.0 8.0 0.0

8.0 21.0 1.0 10.0 31.0 9.0 3.0 18.0

19.0 14.0 12.0 9.0 16.0 10.0 0.0 27.0

17.0 18.0 10.0 6.0 19.0 14.0 1.0 24.0

15.0 21.0 8.0 7.0 17.0 12.0 4.0 22.0

leading to this correlation and probability matrix

Upper triangle = A, Lower = corresponding two-tail ? values

..... 0.5295 0.2874 0.0662 0.1941 0.6255 -0.5876 0.3010

0.0766 ..... 0.3285 -0.0219 0.7930 0.5338 -0.4230 0.3006

0.3650 0.2971 ..... -0.2833 0.2165 0.0264 0.2314 -0.0304

0.8381 0.9460 0.3723 ..... 0.2787 -0.2837 -0.5238 -0.1166

0.5455 0.0021 0.4992 0.3804 ..... 0.2029 -0.1949 0.2144

0.0296 0.0738 0.9351 0.3715 0.5271 ..... -0.4532 0.1360

0.0445 0.1706 0.4694 0.0805 0.5439 0.1390 ..... -0.1696

0.3418 0.3424 0.9253 0.7181 0.5035 0.6735 0.5983 .....

followed by the results displayed next for a likelihood ratio test.

Test for absence of any significant correlations

�0: correlation matrix is the identity matrix

Determinant 0.002476

Test statistic ()() 45.01

Degrees of freedom 28

%(j2 ≥ )() 0.0220 Reject �0 at 5% significance level

From the A values in the strict upper triangle, the ? values in the strict lower triangle, and the chi-square test

there are linear correlations, and in such cases it would be usual to select pairs of columns for closer analysis.

Analyzing selected pairs of columns

For example, the results for analyzing columns 1 and 2 will be considered.

For the next analysis: - is column 1, . is column 2

Linear regression: H(G) = � + � ∗ G, G(H) = � + � ∗ H
Sample size = 12

For X mean = 8.8333 std. dev. = 5.7814 var. = 33.424

For Y mean = 9.9167 std. dev. = 7.5973 var. = 57.720

First the parameter estimates for linear regression are calculated, where Estimate/Standard Error are C values

to test for parameters significantly different from zero, Ppmcc is the Pearson product-moment correlation

coefficient, and the Fisher I value is used to estimate a 95% confidence region for d. In this type of table

? ≤ 0.05 would be required to suggest a nonzero parameter at the 5% significance level.
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Parameter Estimate Standard Error Estimate/Standard Error ?

� (slope) 0.69583 0.35252 1.9739 0.0766

� (const) 3.7702 3.6748 1.0260 0.3291

A (Ppmcc) 0.52951 0.26826 1.9739 0.0766

A2 0.28038

H-variation due to G = 28.04%

I(Fisher) 0.58946

Note: I = (1/2) log[(1 + A)/(1 − A)]
A2 = � ∗ �, and C = A ∗

√
[(= − 2)/(1 − A2)] = Estimate/Standard Error for � and �

The Pearson product-moment correlation coefficient A estimates d and

95% confidence limits using I are −0.0771 ≤ d ≤ 0.8500

Then this analysis of variance (ANOVA) table is displayed, where the � value is used to test for a significant

regression slope. In this type of table ? ≤ 0.05 would be required to suggest a nonzero regression slope at

the 5% significance level.

Source Sum of squares =3> 5 Mean square �-value ?

due to regression 178.02 1 178.02 3.8962 0.0766

about regression 456.90 10 45.690

total 634.92 11

Conclusions:

� is not significantly different from zero (? > 0.05)

� is not significantly different from zero (? > 0.05)

The two best-fit unweighted regression lines are:

H(G) = 3.7702 + 0.69583G, and G(H) = 4.8375 + 0.40294H

Various options for plotting follow, and the theory necessary to interpret such correlation tests and visual

displays will be presented next.

Theory

Given any set of = nonsingular (G8 , H8) pairs, a correlation coefficient A can be calculated as

A =

=∑
8=1

(G8 − Ḡ) (H8 − H̄)
√√

=∑
8=1

(G8 − Ḡ)2

=∑
8=1

(H8 − H̄)2

where −1 ≤ A ≤ 1 and, using 1GH for the slope of the regression of - on . , and 1HG for the slope of the

regression of . on -

A2
= 1HG1GH .

However, only when - is normally distributed given . , and . is normally distributed given - can simple

statistical tests be used for significant linear correlation. For instance, when the (G8 , H8) pairs are from such a

bivariate normal distribution, the statistic

C = A

√
= − 2

1 − A2

has a Student’s C-distribution with = − 2 degrees of freedom. It is also the C value required to test for nonzero

slope in the regression of . on - , and - on . , for which a ? value can be calculated.

The next figure illustrates how the elliptical contours of constant probability for a bivariate normal distribution

are aligned with the - and . axes when - and . are uncorrelated, i.e., d = 0 but are inclined otherwise. In

this example `- = `. = 0 and fG = f. = 1, but in the upper figure d = 0, while in the lower figure d = 0.9.

The Pearson product-moment correlation coefficient A is an estimator of d, and it can can be used to test for

independence of - and . .
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Bivariate Normal Distribution: ρ = 0
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Bivariate Normal Distribution: ρ = 0.9
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The SimFIT product-moment correlation procedure can be used when you have a data matrix - consisting of

< > 1 columns of = > 1 measurements (not counts or categorical data) and wish to test for pairwise linear

correlations, i.e., where pairs of columns can be regarded as consistent with a bivariate normal distribution.

In matrix notation, the relationships between such a = by < data matrix - , the same matrix . after centering

by subtracting each column mean from the corresponding column, the sum of squares and products matrix�,

the covariance matrix (, the correlation matrix ', and the diagonal matrix � of standard deviations are

� = .).

( =
1

= − 1
�

� = diag(√B11,
√
B22, . . . ,

√
B<<)

' = �−1(�−1

( = �'�.

So, for all pairs of columns, the sample correlation coefficients A 9 : are given by

A 9 : =
B 9 :

√
B 9 9 B::

,

where B 9 : =
1

= − 1

=∑
8=1

(G8 9 − Ḡ 9 ) (G8: − Ḡ: ),

and the corresponding C 9 : values and significance levels ? 9 : are calculated then output in matrix format with

the correlations as a strict upper triangular matrix, and the significance levels as a strict lower triangular

matrix.



Plotting lines on correlation diagrams 245

6.2.3 Plotting lines on correlation diagrams

You can plot either both unweighted regression lines, the unweighted reduced major axis line,or the unweighted

major axis line on such scattergrams and the difference between these types will now be outlined.

For n pairs (G8 , H8) with mean G = Ḡ and mean H = H̄, the variances and covariance required are

(GG =
1

= − 1

=∑
8=1

(G8 − Ḡ)2

(HH =
1

= − 1

=∑
8=1

(H8 − H̄)2

(GH =
1

= − 1

=∑
8=1

(G8 − Ḡ) (H8 − H̄) .

Also, for an arbitrary point (G8 , H8) and a straight line defined by H = 0 + 1G the squares of the vertical,

horizontal, and orthogonal (i.e. perpendicular) distances, E2
8 , ℎ

2
8 , and >2

8 between the point and the line are

E2
8 = [H8 − (0 + 1G8)]2

ℎ2
8 = E

2
8 /12

>2
8 = E

2
8 /(1 + 12) .

Ordinary least squares

If G is regarded as an exact variable free from random variation or measurement error while H has random

variation, then the best fit line from minimizing the sum of E2
8 is

H1 (G) = V̂1G + [H̄ − V̂1Ḡ]

where V̂1 = (GH/(GG. However, if H is regarded as an exact variable while G has random variation, then the

best fit line for G as a function of H from minimizing the sum of ℎ2
8 would be

G2 (H) = (1/V̂2)H + [Ḡ − (1/V̂2) H̄]

where V̂2 = (HH/(GH or, rearranging to express the line as H2 (G),

H2 (G) = V̂2G + [H̄ − V̂2Ḡ],

emphasizing that the slope of the regression line for H2 (G) is the reciprocal of the slope for G2 (H). Since

neither of these two best fit lines can be regarded as satisfactory, SimFIT plots both lines such that H1 (G)
covers the range of G values while G2 (H) covers the range of H values. However these two lines intersect at

(Ḡ, H̄) and, from the fact that the ratio of slopes equals the square of the correlation coefficient, that is,

A2
= V̂1/V̂2,

then two best fit lines with similar slopes suggests strong linear correlation, whereas one line almost parallel to

the G axis and the other almost parallel to the H axis would indicate negligible linear correlation. For instance,

if there is no linear correlation between G and H, then the slope of the regression line for H(G) i.e. V̂1 would

be zero, as would be the slope of the regression line for G(H) i.e. 1/V̂2 leading to A2 = 0. Conversely strong

linear correlation would lead to V̂1 = V̂2 and A2
= 1.
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The major axis and reduced major axis lines to be discussed next are attempts to get round the necessity to

plot two lines and just have one best fit line intermediate between these two lines to represent the correlation.

The major axis line

Here it is the sum of >2
8 , the squares of the orthogonal distances between the points and the best fit line, that

is minimized to yield the slope as

V̂3 =
1

2

(
V̂2 − (1/V̂1) + W

√
4 + ( V̂2 − (1/V̂1))2

)

where W = 1 if (GH > 0, W = 0 if (GH = 0, and W = −1 if (GH < 0, so that the major axis line is

H3 (G) = V̂3G + [H̄ − V̂3Ḡ] .

Actually V̂3 is the slope of the first principal component axis and so it points in the direction of maximum

variability.

The reduced major axis line

Instead of minimizing the sum of squares of the vertical distances E2
8 , or horizontal distances ℎ2

8 , it is possible

to minimize the sum of the areas of the triangles formed by the E8 , ℎ8 with the best fit line as hypotenuse, i.e.

E8ℎ8/2, to obtain the reduced major axis line as

H4 (G) = V̂4G + [H̄ − V̂4Ḡ] .

Here

V̂4 = W

√
(HH/(GG

= W

√
V̂1 V̂2

so that the slope of the reduced major axis line is the geometric mean of the slopes of the regression of H on G

and G on H.

6.2.4 Recommendations for plotting lines on scattergrams

1. Plotting both both simple regression lines is the most useful and least controversial. Such lines tending

to coincidence indicate strong linear correlation, while lines approaching perpendicularity indicate

absence of significant linear correlation.

2. If a single line must be plotted to summarize the overall correlation it should be the reduced major axis

line, as this allows for uncertainty in both variables and is not so controversial as the major axis line,

which requires both axes to have similar units, as in allometry.

3. It should not be just one of the simple regression lines, since the line plotted must be independent of

which variable is regarded as G and which is regarded as H.
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6.2.5 Plotting bivariate confidence ellipses: basic theory

For a ?-variate normal sample of size = with mean Ḡ and variance matrix estimate (, the region

%

{
(Ḡ − `)) (−1(Ḡ − `) ≤ ?(= − 1)

=(= − ?) �
U
?,=−?

}
≤ 1 − U

can be regarded as a 100(1 − U)% confidence region for `. The next figure illustrates this for columns 1 and

2 of cluster.tf1 discussed previously. Alternatively, the region satisfying

%

{
(G − Ḡ)) (−1(G − Ḡ) ≤ ?(=2 − 1)

=(= − ?) �
U
?,=−?

}
≤ 1 − U

can be interpreted as a region that with probability 1 − U would contain another independent observation G,

as shown for the swarm of points in the next figure.
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The ` confidence region contracts with increasing =, limiting application to small samples, but the new

observation ellipse does not,making it useful for visualizing if data do represent a bivariate normal distribution,

while inclination of the principal axes away from parallel with the plot axes demonstrates linear correlation.

This technique is only justified if the data are from a bivariate normal distribution and are independent of the

variables in the other columns, as indicated by the correlation matrix.
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Plotting bivariate confidence ellipses: regions

Often a two dimensional swarm of points results from projecting data that have been partitioned into groups

into a subspace of lower dimension in order to visualize the distances between putative groups, e.g., after

principal components analysis or similar. If the projections are approximately bivariate normal then confidence

ellipses can be added, as in the figure below.

-16

-8

0

8

16

-16 -8 0 8 16

95% Confidence Ellipses

x

y

The following steps were used to create this figure and can be easily adapted for any number of sets of two

dimensional group coordinates.

1. For each group a file of values for G and H coordinates in the projected space was saved.

2. Each file was analyzed for correlation using the SimFIT correlation analysis procedure.

3. After each correlation analysis, the option to create a 95% confidence ellipse for the data was selected,

and the ellipse coordinates were saved to file.

4. A library file was created with the ellipse coordinates as the first three files, and the groups data files as

the next three files.

5. The library file was read into simplot, then colors and symbols were chosen.

Note that, because the ellipse coordinates are read in as the first coordinates to be plotted, the option to plot

lines as closed polygons can be used to represent the confidence ellipses as colored background regions.
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6.2.6 Kendall tau and Spearman rank nonparameteric correlation

Nonparametric correlation is required when the data are not distributed according to a multivariate normal

distribution, so the Kendall-tau or else the Spearman-rank method is to be preferred. As with the Pearson

product-moment correlation technique a = by < data matrix (but now with ranked or ordinal scaled data)

is supplied, then SimFIT calculates all possible pairwise correlation coefficients, and all possible two tail

probabilities.

From the SimFIT main menu choose [Statistics], [Multivariate], [Nonparametric correlation] then analyze the

test file npcorr.tf1 which contains the following data set with = = 9 and < = 3

1.70 1.00 0.50

2.80 4.00 3.00

0.60 6.00 2.50

1.80 9.00 6.00

0.99 4.00 2.50

1.40 2.00 5.50

1.80 9.00 7.50

2.50 7.00 0.00

0.99 5.00 3.00

to obtain these results.

Matrix �: Correlation coefficients

Upper triangle = Spearman’s rank

Lower triangle = Kendall’s tau

..... 0.2246 0.1186

0.0294 ..... 0.3814

0.1176 0.2353 .....

Matrix �: Two tail ?-values

..... 0.5613 0.7611

0.9121 ..... 0.3112

0.6588 0.3772 .....

To be more precise, matrices � and � in this table are to be interpreted as follows. In the first matrix �, for

9 > 8 in the strict upper triangle, then 08 9 = 28 9 = 2 98 are Spearman correlation coefficients (in black), while

for 8 > 9 in the strict lower triangle 08 9 = g8 9 = g98 are the corresponding Kendall coefficients (in red).

In the second matrix �, for 9 > 8 in the strict upper triangle, then 18 9 = ?8 9 = ? 98 are two-tail probabilities

for the corresponding 28 9 coefficients (in black), while for 8 > 9 in the strict lower triangle 18 9 = ?8 9 = ? 98 (in

red) are the corresponding two-tail probabilities for the corresponding g8 9 .

For instance, because of symmetry,

• 012 = 212 = 221 = 0.2246 with 112 = ?−Spearman12 = ?−Spearman21 = 0.5613 refer to the Spearman

rank correlation and two-tail ?-values for analyzing columns 1 and 2, while

• 032 = g32 = g23 = 0.2353 with 132 = ? − Kendall32 = ? − Kendall23 = 0.3772 refer to the Kendall g

correlation and two-tail ?-values for analyzing columns 2 and 3.

Note that, from these matrices, g9 : , 2 9 : and ? 9 : values are given for all possible correlations 9 , :. Also, note

that these nonparametric correlation tests are tests for monotonicity rather that linear correlation but, as with

the Pearson parametric test, the columns of data must be of the same length and the values must be ordered

according to some correlating influence such as multiple responses on the same animals. If the number of

categories is small or there are many ties, then Kendall’s Tau is to be preferred and conversely. Since you are

not testing for linear correlation you should not add regression lines when plotting such correlations.
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It should be obvious that SimFIT displays both sets of results for convenience, and so there are just two

possible ways to proceed.

1. Decide in advance which correlation coefficients and corresponding ? values to accept, or

2. Apply the Bonferroni or similar correction required for two tests on the same data.

Theory

These nonparametric procedures can be used when the data matrix does not consist of columns of normally

distributed measurements, but may contain counts or categorical variables, etc. so that the conditions for

Pearson product-moment correlation are not satisfied and ranks have to be used. Suppose, for instance, that

the data matrix, say - , has = rows (observations) and < columns (variables) with = > 1 and < > 1, then the

G8 9 are replaced by the corresponding column-wise ranks H8 9 , where groups of tied values are replaced by the

average of the ranks that would have been assigned in the absence of ties. Kendall’s tau g9 : for variables 9

and : is then defined as

g9 : =

=∑
ℎ=1

=∑
8=1

5 (Hℎ 9 − H8 9 ) 5 (Hℎ: − H8: )
√
[=(= − 1) − )9 ] [=(= − 1)):]

,

where 5 (D) = 1 if D > 0,

= 0 if D = 0,

= −1 if D < 0,

and )9 =
∑

C 9 (C 9 − 1) .

Here C 9 is the number of ties at successive tied values of variable 9 , and the summation is over all tied values.

For large samples g9 : is approximately normally distributed with

` = 0

f2
=

4= + 10

9=(= − 1)

which can be used as a test for the absence of correlation.

Another alternative is to calculate Spearman’s rank coefficient 2 9 : , defined as

2 9 : =

=(=2 − 1) − 6

=∑
8=1

(H8 9 − H8: )2 − ()9 + ): )/2
√
[=(=2 − 1) − )9 ] [=(=2 − 1)):]

where now )9 =
∑

C 9 (C29 − 1)

and a test can be based on the fact that, for large samples, the statistic

C 9 : = 2 9 :

√
= − 2

1 − 22
9 :

is approximately C-distributed with = − 2 degrees of freedom.
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6.2.7 Partial correlation

Partial correlation analysis is used to evaluate the extent to which the correlations between two or more

columns (called . -variables) of a = by < data matrix with < > 2 depend on correlations between these

columns and other columns in the matrix (called --variables). Either a data set or a correlation matrix

together with sample size can be input, and it is most often used to study the way that the correlations between

two columns depend on a third column.

Example 1

From the main SimFIT menu select [Statistics], [Multivariate], [Partial correlation] and then read in the test file

g02byf.tf1 provided. In the special case when = = < you have to specify whether a data file or correlation

matrix is being input, but this is a data matrix with fifteen rows and three columns as follows.

Column 1: number of deaths

Column 2: smoke(<6/<3)

Column 3: sulphur dioxide(parts/million)

112 0.30 0.09

140 0.49 0.16

143 0.61 0.22

120 0.49 0.14

196 2.64 0.75

294 3.45 0.86

513 4.46 1.34

518 4.46 1.34

430 1.22 0.47

274 1.22 0.47

255 0.32 0.22

236 0.29 0.23

256 0.50 0.26

222 0.32 0.16

213 0.32 0.16

However the following important trailer section has been added to the data.

begin{indicators}

-1 -1 1

end{indicators}

Negative indicator values denote . -variables, zero values indicate suppression, while positive indictor values

identify - variables. In other words, the default partial correlation between deaths and smoke is required

when sulphur dioxide is considered as fixed. However, it should be noted that the assigning of columns to .

or - groups can also be done interactively.

First the overall Pearson product-moment correlation matrix is calculated and displayed along with the two-tail

?-values.

Pearson product moment correlation results:

Strict upper triangle: A

Strict lower triangle: corresponding two-tail ? values

..... 0.7560 0.8309

0.0011 ..... 0.9876

0.0001 0.0000 .....

This is then followed by a likelihood ratio test
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Test for absence of any significant correlations

�0: correlation matrix is the identity matrix

Determinant 0.003484

Test statistic ()() 68.86

Degrees of freedom 3

%(j2 ≥ )() 0.0000 Reject �0 at 1% significance level

but, in addition, the partial correlation matrix is displayed as in the next table for variables indicated as ..- .

That is, correlation for columns 1 and 2, regarding column 3 as fixed.

Partial correlation results for variables: ..-

Strict upper triangle: partial A

Strict lower triangle: corresponding 2-tail ? values

... -0.7381

0.0026 ...

Example 2

This is the test file pacorr.tf1 which contains a correlation matrix.

Correlation matrix: sample size = 30

3 3

1.0000 0.6162 0.8267

0.6162 1.0000 0.7321

0.8267 0.7321 1.0000

3

variable 1: Intelligence

variable 2: Weight

variable 3: Age

By systematically altering the definition for . variables and - variables SimFIT can calculate all the correla-

tions and partial correlations as follows.

A (1, 2) = 0.6162

A (1, 3) = 0.8267

A (2, 3) = 0.7321

· · ·
A (1, 2|3) = 0.0286 (95% confidence limits = −0.3422,0.3918)
C = 0.1488, =3> 5 = 27, ? = 0.8828

· · ·
A (1, 3|2) = 0.7001 (95% confidence limits = 0.4479,0.8490)
C = 5.094, =3> 5 = 27, ? = 0.0000 Reject �0 at 1% significance level

· · ·
A (2, 3|1) = 0.5025 (95% confidence limits = 0.1659,0.7343)
C = 3.020, =3> 5 = 27, ? = 0.0055 Reject �0 at 1% significance level

From this table it is clear that when variable 3 is regarded as fixed, the correlation between variables 1 and 2 is

not significant but, when either variable 1 or variable 2 are regarded as fixed, there is evidence for significant

correlation between the other variables. Exactly what commonsense would predict.

Theory

Assuming a multivariate normal distribution and linear correlations, the partial correlations between any two

variables from the set 8, 9 , : conditional upon the third can be calculated using the usual correlation coefficients
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as

A8, 9 |: =
A8 9 − A8:A 9 :√

(1 − A2
8:
) (1 − A2

9 :
)
.

If there are ? variables in all but ? − @ are fixed then the sample size = can be replaced by = − (? − @) in the

usual significance tests and estimation of confidence limits, e.g. = − (? − @) − 2 for a C test.

The situation is more involved when there are more than three variables, say =G - variables which can be

regarded as fixed, and the remaining =H . variables for which partial correlations are required conditional on

the fixed variables.

Then the variance-covariance matrix Σ can be partitioned as in

Σ =

[
ΣGG ΣGH

ΣHG ΣHH

]

when the variance-covariance of . conditional upon - is given by

ΣH |G = ΣHH − ΣHGΣ
−1
GGΣGH,

while the partial correlation matrix ' is calculated by normalizing as

' = diag(ΣH |G)−
1
2 ΣH |G diag(ΣH |G)−

1
2 .

Exactly as for the full correlation matrix, the strict upper triangle of the output from the partial correlation

analysis contains the partial correlation coefficients A8 9 , while the strict lower triangle holds the corresponding

two tail probabilities ?8 9 where

?8 9 = %

(
C=−=G−2 ≤ −|A8 9 |

√
= − =G − 2

1 − A2
8 9

)
+ %

(
C=−=G−2 ≥ |A8 9 |

√
= − =G − 2

1 − A2
8 9

)
.

However, for convenience, the output table may display the subscripted partial correlation coefficients with

indicated conditional variables together with confidence limits as in Example 2.
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6.2.8 Canonical correlation

Canonical correlation is used to explore the correlations between selected columns of a matrix by calculating

transformations into lower-dimensional subspaces where the transformed variables have maximum correlation,

and can thus be quantified and visualized

Consider a = by < matrix � with elements 08 9 as follows

� =



011 012 · · · 01<

021 022 · · · 02<

· · · · · · · · · · · ·
0=1 0=2 · · · 0=<


where a subset of =G columns (i.e. G-variables) will be defined as - , another disjoint subset of =H columns

(i.e. H-variables) will be defined as . , while =B columns may be suppressed (i.e. not used in the analysis).

Clearly

< = =G + =H + =B where =G ≥ 1, =H ≥ 1 and =B ≥ 0.

Example 1

From the main SimFIT menu choose [Statistics], [Multivariate], then [Canonical correlation] and observe the

format for the test file g03adf.tf1 shown below.

80.0 58.4 14.0 21.0

75.0 59.2 15.0 27.0

78.0 60.3 15.0 27.0

75.0 57.4 13.0 22.0

79.0 59.5 14.0 26.0

78.0 58.1 14.5 26.0

75.0 58.0 12.5 23.0

64.0 55.5 11.0 22.0

80.0 59.2 12.5 22.0

begin{indicators}

-1 1 1 -1

end{indicators}

The final section after the data matrix specifies the meaning of the above data as follows.

• Column 1: variable 1 (H(1) in this case as indicator(1) = -1)

• Column 2: variable 2 (G(1) in this case as indicator(2) = 1)

• Column 3: variable 3 (G(2) in this case as indicator(3) = 1)

• Column 4: variable 4 (H(2) in this case as indicator(4) = -1)

In other words, the red data values are . variables while the blue values are - variables. Note that, in this

example, there are no variables to be suppressed by setting the corresponding indicator to zero, but in any

case the assignment of columns to types - or . or suppressed can also be done interactively. Analysis leads

to the next table of results.
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Results from analysis of data in test file g03adf.tf1

Variables: HGGH

Number of - variables = 2, Number of . variables = 2, Number unused = 0

Minimum of rank of - and rank of . = 2

Correlations Eigenvalues Proportions j2 #�$� ?

0.9570 0.91591 0.8746 14.391 4 0.0061

0.3624 0.13133 0.1254 0.77438 1 0.3789

CVX: Canonical coefficients for centralized -

-0.4261 1.034

-0.3444 -1.114

CVY: Canonical coefficients for centralized.

-0.1415 0.1504

-0.2384 -0.3424

In this table the eigenvalues are proportional to the correlation explained by the corresponding canonical

variable, while the j2 values and corresponding ? values indicate the significance of the successive canonical

variables. The results indicate that, with these data, the first canonical variate is sufficient to summarize the

correlations between the - and . variables. Scree diagrams can also be plotted for this purpose.

Example 2

The figure below illustrates two possible graphical displays for the canonical
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variates defined by the SimFIT test file matrix.tf5, where columns 1 and 2 are designated the . sub-matrix,

while columns 3 and 4 hold the - matrix. Note that, as eigenvectors do not have unique signs, it is often

necessary to reverse the signs of canonical variates for plotting in order to agree with graphs calculated by

alternative software. This feature, and also the ability to label the components in such diagrams according to

labels added to the data file, is also supported.

Theory

This technique is employed when a = by < data matrix includes at least two groups of variables, say =G
variables of type - , and =H variables of type . , measured on the same = subjects, so that < ≥ =G + =H . The

idea is to find two transformations, one for the - variables to generate new variables + , and one for the .

variables to generate new variables *, with ; components each for ; ≤ min(=G , =H), such that the canonical

variates D1, E1 calculated from the data using these transformations have maximum correlation, then D2, E2,

and so on. Now the variance-covariance matrix of the - and . data can be partitioned as

(
(GG (GH
(HG (HH

)
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and it is required to find transformations that maximize the correlations between the - and . data sets.

Actually, the equations

((GH(−1
HH(HG − '2(GG)0 = 0

((HG(−1
GG(GH − '2(HH)1 = 0

have the same nonzero eigenvalues as the matrices (−1
GG(GH(

−1
HH(HG and (−1

HH(HG(
−1
GG(GH, and the square roots

of these eigenvalues are the canonical correlations, while the eigenvectors of the two above equations define

the canonical coefficients, i.e. loadings.

Note that the eigenvalues are proportional to the correlation explained by the corresponding canonical variates,

so a scree diagram can be plotted to determine the minimum number of canonical variates needed to adequately

represent the data. This diagram plots the eigenvalues together with the average eigenvalue, and the canonical

variates with eigenvalues above the average should be retained. Alternatively, assuming multivariate normality,

the likelihood ratio test statistics

−2 log_ = −(= − (:G + :H + 3)/2)
;∑

9=8+1

log(1 − '2
9)

can be calculated for 8 = 0, 1, . . . , ; − 1, where :G ≤ =G and :H ≤ =H are the ranks of the - and. data sets and

; = min(:G , :H). These are asymptotically chi-square distributed with (:G − 8) (:H − 8) degrees of freedom,

so that the case 8 = 0 tests that none of the ; correlations are significant, the case 8 = 1 tests that none of the

remaining ; − 1 correlations are significant, and so on. If any of these tests in sequence are not significant,

then the remaining tests should, of course, be ignored.

The previous figure illustrates two possible graphical displays for the canonical variates definedbymatrix.tf5,

where columns 1 and 2 are designated the. sub-matrix, while columns 3 and 4 hold the - matrix. The canon-

ical variates for - are constructed from the =G by =2E loading or coefficient matrix �+- , where �+- (8, 9)
contains the loading coefficient for the 8th G variable on the 9th canonical variate D 9 . Similarly �+. ) is the =H
by =2E loading coefficient matrix for the 8th H variable on the 9th canonical variate E 9 . More precisely, if 2EG 9
is column 9 of �+- , and 2EH 9 is column 9 of �+. , while G(:) is the vector of centralized - observations for

case :, and H(:) is the vector of centralized . observations for case :, then the components D(:) 9 and E(:) 9
of the = vector canonical variates D 9 and E 9 are

E(:) 9 = 2EG)9 G(:), : = 1, 2, . . . , =

D(:) 9 = 2EH)9 H(:), : = 1, 2, . . . , =.

It is important to realize that the canonical variates for * and + do not represent any sort of regression of .

on - , or - on. , they are just new coordinates chosen to present the existing correlations between the original

- and . in a new space where the correlations are then ordered for convenience as

'2(D1, E1) ≥ '2(D2, E2) ≥ . . . ≥ '2(D;, E;) .

Clearly, the left hand plot shows the highest correlation, that is, between D1 and E1, whereas the right hand plot

illustrates weaker correlation between D2 and E2. Note that further linear regression and correlation analysis

can also be performed on the canonical variates if required, and also the loading matrices can be saved to

construct canonical variates using the SimFIT matrix multiplication routines, and vectors of canonical variates

can be saved directly from plots like those displayed.
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6.3 Cluster analysis

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

6.3.1 Introduction

In order to separate a set of objects into categories according to some measure of similarity between individual

items there has to be some concept of the distance between them. For instance, for two sets of coordinates

U = (G1, H1) and V = (G2, H2) we could use the square of the Euclidean distance between them, that is

| |U − V| | = (G1 − G2)2 + (H1 − H2)2

as this is the squared length of the hypotenuse of a right angle triangle with coordinates (G1, H1) and (G2, H2).
We could then group items together depending on such a distance measure between them or according to

distances from some fixed points. Cluster analysis extends such a concept to situations involving more than

two dimensions, and using alternative measures of distance.

Calculating a distance matrix

The idea is, as in data mining, where you have a = by < matrix 08 9 of < variables (columns) for each

of = cases (rows) and wish to explore clustering, that is groupings together of like entities. To do this,

you choose an appropriate pre-analysis transformation of the data, a suitable distance measure, a meaningful

scaling procedure, and a sensible linkage function. SimFIT will then calculate a distance matrix, or a similarity

matrix, and plot the clusters as a dendrogram. As an example, from the main SimFIT menu choose [Statistics],

[Multivariate], then [Distance matrix] and analyze the test file cluster.tf1 giving the results displayed in

this table.

Variables included:

1 2 3 4 5 6 7 8

Transformation: Untransformed

Distance: Euclidean distance

Scaling: Unscaled

Linkage: Group average

Weighting: [weights r not used]

Distance matrix (strict lower triangle) is:

2) 22.0

3) 36.2 28.8

4) 22.9 29.7 36.6

5) 1.95 16.6 31.1 24.5

6) 39.8 32.7 40.6 31.8 26.1

7) 21.7 28.3 38.2 21.3 19.3 36.2

8) 14.1 24.1 42.6 18.8 18.9 34.2 18.5

9) 32.7 23.0 45.4 44.9 23.6 38.7 36.6 33.4

10) 31.6 23.9 37.2 41.0 22.2 43.9 33.5 33.9 (+)

10) 24.7

11) 32.2 24.4 39.1 41.8 20.2 41.4 31.3 33.4 (+)

11) 19.9 8.25

12) 29.9 22.7 37.7 39.0 17.2 38.4 29.2 31.4 (+)

12) 18.1 11.4 6.24



258 Multivariate analysis

Note that, as a distance matrix is symmetrical with diagonals = 0, only the strict lower triangle is displayed.

The header to this table indicates that all eight variables were included in the analysis using untransformed

data, the Euclidean distance, no data scaling, group average linkage, and no weights. The symbol (+) merely

indicates wrap round due to long lines. The meaning of the parameter settings in the table header will now be

explained.

Distance matrix norms

The distance 3 9 : between objects 9 and : for variable 8 is just a chosen variant of the weighted !? norm

3 9 : = {
<∑
8=1

F8 9:� (0 98/B8 , 0:8/B8)}?.

for some � and weighting factors F8 9: .

For example, for two vectors U and V there would be one of three possibilities.

(a) The Euclidean distance � (U, V) = | |U − V| | with ? = 1/2

(b) The Euclidean squared difference � (U, V) = | |U − V| | with ? = 1

(c) The absolute distance � = |U − V| with ? = 1, otherwise known as the Manhattan or city block metric.

However, as the values of the variables may differ greatly in size, so that large values would dominate the

analysis, it is usual to subject the data to a preliminary transformation or to apply a suitable weighting B8 for

variable 8. Often it is best to transform the data to standardized (0, 1) form before constructing the dendrogram,

or at least to use some sort of scaling procedure such as:

(i) use the sample standard deviation as B8 ,

(ii) use the sample range as B8 , or

(iii) supply precalculated values of B8 .

Usually the weighting factor F8 9: would have the default value 1 but there are exceptions as follows. Bray-

Curtis dissimilarity uses the absolute distance except that the weighting factor is given by

F8 9: =
1∑<

8=1 (0 98/B8 + 0:8/B8)

which is independent of the variables 8 and only depends on the cases 9 and :, and distances are usually

multiplied by 100 to represent percentage differences. Bray-Curtis similarity is the complement, i.e., 100

minus the dissimilarity.

The Canberra distance measure, like the Bray-Curtis one, also derives from the absolute distance except that

the weighting factor is now

F8 9: =
1

_(0 98/B8 + 0:8/B8)
.

There are various conventions for defining _ and deciding what to do when values or denominators are zero

with the Bray-Curtis and Canberra distance measures, and the scheme used by SimFIT is as follows.

• If any values are negative the calculation is terminated.

• If any Bray-Curtis denominator is zero the calculation is terminated.

• If there are no zero values, then _ is equal to the number of variables in the Canberra measure.
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• If both members of a pair are zero, then _ is decreased by one for each occurrence of such a pair, and

the pairs are ignored.

• If one member of a pair is zero, then it is replaced by the smallest non-zero value in the data set divided

by five, then scaled if required.

Distance matrix linkage

The values in a distance matrix will affect subsequent analysis. For instance, the shape of a dendrogram

depends on the choice of analytical techniques and the order of objects plotted is arbitrary: groups at a

given fixed distance can be rotated and displayed in either orientation. Another choice which will affect the

dendrogram shape is the method used to recalculate distances after each merge has occurred. Suppose there

are three clusters 8, 9 , : with =8 , = 9 , =: objects in each cluster and let clusters 9 and : be merged to give cluster

9 :. Then the distance from cluster 8 to cluster 9 : can be calculated in several ways.

[1] Single link: 38, 9 : = min(38 9 , 38: )

[2] Complete link: 38, 9 : = max(38 9 , 38: )

[3] Group average: 38, 9 : = (= 938 9 + =:38: )/(= 9 + =: )

[4] Centroid: 38, 9 : = (= 938 9 + =:38: − = 9=:3 9 :/(= 9 + =:))/(= 9 + =:)

[5] Median: 38, 9 : = (38 9 + 38: − 3 9 :/2)/2

[6] Minimum variance: 38, 9 : = {(=8 + = 9 )38 9 + (=8 + =:)38: − =83 9 : }/(=8 + = 9 + =:)

Distance matrix nearest neighbors

Once a distance matrix has been calculated, it is sometimes useful to calculate the nearest neighbors, as

illustrated in the next table for the previous data.

Object Nearest Distance

1 8 14.1067

2 5 16.5529

3 2 28.7576

4 8 18.7617

5 2 16.5529

6 5 26.0960

7 8 18.4932

8 1 14.1067

9 12 18.1384

10 11 8.24621

11 12 6.24500

12 11 6.24500

In this table, column 1 refers to the objects in logical order, column 2 indicates the object that is closest, i.e.,

the nearest neighbor, while column 3 records these minimum distances. Clearly, the nearest neighbors will

depend upon the parameters used to configure the calculation of the distance matrix.
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6.3.2 Dendrograms

Dendrograms can be plotted after a distance matrix has been calculated and a linkage technique has been

selected in order to build up a picture as to how merging can be used to partition samples into subgroups as

defined by distance thresholds.

For example, open the main SimFIT menu choose [Statistics], [Multivariate], then [Dendrograms] and read

in the test file cluster.tf1, which should also be examined to see how to provide labels, as illustrated when

this figure is displayed.
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Of course the precise shape of such a figure depends on the metric and weights, etc. used to calculate the

distance matrix and the linkage assumed when building up the groups. Further details about using SimFIT to

construct dendrograms will now be discussed.

Partial clustering

An important application of distance matrices and dendrograms is in partial clustering. Unlike the situation

with full clustering where we start with = groups, each containing a single case, and finish with just one group

containing all the cases, in partial clustering the clustering process is not allowed to be completed. There are

two distinct ways to arrest the clustering procedure.

1. A number, , between 1 and =−1 is chosen, and clustering is allowed to proceed until just  subgroups

have been formed. It may not always be possible to satisfy this requirement, e.g. if there are ties in the

data.

2. A threshold, �, is set somewhere between the first clustering distance and the last clustering distance,

and clustering terminates when this threshold is reached. The position of such clustering thresholds

will be plotted on the dendrogram, unless � is set equal to zero.
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As an example of this technique consider the results in this table

Group assignments for Fisher Iris data

Data file: iris.tf1, 3 groups, variables included: 1 2 3 4

Transformation: Untransformed, Distance: Euclidean, Scaling: Unscaled,

Linkage: Group average, [weights not used], sub-clusters for K = 3

Odd rows: data ... Even rows: corresponding group number

1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1

13 14 15 16 17 18 19 20 21 22 23 24

1 1 1 1 1 1 1 1 1 1 1 1

25 26 27 28 29 30 31 32 33 34 35 36

1 1 1 1 1 1 1 1 1 1 1 1

37 38 39 40 41 42 43 44 45 46 47 48

1 1 1 1 1 1 1 1 1 1 1 1

49 50 51 52 53 54 55 56 57 58 59 60

1 1 2 2 2 2 2 2 2 2 2 2

61 62 63 64 65 66 67 68 69 70 71 72

2 2 2 2 2 2 2 2 2 2 2 2

73 74 75 76 77 78 79 80 81 82 83 84

2 2 2 2 2 2 2 2 2 2 2 2

85 86 87 88 89 90 91 92 93 94 95 96

2 2 2 2 2 2 2 2 2 2 2 2

97 98 99 100 101 102 103 104 105 106 107 108

2 2 2 2 2* 2* 3 2* 2* 3 2* 3

109 110 111 112 113 114 115 116 117 118 119 120

2* 3 2* 2* 2* 2* 2* 2* 2* 3 3 2*

121 122 123 124 125 126 127 128 129 130 131 132

2* 2* 3 2* 2* 3 2* 2* 2* 3 3 3

133 134 135 136 137 138 139 140 141 142 143 144

2* 2* 2* 3 2* 2* 2* 2* 2* 2* 2* 2*

145 146 147 148 149 150

2* 2* 2* 2* 2* 2*

This resulted from analysis of the famous Fisher iris data set in iris.tf1 when  = 3 subgroups were

requested.

We note that groups 1 (setosa) and 2 (versicolor) contained the all the cases from the known classification,

but most of the known group 3 (virginica) cases (those identified by asterisks) were also assigned to subgroup

2. This table should also be compared to a table resulting from  -means clustering analysis of the same data

set.

From the SimFIT dendrogram partial clustering procedure it is also possible to create a SimFIT MANOVA

type file for any type of subsequent MANOVA analysis and, to aid in the use of dendrogram clusters as

training sets for allocating new observations to groups, the subgroup centroids are also appended to such files.

Alternatively a file ready for K-means cluster analysis can be saved, with group centroids appended to serve

as starting estimates.

Finally, attention should be drawn to the advanced techniques provided by SimFIT for plotting dendrogram

thresholds and subgroups illustrated next.
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Plotting dendrograms: standard format

Dendrogram shape is arbitrary in two ways; the G axis order is arbitrary as clusters can be rotated around any

clustering distance leading to 2=−1 different orders, and the distance matrix depends on the settings used. For

instance, a square root transformation, Bray-Curtis similarity, and a group average link generates the second

dendrogram in this figure from the first. The data were contained in test file cluster.tf2, H plotted are

dissimilarities, while labels are 100 − H, which should be remembered when changing the H axis range.

Users should not manipulate dendrogram parameters to create a dendrogram supporting some preconceived

clustering scheme. You can set a label threshold and translation distance from the [--axis] menu so that, if

the number of labels exceeds the threshold, even numbered labels are translated, and font size is decreased.
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Plotting dendrograms: stretched format

Sometimes dendrograms are more readable if the white space is stretched without distorting the labels.
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So SimFIT PostScript graphs have a very useful fea-

ture: you can stretch or compress the white space

between plotted lines and symbols without changing

the line thickness, symbol size, or font size and aspect

ratio. For instance, stretching, clipping and sliding

procedures are valuable in graphs which are crowded

due to overlapping symbols or labels, as in previous

figures. If such dendrograms are stretched retrospec-

tively using editps, the labels will not separate as the

fonts will also be stretched so letters become ugly due

to altered aspect ratios. SimFIT can increase white

space between symbols and labels while maintaining

correct aspect ratios for the fonts in PostScript hard-

copy and, to explain this, the creation of this figure

using the data in cluster.tf2 will be described.

The title, legend and double G labeling were sup-

pressed, and landscape mode with stretching, clipping

and sliding was selected from the PostScript control

using the [Shape] then [Landscape +] options, with

an G stretching factor of two. Stretching increases

the space between each symbol, or the start of each

character string, arrow or other graphical object, but

does not turn circles into ellipses or distort letters. As

graphs are often stretched to print on several sheets of

paper, sub-sections of the graph can be clipped out,

then the clipped sub-sections can be slid to the start of

the original coordinate system to facilitate printing.

If stretch factors greater than two are used, legends

tend to become detached from axes, and empty white

space round the graph increases. To remedy the former

complication, the default legends should be suppressed

or replaced by more closely positioned legends while,

to cure the later effect, GSview can be used to calculate

new BoundingBox coordinates (by transforming .ps

to .eps). If you select the option to plot an opaque

background even when white (by mistake), you may

then find it necessary to edit the resulting .eps file in a

text editor to adjust the clipping coordinates (identified

by %#clip in the .eps file) and background polygon

filling coordinates (identified by %#pf in the .ps file) to

trim away unwanted white backgroundborders that are

ignored by GSview when calculating BoundingBox

coordinates. Another example of this technique is

with meta analysis plots, where it is also pointed out

that creating transparent backgrounds by suppressing

the painting of a white background obviates the need

to clip away extraneous white space.
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Plotting dendrograms: subgroups
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The procedures described can also be used to im-

prove the readability of dendrograms where sub-

groups have been assigned by partial clustering. The

next figure shows a graph from iris.tf1when three

subgroups are requested, or a threshold is set corre-

sponding to the horizontal dotted line. The figure

was created by these steps.

First the title was suppressed, the H-axis range was

changed to (0, 4.25) with 18 tick marks, the (G, H)
offset was canceled as this suppresses axis moving,

the label font size was increased from 1 to 3, and the

G-axis was translated to 0.8.

Then the PostScript stretch/slide/clip procedure was

used with these parameters

Gstretch = 1.5

Hstretch = 2.0

Gclip = 0.15, 0.95

Hclip = 0.10, 0.60.
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Windows users without PostScript printing facilities must create a *.eps file using this technique, then use

the SimFIT procedures to create a graphics file they can use, e.g. *.jpg. Use of a larger font and increased

G-stretching would be required to read the labels, of course.



Classical metric and non-metric (ordinal) scaling 265

6.3.3 Classical metric and non-metric (ordinal) scaling

Multi-dimensional scaling (MDS) provides various alternatives to dendrograms for visualizing distances

between cases, so facilitating the recognition of potential groupings in a space of lower dimension than the

number of variables. Given a = by < data set, the idea is to generate a set of = points in a Euclidean sub-space

of dimension 1 < : << = − 1 that have a distance matrix as close as possible to the distance matrix for the

original data, so that distances can be visualized in the subspace for say : = 2, or : = 3. There are two cases.

1. Classical metric scaling

This technique is used when the original data are in the form of observed quantities measured in terms

of coordinates where distance is meaningful.

2. Non-metric (ordinal) scaling

This technique is resorted to when the original data are of categorical or similar type that have been

observed on a scale where only ranking is important and not actual differences.

SimFIT can perform classical metric and/or non-metric (ordinal) scaling using a distance matrix calculated

interactively or by supplying a pre-calculated distance matrix.

From the main SimFIT menu choose [Statistics], [Multivariate], then [Scaling] using a distance matrix, read

in the test file g03faf.tf1, and analyze using both metric and non-metric techniques to obtain the results as

follows.

Eigenvalues from MDS (divided by the trace of the E matrix)

0.787130

0.280850

0.159630

0.077476

0.031624

0.020654

0.000000

-0.012186

-0.013685

-0.030479

-0.045469

-0.056206

-0.079207

-0.117400

[Sum 1 to 2]/[sum 1 to 13] = 0.9558 (95.58%) (actual values)

[Sum 1 to 2]/[sum 1 to 13] = 0.6709 (67.09%) (absolute values)

STRESS = 0.12557 (start = Metric 0%)

S-STRESS = 0.14962 (start = Metric 0%)

This table first lists the eigenvalues from classical metric scaling, where each eigenvalue has been normalized

by dividing by the sum of all the eigenvalues, then the ()'�(( and (()'�(( values are listed.

Note that the type of starting estimates used, together with the percentages of the metric values used in any

random starts, are output by SimFIT and it will be seen that, with this distance matrix, there are small but

negative eigenvalues, and hence the proportion of the distances captured by the lower dimensional subspace

would be inflated, and in addition two-dimensional plotting could be misleading. However it is usual to

consider such small negative eigenvalues as being effectively zero, so that metric scaling in two dimensions

is probably justified in this case as most of the proportion is in the first two eigenvalues.

The indication (actual values) is for the case where the sum of eigenvalues is used in the denominator when

calculating the proportion %, i.e.

% =

:∑
8=1

_8/
=−1∑
8=1

_8 ,
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while the indication (absolute values) is for the case where the sum of the absolute values is used as the

denominator, i.e.

% =

:∑
8=1

_8/
=−1∑
8=1

|_8 |,

as discussed later.

In an ideal case all the eigenvalues would be positive and these two values would be the same. For this reason

a warning is issued when negative eigenvalues are encountered to alert users that caution is required when

regarding the subspace plot as a valid representation of the distance between cases.

The next figures confirm the validity of using metric scaling with these data by showing considerable agreement

between the two dimensional plots from metric scaling, and also non-metric scaling involving the ()'�((

calculation. Note that the default labels in such plots may be integers corresponding to the case numbers, and

not case labels, but such plot labels can be edited interactively, or overwritten from a labels file if required.
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Format for data input

The data required for scaling must either be in the form of a multivariate matrix from which a distance matrix

is calculated interactively, then either used directly or saved to a file for retrospective analysis. Of course a

distance matrix � = 38 9 from a = by< data matrix is a symmetric = by =matrix but, because the diagonals are

zero and generally 38 9 = 3 98, then only =(= − 1)/2 differences need to be available. For that reason, distance

matrices are stored and analyzed by SimFIT in strict lower triangular format as now described.

For instance, the data contained in test file cluster.tf1 is the following 12 by 8 matrix
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1.0 4.0 2.0 11.0 6.0 4.0 3.0 9.0

8.0 5.0 1.0 14.0 19.0 7.0 13.0 21.0

3.0 1.0 3.0 1.0 3.0 6.0 23.0 37.0

9.0 0.0 7.0 7.0 1.0 2.0 21.0 2.0

7.0 12.0 9.0 5.0 14.0 9.0 12.0 14.0

2.0 13.0 15.0 2.0 23.0 6.0 34.0 8.0

11.0 7.0 2.0 1.0 4.0 17.0 11.0 4.0

6.0 3.0 7.0 12.0 11.0 8.0 8.0 0.0

8.0 21.0 1.0 10.0 31.0 9.0 3.0 18.0

19.0 14.0 12.0 9.0 16.0 10.0 0.0 27.0

17.0 18.0 10.0 6.0 19.0 14.0 1.0 24.0

15.0 21.0 8.0 7.0 17.0 12.0 4.0 22.0

leading to the strict lower triangle of the 12 by 12 distance matrix below.

22.0

36.2 28.8

22.9 29.7 36.6

1.95 16.6 31.1 24.5

39.8 32.7 40.6 31.8 26.1

21.7 28.3 38.2 21.3 19.3 36.2

14.1 24.1 42.6 18.8 18.9 34.2 18.5

32.7 23.0 45.4 44.9 23.6 38.7 36.6 33.4

31.6 23.9 37.2 41.0 22.2 43.9 33.5 33.9 24.7

32.2 24.4 39.1 41.8 20.2 41.4 31.3 33.4 19.9 8.25

29.9 22.7 37.7 39.0 17.2 38.4 29.2 31.4 18.1 11.4 6.24

However this lower triangle would be stored packed by rows as follows

22.0

36.2

28.8

22.9

29.7

36.6

· · ·
6.24

and distance matrices supplied for analysis by SimFIT must be formatted in this way.

Theory for metric scaling

For instance, once a distance matrix � = (38 9 ) has been calculated for = cases with < variables, as described

for dendrograms, it may be possible to calculate principal coordinates. This involves constructing a matrix �

defined by

48 9 = − 1
2
(32
8 9 − 32

8. − 32
. 9 + 32

..),

where 32
8. is the average of 32

8 9 over the suffix 9 , etc., in the usual way. The idea is to choose an integer :,

where 1 < : << = − 1, so that the data can be represented approximately in a space of dimension less than

the number of cases, but in such a way that the distance between the points in that space correspond to the

distances represented by the 38 9 of the distance matrix as far as possible. If � is positive semi-definite, then

the ordered eigenvalues _8 > 0 of � will be nonnegative and the proportionality expression

% =

:∑
8=1

_8
/ =−1∑
8=1

_8
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will show how well the cases of dimension = are represented in this subspace of dimension :. The most useful

case is when : = 2, or : = 3, and the 38 9 satisfy

38 9 ≤ 38: + 3 9 : ,

so that a two or three dimensional plot will display distances corresponding to the 38 9 .

If this analysis is carried out but some relatively large negative eigenvalues result, then the proportion %

may not adequately represent the success in capturing the values in distance matrix in a subspace of lower

dimension that can be plotted meaningfully.

It should be pointed out that the principal coordinates will actually be the same as the principal components

scores when the distance matrix is based on Euclidean norms. Further, where metrical scaling succeeds,

the distances between points plotted in say two or three dimensions will obey the triangle inequality and so

correspond reasonably closely to the distances in the dissimilarity matrix, but if it fails it could be useful to

proceed to non-metrical scaling, which is discussed next.

Theory for non-metric (ordinal) scaling

Often a distance matrix is calculated where some or all of the variables are ordinal, so that only the relative

order is important, not the actual distance measure. Non-metric (i.e. ordinal) scaling is similar to the metric

scaling previously discussed, except that the representation in a space of dimension 1 < : << = − 1 is sought

in such a way as to attempt to preserve the relative orders, but not the actual distances. The closeness of

a fitted distance matrix to the observed distance matrix can be estimated as either ()'�((, or (()'�((,

given by

()'�(( =

√√√∑=
8=1

∑8−1
9=1(3̂8 9 − 3̃8 9 )2∑=
8=1

∑8−1
9=1 3̂

2
8 9

(()'�(( =

√√√∑=
8=1

∑8−1
9=1(3̂2

8 9 − 3̃2
8 9 )2∑=

8=1

∑8−1
9=1 3̂

4
8 9

,

where 3̂8 9 is the Euclidean squared distance between points 8 and 9 , and 3̃8 9 is the fitted distance when the 3̂8 9
are monotonically regressed on the 38 9 . This means that 3̃8 9 is monotonic relative to 38 9 and is obtained from

3̂8 9 with the smallest number of changes.

It should be noted that this is a nonlinear optimization problem which may depend critically on starting

estimates, and so can only be relied upon to locate a local, not a global solution. For this reason, starting

estimates can be obtained in SimFIT by a preliminary metric scaling, or alternatively the values from such a

scaling can be randomly perturbed before the optimization, in order to explore possible alternative solution

points.

As mentioned previously, SimFIT can save distance matrices to files, so that dendrogram creation, classical

metric, and non-metric scaling can be carried out retrospectively,without the need to generate distance matrices

repeatedly from multivariate data matrices. Such distance matrices will be stored as vectors, corresponding

to the strict lower triangle of the distance matrix packed by rows, (i.e. the strict upper triangle packed by

columns).
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6.3.4 K-means clustering

Given a swarm of = multivariate points,  -means clustering attempts to assign these data into  non-empty

clusters where 1 <  < =. The clusters are created by assigning cases to those groups that minimize the

within-cluster sum of squared distances of the data from the means of the clusters. Starting values from which

to commence the iterations to find such clusters must be provided.

Example 1

From the SimFIT main menu choose [Statistics], [Multivariate], then [K-means clustering], and observe the

format for the test data contained in g03eff.tf1 which are observations of five variables on twenty soil types

as follows.

77.3 13.0 9.7 1.5 6.4

82.5 10.0 7.5 1.5 6.5

66.9 20.6 12.5 2.3 7.0

47.2 33.8 19.0 2.8 5.8

65.3 20.5 14.2 1.9 6.9

83.3 10.0 6.7 2.2 7.0

81.6 12.7 5.7 2.9 6.7

47.8 36.5 15.7 2.3 7.2

48.6 37.1 14.3 2.1 7.2

61.6 25.5 12.9 1.9 7.3

58.6 26.5 14.9 2.4 6.7

69.3 22.3 8.4 4.0 7.0

61.8 30.8 7.4 2.7 6.4

67.7 25.3 7.0 4.8 7.3

57.2 31.2 11.6 2.4 6.5

67.2 22.7 10.1 3.3 6.2

59.2 31.2 9.6 2.4 6.0

80.2 13.2 6.6 2.0 5.8

82.2 11.1 6.7 2.2 7.2

69.7 20.7 9.6 3.1 5.9

begin{values}

82.5 10.0 7.5 1.5 6.5

47.8 36.5 15.7 2.3 7.2

67.2 22.7 10.1 3.3 6.2

end{values}

Note that starting cluster coordinates are appended to this data set in the section identified by

begin{values} . . . end{values}

as this is the most convenient way to perform  -means clustering. However, these can be supplied indepen-

dently, e.g. in a file like g03eff.tf2, or generated randomly. Note that  -means clustering is an iterative

technique and the outcome will depend on the starting clusters.

From the analysis the following results are displayed, where for each case (in the odd-numbered rows) the

cluster number to which it is assigned is the corresponding figure below it (in the even-numbered rows).
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Results for  -means clustering with g03eff.tf1

Variables included: 1 2 3 4 5

Number of clusters K = 3

Transformation: Untransformed

Weighting: Unweighted for replicates

Cases (odd rows) and Clusters (even rows)

1 2 3 4 5 6 7 8 9 10 11 12

1 1 3 2 3 1 1 2 2 3 3 3

13 14 15 16 17 18 19 20

3 3 3 3 3 1 1 3

Final cluster centroids

81.183 11.667 7.1500 2.0500 6.6000

47.867 35.800 16.333 2.4000 6.7333

64.045 25.209 10.745 2.8364 6.6545

Note that the final cluster centroids minimizing the objective function, given the starting estimates supplied,

are calculated, and the cases are assigned to these final clusters.

Plots of the clusters and final cluster centroids can be created as in the next figure for variables G1 and G2, with

the optional labels as these were also supplied on the data file g03eff.tf1 (as for dendrograms).

10

20

30

40

40 50 60 70 80 90

K-means Clusters

Variable 1

V
ar

ia
bl

e 
2

A

B

C

D

E

F

G

HI

J
K

L

M

N

O

P

Q

R

S

T

With two dimensional data representing actual distances, outline maps can be added and other special effects

can be created, as shown later. Further, techniques are provided to perturb the default positions of labels if

this is required in order to clarify the labeling.
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Example 2

The next table is for analysis of the Fisher Iris data set in iris.tf1, using starting clusters in iris.tf2.

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 2 2 3* 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 3* 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 3 2* 3 3 3 3 2* 3

3 3 3 3 3 2* 2* 3 3 3 3 2*

3 2* 3 2* 3 3 2* 2* 3 3 3 3

3 2 3 3 3 3 2* 3 3 3 2* 3

3 3 2* 3 3 2*

Cluster Size WSSQ

1 50 15.15

2 62 39.82

3 38 23.88

Final cluster centroids

5.0060 3.4280 1.4620 0.2460

5.9016 2.7484 4.3935 1.4339

6.8500 3.0737 5.7421 2.0711

The data were maintained in the known group order (as in manova1.tf5), and the clusters assigned are seen

to be identical to the known classification for group 1 (setosa), while limited misclassification has occurred

for groups 2 (versicolor, 2 assigned to group 3), and 3 (viginica, 14 assigned to group 2), as shown by the

starred values. Clearly group 1 is distinct from groups 2 and 3 which show some similarities to each other, a

conclusion also illustrated in the next figure.
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Example 3

This example explains how to include additional features such as maps which are often added to plots to

emphasize the meaning of clusters.

Stretching and clipping are also valuable when graphs have to be re-sized to achieve geometrically correct

aspect ratios, as in the map shown in this next figure, which can be generated by the K-means clustering

procedure using program simstat as follows.

• Input ukmap.tf1 with coordinates for UK airports.

• Input ukmap.tf2 with coordinates for starting centroids.

• Calculate centroids then transfer the plot to advanced graphics.

• Read in the UK coastal outline coordinates as an extra file from ukmap.tf3.

• Suppress axes, labels, and legends, then clip away extraneous white space.

• Stretch the PS output using the [Shape] then [Portrait +] options, and save the stretched eps file.

K-Means Clusters for U.K. Airports
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Example 4

It is frequently useful to be able highlight groups of data points in a two dimensional swarm, as in this figure.

10

20

30

40

40 60 80 100

K-means cluster centroids

Variable 1

V
ar

ia
bl

e 
2

A

B

C

D

E

F

G

H
I

J
K

L

M

N

O

P

Q

R
S

T

(47.8, 35.8, 16.3, 2.4, 6.7)

(64.0, 25.2, 10.7, 2.8, 6.7)

(81.2, 12.7, 7.2, 2.1, 6.6)

In this case a partition into three groups has been done by K-means clustering, and to appreciate how to use

this technique, note that this figure can be generated by the K-means clustering procedure using program

simstat as follows.

• Input the K-means clustering test file kmeans.tf1.

• Calculate the centroids, using the starting estimates appended to the test file. View them, which then

adds them to the results file, then record the centroid coordinates from the results file.

• Select to plot the groups with associated labels, but then it will prove necessary to move several of the

labels by substituting new labels, or shifting the G or H coordinates to clarify the graph.

• Add the solid background ellipses using the lines/arrows/boxes option because both head and tail

coordinate must be specified using the red arrow, as well as an eccentricity value for the ellipses. Of

course, any filled shapes such as circles, squares, or triangles can be chosen, and any size or color can

be used.

• Add the centroid coordinates as extra text strings.

Of course, this technique can be used to highlight or draw attention to any subsets of data points, for instance

groups in principal component analysis.
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Example 5

This example considers the plotting of principal component scores instead of original variables, illustrated in

the next figure for kmeans.tf1.

5.0

10.0

15.0

20.0

10.0 15.0 20.0 25.0 30.0 35.0 40.0

K-means Clusters: Variables 2 and 3

Variable 2

V
ar

ia
bl

e 
3

A

B

C

D

E

F G

H

I

J

K

L
MN

O
P

Q

R
S

T

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

K-Means clusters: Scores 1 and 2

Score 1

S
co

re
 2

AB

C

DE

F

G
HI

J K

L

M

N

O
P

Q

R

S
T

Note that, in the upper figure, symbols F, S, and P have been translated for clarity, and it should be compared

to an earlier figure, for the same data with variables 1 and 2. This highlights an important point when

plotting clusters for more than 2 variables: the plot shape depends on the variables chosen. So, for a more

representative plot when there are more than 2 variables it is better to plot principal component scores instead

of variables. The SimFIT default is to plot the scores obtained using the correlation matrix technique, as this

can prevent the analysis being dominated by columns with unduly large values.

In the lower figure, symbols B, O, M, and P have been translated for clarity, but now the principal component

scores 1 and 2 have been plotted, which will usually be a better representation of the clustering, as the shape

of the plot is not so strongly influenced by the variables chosen.
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Theory

Once a = by< matrix of values 08 9 for = cases and< variables has been provided, the cases can be sub-divided

into  non-empty clusters where  < =, provided that a  by < matrix of starting estimates 18 9 has been

specified. The procedure is iterative, and proceeds by moving objects between clusters to minimize the

objective function
 ∑
:=1

∑
8∈(:

<∑
9=1

F8 (08 9 − 0̄: 9 )2

where (: is the set of objects in cluster : and 0̄: 9 is the weighted sample mean for variable 9 in cluster :. The

weighting factors F8 can allow for situations where the objects may not be of equal value, e.g., if replicates

have been used to determine the 08 9 .

Certain other aspects of the SimFIT implementation of K-means clustering should be made clear.

1. If variables differ greatly in magnitude, data should be transformed before cluster analysis but note

that, if this is done interactively, the same transformation will be applied to the starting clusters. If a

transformation cannot be applied to data, clustering will not be allowed at all, but if a starting estimate

cannot be transformed (e.g., square root of a negative number), then that particular value will remain

untransformed.

2. If, after initial assignment of data to the starting clusters some are empty, clustering will not start, and

a warning will be issued to decrease the number of clusters requested, or edit the starting clusters.

3. Clustering is an iterative procedure, and different starting clusters may lead to different final cluster

assignments. So, to explore the stability of a cluster assignment, you can perturb the starting clusters

by adding or multiplying by a random factor, or you can even generate a completely random starting

set. For instance, if the data have been normalized to zero mean and unit variance, then choosing

uniform random starting clusters from* (−1, 1), or normally distributed values from # (0, 1) might be

considered.

4. After clusters have been assigned you may wish to pursue further analysis, say using the groups for

canonical variate analysis, or as training sets for allocation of new observations to groups. To do this,

you can create a SimFIT MANOVA type file with group indicator in column 1. Such files also have the

centroids appended, and these can be overwritten by new observations (not forgetting to edit the extra

line counter following the last line of data) for allocating to the groups as training sets.

5. If weighting, variable suppression, or interactive transformation is used when assigning K-means

clusters, all results tables, plots and MANOVA type files will be expressed in coordinates of the

transformed space.

6. When viewing two dimensional plots of clusters where there are more than two variables, users can

choose which coordinates to display, and this can give a misleading impression where it can seem that

some cases have been wrongly assigned. This is to forget that the assignment is based on a selection

process that uses all of the variables, and is a good reason to view using several pairs of coordinates to

get a better overall picture, or to plot using principal components.

7. When displaying clusters as principal components, the loadings used to plot scores for data and centroids

are calculated interactively from the data correlation matrix and standardized for unit variance. The

scores are not used for further iterations to refine the clustering procedure.
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6.4 Multivariate projection and display techniques

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

6.4.1 Principal components

Principal component analysis attempts to express a = by < data set with < > 2 in new coordinates. obtained

by rotating the original coordinates - so that the overall variance of the observations is contained in decreasing

order in the new variables.

If this is successful in that most of the variance is contained in the first 2 or 3 of the . variables then this

allows inferences to be drawn about the data in a sub-space of dimension < <.

Example 1

From the main SimFIT menus choose [Statistics], [Multivariate], then [Principal components] and analyze

the default test file provided (g03aaf.tf1) which contains the following data

7 4 3

4 1 8

6 3 5

8 6 1

8 5 7

7 2 9

5 3 3

9 5 8

7 4 5

8 2 2

leading to these results.

Variables included: 1 2 3

Transformation: Untransformed

Matrix type: Variance-covariance matrix

Score type: Score variance = eigenvalue

Replicates: Unweighted for replicates

Eigenvalues Proportion Cumulative j2 �$� ?

8.274 0.6515 0.6515 8.613 5 0.1255

3.676 0.2895 0.9410 4.118 2 0.1276

0.750 0.0590 1.0000 0.000 0 0.0000
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Loadings (by column)

-0.138 0.699 0.702

-0.250 0.661 -0.707

0.958 0.273 -0.084

Scores (by column)

-2.150 -0.173 -0.107

3.800 -2.890 -0.510

0.153 -0.987 -0.269

-4.710 1.300 -0.652

1.290 2.280 -0.449

4.100 0.144 0.803

-1.630 -2.230 -0.803

2.110 3.250 0.168

-0.235 0.373 -0.275

-2.750 -1.070 2.090

The significance of the options used for the analysis and the results listed in this table are now explained.

• Variables included

All three variables were included as this was defined in the trailer section of g03aaf.tf1, but the

variables to be included can also be adjusted interactively.

• Transformation

The data were used without any transformation.

• Matrix type

If the magnitude of the variables are similar so that the data do not need to be centralized and scaled,

then the covariance matrix can be used. Otherwise the correlation matrix should be used.

• Score type

Several options are available, to provide consistency and facilitate comparison with published data.

• Replicates

SimFIT provides the facility to supply a weighting vector to permit data suppression (setting a weight

to zero), or to allow for replicates (setting a weight equal to the number of replicates used in the

observation).

• Eigenvalues

These are listed in decreasing order, the proportion of variance and cumulative sum of variances

captured by each component is listed, and a chi-square test is performed to check the significance

of each component. The significance levels are not valid if the correlation matrix is used instead of

the covariance matrix. Clearly the first two principal components are sufficient to represent the three

original variables.

• Loading

Column 9 of the loading matrix contains the coefficients required to express H 9 as linear function of

the variables G1, G2, . . . , G<. The values can be used to indicate the importance of the contribution of

the original variables to the rotated variables.

• Scores

Row 8 of the scores matrix contains the values for row 8 of the original data expressed in variables

H1, H2, . . . , H<. If most of the variance can be explained by the first two or three variables, the values

can be used instead of the original observations to visualize grouping and clustering, etc.
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Example 2

The next example concerns the analysis of the Fisher iris data with 150 cases and 4 variables (Sepal length,

Sepal width, Petal length, and Petal width) contained in the test file iris.tf1. The figures below show the

scores and loadings for these data after analyzing the correlation matrix.

The score plot displays the score components for all samples using the selected principal components, so

some may prefer to label the legends as principal components instead of scores, and this plot is used to search

for possible groupings among the sample. The components can be labeled using any labels supplied at the

end of the data file, but this can cause confusion where, as in the present case, the labels overlap leading to

crowding. A method for moving labels to avoid such confusion is provided. However, with such dense labels

it is best to just plot the scores using different symbols and colors for the three groups.

The loading plot displays the coefficients that express the selected principal components H 9 as linear functions

of the original variables G1, G2, . . . , G<, so this plot is used to observe the contributions of the original variables

G to the new ones H.

Note that figures also illustrate an application of the SimFIT technique for adding extra data interactively to

create the cross-hairs intersecting at (0, 0), and it also shows how labels can be added to identify the variables

in a loadings plot. It should be noted that, as the eigenvectors are of indeterminate sign and only the relative

magnitudes of coefficients are important, the scattergrams can be plotted with either the scores calculated

from the SVD, or else with the scores multiplied by minus one, which is equivalent to reversing the direction

of the corresponding axis in a scores or loadings plot.
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The confidence ellipse plotted on the scores will be explained later.

Example 3

An important topic in principal component analysis is deciding how to choose a sufficient number of principal

components to represent the data adequately. As the eigenvalues are proportional to the fractions of variance

along the principal component axes, a table of the cumulative proportions is calculated, and some users may

find it useful to include sufficient principal components to account for a given amount of the variance, say

70%. Consider these results from the analysis of data with eight variables contained in test file cluster.tf1

and analyzed using the covariance matrix.

Eigenvalues Proportion Cumulative j2 �$� ?

198.9 0.4274 0.4274 61.13 35 0.0041

106.8 0.2294 0.6568 48.09 27 0.0075

88.29 0.1897 0.8465 39.73 20 0.0054

40.18 0.0863 0.9328 25.39 14 0.0309

17.46 0.0375 0.9703 15.04 9 0.0898

9.036 0.0194 0.9898 9.149 5 0.1033

3.966 0.0085 0.9983 4.349 2 0.1137

0.803 0.0017 1.0000 0.000 0 0.0000

The next figure shows how scree plots can be displayed to illustrate the number of components needed to

represent the data adequately.
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For instance, in this case, it seems that approximately three of the principal components are required. A

useful rule of thumb for selecting the minimum number of components is to observe where the scree diagram

crosses the average eigenvalue or becomes flattened indicating that all subsequent eigenvalues contribute to a

comparable extent. Use of the chi-square statistics for this type of investigation will be described later.
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Theory 1: The calculation of principal components

In the principal components analysis of a = by < data matrix, new coordinates H are selected by rotation of

the original coordinates G so that the proportion of the variance projected onto the new axes decreases in the

order H1, H2, . . . , H<. The hope is that most of the variance can be accounted for by a subset of the data in H

coordinates, so reducing the number of dimensions required for data analysis.

It is usual to scale the original data so that the variables are all of comparable dimensions and have similar

variances, otherwise the analysis will be dominated by variables with large values. Basing principal com-

ponents analysis on the correlation matrix rather than the covariance or sum of squares and cross product

matrices is often recommended as it also prevents the analysis being unduly dominated by variables with large

values. The data format for principal components analysis is exactly the same as for cluster analysis; namely

a data matrix with = rows (cases) and < columns (variables).

If the data matrix is - with covariance, correlation or scaled sum of squares and cross products matrix (, then

the quadratic form

0)1 (01

is maximized subject to the normalization 0)
1
01 = 1 to give the first principal component

21 =

<∑
8=1

018G8 .

Similarly, the quadratic form

0)2 (02

is maximized, subject to the normalization and orthogonality conditions 0)
2
02 = 1 and 0)

2
01 = 0, to give the

second principal component

22 =

<∑
8=1

028G8

and so on. The vectors 08 are the eigenvectors of ( with eigenvalues _2
8 , where the proportion of the variation

accounted for by the 8th principal component can be estimated as

_2
8 /

<∑
9=1

_2
9 .

Actually SimFIT uses a singular value decomposition (SVD) of a centered and scaled data matrix, say

-B = (- − -̄)/
√
(= − 1) as in

-B = +Λ%
)

to obtain the diagonal matrix Λ of singular values, the matrix of left singular vectors + as the = by < matrix

of scores, and the matrix of right singular vectors % as the < by < matrix of loadings.

Theory 2: Confidence ellipses in scores plots

Note that a 95% confidence Hotelling )2 ellipse is also plotted, which assumes a multivariate normal

distribution for the original data and uses the � distribution.

The confidence ellipse is based on the fact that, if H̄ and ( are the estimated mean vector and covariance

matrix from a sample of size = and, if G is a further independent sample from an assumed ?−variate normal

distribution, then

(G − H̄)) (−1(G − H̄) ∼ ?(=2 − 1)
=(= − ?) �?,=−? ,

where the significance level for the confidence region can be altered interactively.
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Theory 3: The chi-square test for significant components

In cases where the correlation matrix is not used, a chi-square test statistic is also provided along with

appropriate probability estimates to make the decision more objective. In this case, if : principal components

are selected, the chi-square statistic

(= − 1 − (2< + 5)/6)
{
−

<∑
8=:+1

log(_2
8 ) + (< − :) log

(
<∑

8=:+1

_2
8 /(< − :)

)}

with (< − : − 1) (< − : + 2)/2 degrees of freedom can be used to test for the equality of the remaining < − :
eigenvalues.

If one of these test statistics, say the : +1th, is not significant then it is usual to assume : principal components

should be retained and the rest regarded as of little importance. So, if it is concluded that the remaining

eigenvalues are of comparable importance, then a decision has to be made whether to eliminate all or preserve

all. For instance, from the last column of ? values referring to the above chi-square test for g03aaf.tf1,

it might be concluded that a minimum of two components are required to represent this data set adequately.

However, for the case of iris.tf1, three components would be required.

The common practise of always using two or three components just because these can be visualized is to be

deplored.

Theory 4: Calculating scores from loadings

The data used by SimFIT are automatically centered at run time, and sometimes also scaled if requested, so

it is not usually necessary to transform the original data for principal component analysis, especially if the

correlation matrix method is used. However, in order to calculate scores using the loadings retrospectively

the following points should be noted.

1. The original data matrix must be centralized by subtracting column sample means.

2. If the correlation matrix technique was used to calculate the scores, then the data must also be scaled

by dividing columns by the column sample standard deviations.

3. If the covariance matrix technique was used no further scaling is required.

4. If the sum of squares and cross-product matrix method was used, then the centralized data must also be

multiplied by
√
= − 1.

5. The final scaling of the scores will be that used when generating the loadings.

6. The average of a group of : scores is the same as using loadings with the means from the same : values.

7. The scores are unspecified up to multiples of -1.

To illustrate this procedure consider the following steps that are required to calculate the scores for a covariance

matrix with scores normalized to have variance equal to the corresponding eigenvalue, using the notation for

subroutine g03aaf in the NAG library documentation.

• Obtain the data matrix -

• Transform - to obtain the centered matrix .

• Generate the loading matrix %

• Calculate the scores + = .% as shown next.
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4.0993 0.1436 0.8031

−1.6258 −2.2321 −0.8028

2.1145 3.2512 0.1684
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¬

Note that, as the sign of eigenvectors is arbitrary and can change with relatively small perturbations of a data

set, SimFIT provides the option to reflect plots of loadings and scores in order to retain consistency of spatial

distribution for the visual presentations of results.
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6.4.2 Factor analysis

Factor analysis seeks to explore the relationships between multivariate observations with < variables in terms

of a set of : hypothetical factors, where : < <. It is widely used in social and psychological research where

the factors could be things such as intelligence which are difficult to quantify and model, but it is not used

much in the physical sciences where the construction of deterministic models is preferred where possible.

Example 1

From the main SimFIT menu choose [Statistics], [Multivariate], then [Factor analysis] and read in the default

test file g03caf.tf1 which contains the following correlation matrix from a sample of 211 subjects where

9 variables were measured. Actually, due to the symmetry and unit diagonals, only the strict lower or strict

upper triangle is needed, but the SimFIT data input requires a full matrix because the factor analysis procedure

can also read in a data matrix then calculate the correlation matrix interactively.

1 0.523 0.395 0.471 0.346 0.426 0.576 0.434 0.639

0.523 1 0.479 0.506 0.418 0.462 0.547 0.283 0.645

0.395 0.479 1 0.355 0.270 0.254 0.452 0.219 0.504

0.471 0.506 0.355 1 0.691 0.791 0.443 0.285 0.505

0.346 0.418 0.270 0.691 1 0.679 0.383 0.149 0.409

0.426 0.462 0.254 0.791 0.679 1 0.372 0.314 0.472

0.576 0.547 0.452 0.443 0.383 0.372 1 0.385 0.680

0.434 0.283 0.219 0.285 0.149 0.314 0.385 1 0.470

0.639 0.645 0.504 0.505 0.409 0.472 0.680 0.470 1

This matrix is discussed in the book Factor Analysis as a Statistical Method by D.N.Lawley and E.A.Maxwell

London Butterworths (2nd Edition) 1971 which must be consulted in order to understand the following results.

Results from analysis of test file g03caf.tf1

Number of variables 9

Transformation Untransformed

Matrix type Input correlation matrix

Number of factors 3

Replicates Unweighted for replicates

� (Ψ̂) 0.0350

Test statistic )( 7.1494

Degrees of Freedom 12 (Number of cases = 211)

%(j2 ≥ )() 0.8476

Eigenvalues Communalities Ψ̂

15.968 0.54954 0.45046

4.3577 0.57293 0.42707

1.8475 0.38345 0.61655

1.1560 0.78767 0.21233

1.1190 0.61947 0.38053

1.0271 0.82308 0.17692

0.92574 0.60046 0.39954

0.89508 0.53846 0.46154

0.87710 0.76908 0.23092
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Residual correlations

0.0004

-0.0128 0.0220

0.0114 -0.0053 0.0231

-0.0100 -0.0194 -0.0162 0.0033

-0.0046 0.0113 -0.0122 -0.0009 -0.0008

0.0153 -0.0216 -0.0108 0.0023 0.0294 -0.0123

-0.0011 -0.0105 0.0134 0.0054 -0.0057 -0.0009 0.0032

-0.0059 0.0097 -0.0049 -0.0114 0.0020 0.0074 0.0033 -0.0012

Factor loadings by columns

0.6642 -0.3209 -0.0735

0.6888 -0.2471 -0.1933

0.4926 -0.3022 -0.2224

0.8372 0.2924 -0.0354

0.7050 0.3148 -0.1528

0.8187 0.3767 0.1045

0.6615 -0.3960 -0.0778

0.4579 -0.2955 0.4914

0.7657 -0.4274 -0.0117

Example 2

Test file g03ccf.tf1 contains the following correlation matrix that is also discussed by Lawley and Maxwell.

It is from an analysis of 220 students on the six subjects indicated in column 1. They suggest that "the fact

that all the correlations between the variates are positive indicates that students who get scores above average

on any one of the subjects tend also to get scores above average on the other subjects."

Gaelic 1 0.439 0.410 0.288 0.329 0.248

English 0.439 1 0.351 0.354 0.320 0.329

History 0.410 0.351 1 0.164 0.190 0.181

Arithmetic 0.288 0.354 0.164 1 0.595 0.470

Algebra 0.329 0.320 0.190 0.595 1 0.464

Geometry 0.248 0.329 0.181 0.470 0.464 1

The next table shows the results from analysis of this correlation matrix for two factors.

Results from analysis of test file g03ccf.tf1

Number of variables 6

Transformation Untransformed

Matrix type Input correlation matrix

Number of factors 2

Replicates Unweighted for replicates

� (Ψ̂) 0.1088

Test statistic )( 2.3346

Degrees of Freedom 4 (Number of cases = 220)

%(j2 ≥ )() 0.6754
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Eigenvalues Communalities Ψ̂

5.6142 0.48983 0.51017

2.1428 0.40593 0.59407

1.0923 0.35627 0.64373

1.0264 0.62264 0.37736

0.9908 0.56864 0.43136

0.8905 0.37179 0.62821

Factor loadings by columns

0.55332 -0.42856

0.56816 -0.28832

0.39218 -0.44996

0.74042 0.27280

0.72387 0.21131

0.59536 0.13169

The score coefficients are now shown but also a further possibility should be mentioned. As the factors are

only unique up to rotation, it is possible to perform a Varimax or Quartimax rotation to calculate a rotation

matrix ' before working out the score coefficients, which may simplify the interpretation of the observed

variables in terms of the unobservable variables.

Factor score coefficients

Method Regression

Rotation None

0.19318 -0.39203

0.17035 -0.22649

0.10852 -0.32621

0.34950 0.33738

0.29891 0.22861

0.16881 0.09783

The next figures illustrate the rows from the loading matrix labeled as A1, A2, · · · , A6 both before and after a

Varimax rotation with W = 1 and reflection of the H-axis and indicating the presence of two clusters.
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Many workers find it convenient to rotate loadings in this way until all are positive so that the relative

magnitudes and potential groupings can be visualized more easily. The example illustrated above indicates

that factor 2 is what is known as a bi-polar factor with approximately half positive and half negative, but that

the obvious grouping is still preserved by rotation.

It should be pointed out that this procedure may also require the use of reflection of axes in order to achieve

positive loadings, as in the present case where the second set of loadings were reflected by the automatic

technique provided by SimFIT to do such transformations interactively.
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Theory

This technique is used when it is wished to express a multivariate data set in<manifest, or observed variables,

in terms of : latent variables, where : < <. Latent variables are variables that by definition are unobservable,

such as social class or intelligence, and thus cannot be measured but must be inferred by estimating the

relationship between the observed variables and the supposed latent variables. The statistical treatment is

based upon a very restrictive mathematical model that, at best, will only be a very crude approximation and,

most of the time, will be quite inappropriate. For instance, Krzanowski (in W.J.Krzanowski Principles of

Multivariate Analysis, Oxford, revised edition, 2000) explains how the technique is used in the psychological

and social sciences, but then goes on to state

At the extremes of, say, Physics or Chemistry, the models become totally unbelievable. p477

It should only be used if a positive answer is provided to the question, “Is the model valid?” p503

However, despite such warnings, the technique is now widely used, either to attempt to explain observables

in terms of hypothetical unobservables, or as just another technique for expressing multivariate data sets

in a space of reduced dimension. In this respect it is similar to principal components analysis, except that

the technique attempts to capture the covariances between the variables, not the variances. If the observed

variables G can be represented as a linear combination of the unobservable variables or factors 5 , so that the

partial correlation A8 9.; between G8 and G 9 with 5; fixed is effectively zero, then the correlation between G8 and

G 9 can be said to be explained by 5;. The idea is to estimate the coefficients expressing the dependence of G

on 5 in such a way that the the residual correlation between the G variables is a small as possible, given the

value of :.

The assumed relationship between the mean-centered observable variables G8 and the factors is

G8 =

:∑
9=1

_8 9 5 9 + 48 for 8 = 1, 2, . . . , <, and 9 = 1, 2, . . . , :

where _8 9 are the loadings, 58 are independent normal random variables with unit variance, and 48 are

independent normal random variables with variances k8 . If the variance covariance matrix for G is Σ, defined

as

Σ = ΛΛ
) + Ψ,

where Λ is the matrix of factor loadings _8 9 , and Ψ is the diagonal matrix of variances k8 , while the sample

covariance matrix is (, then maximum likelihood estimation requires the minimization of

� (Ψ) =
<∑

9=:+1

(\ 9 − log \ 9 ) − (< − :),

where \ 9 are eigenvalues of (∗ = Ψ
−1/2(Ψ−1/2. Finally, the estimated loading matrix Λ̂ is given by

Λ̂ = Ψ
1/2+ (Θ − �)1/2,

where + are the eigenvectors of (∗, Θ is the diagonal matrix of \8 , and � is the identity matrix.

The proportion of variation for each variable G8 accounted for by the : factors is the communality
∑:
9=1 _

2
8 9 ,

the Psi-estimates are the variance estimates, and the residual correlations are the off-diagonal elements of

� − (ΛΛ) + Ψ)

where � is the sample correlation matrix. If a good fit has resulted and sufficient factors have been included,

then the off-diagonal elements of the residual correlation matrix should be small with respect to the diagonals

(listed with arbitrary values of unity to avoid confusion). Subject to the normality assumptions of the model,
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the minimum dimension : can be estimated by fitting sequentially with : = 1, : = 2, : = 3, and so on, until

the likelihood ratio test statistic

)( = [= − 1 − (2< + 5)/6 − 2:/3]� (Ψ̂)

is not significant as a chi-square variable with [(< − :)2 − (< + :)]/2 degrees of freedom. Note that data

for factor analysis can be input as a general = by < multivariate matrix, or as either a < by < covariance or

correlation matrix. However, if a square covariance or correlation matrix is input then there are two further

considerations: the sample size must be supplied independently, and it will not be possible to estimate or plot

the sample scores in factor space, as the original sample matrix will not be available.

It remains to explain the estimation of scores, which requires the original data of course, and not just the

covariance or correlation matrix. This involves the calculation of a < by : factor score coefficients matrix Φ,

so that the estimated vector of factor scores 5̂ , given the G vector for an individual can be calculated from

5̂ = G)Φ.

However, when calculating factor scores from the factor score coefficient matrix in this way, the observable

variables G8 must be mean centered, and also scaled by the standard deviations if a correlation matrix has been

analyzed. The regression method uses

Φ = Ψ
−1
Λ(� + Λ

)
Ψ

−1
Λ)−1,

while the Bartlett method uses

Φ = Ψ
−1
Λ(Λ)Ψ−1

Λ)−1.
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6.4.3 Procrustes analysis

Procrustes analysis is useful when there are two matrices - and . with the same dimensions, and it wished

to see how closely the - matrix can be made to fit the target matrix . using only distance preserving

transformations, like translation and rotation. For instance, - could be a matrix of loadings, and the target

matrix . could be a reference matrix of loadings from another data set.

From the main SimFIT menu choose [Statistics], [Multivariate], then [Procrustes] and analyze the following

two matrices

- =


0.63 0.58

1.36 0.39

1.01 1.76


. =


0.00 0.00

1.00 0.00

0.00 2.00


contained in the default test files g03bcf.tf1 with --data to be rotated, and g03bcf.tf2 containing the

target matrix . , to obtain the following results.

Results from Procrustes analysis

--data for rotation: g03bcf.tf1

. -data for target: g03bcf.tf2

Number of rows: 3

Number of columns: 2

Type: To origin then . -centroid

Scaling: Least squares scaling

U = 1.5563

Residual sum of squares = 0.019098

Residuals from Procrustes rotation

0.09644

0.08455

0.05145

Rotation matrix from Procrustes rotation

0.9673 0.2536

-0.2536 0.9673

. -hat matrix from Procrustes rotation

-0.0934 0.0239

1.0805 0.0259

0.0130 1.9502

There are numerous options for performing this calculation including the following alternative types

• No translation or normalization

• Translation to the origin

• Translation to the origin then to the . centroid after rotation

• Unit normalization

• Translation and normalization (i.e. standardization)

with or without least squares scaling after the rotation.

The following diagram shows the result from transforming the original - matrix which is initially distant from

the target . matrix into the transformed - matrix .̂ which has been brought almost into coincidence with the

target . matrix by movement of the centroid, rotating and scaling.
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Also, as well as displaying the residuals, the sum of squares, the rotation and best fit matrices, options are

provided to plot arbitrary rows or columns of these matrices.

Theory

First the centroids of - and . are translated to the origin to give -2 and .2 . Then the matrix of rotations '

that minimize the sum of squared residuals is found from the singular value decomposition as

-)2 .2 = *�+
)

' = *+) ,

and after rotation a dilation factor U can be estimated by least squares, if required, to give the estimate

.̂2 = U-2'.

Additional options from the SimFIT Procrustes interface include normalizing both matrices to have unit sums

of squares, normalizing the - matrix to have the same sum of squares as the . matrix, and translating to the

original. centroid after rotation. Note that these Procrustes options can often be done interactively in SimFIT

whenever loadings are calculated.
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6.4.4 Varimax and Quartimax rotation

Generalized orthomax rotation techniques can be used to simplify the interpretation of loading matrices, e.g.

from canonical variates or factor analysis. These are only unique up to rotation so, by applying rotations

according to stated criteria, different contributions of the original variables can be assessed.

Example 1

From the main SimFIT menu choose [Statistics], [Multivariate], then [Varimax and Quartimax] and analyze

the default test file provided, g03baf.tf1, to obtain the following results.

Results from Varimax rotation

Number of rows: 10

Number of columns: 3

Type: Unstandardised

Scaling: Varimax (W = 1)

Original data Λ

0.788 -0.152 -0.352

0.874 0.381 0.041

0.814 -0.043 -0.213

0.798 -0.170 -0.204

0.641 0.070 -0.042

0.755 -0.298 0.067

0.782 -0.221 0.028

0.767 -0.091 0.358

0.733 -0.384 0.229

0.771 -0.101 0.071

Rotation matrix '

0.63347 -0.53367 -0.56029

0.75803 0.57333 0.31095

0.15529 -0.62169 0.76772

Rotated matrix Λ∗
= _'

0.32929 -0.28884 -0.75901

0.84882 -0.27348 -0.33974

0.44997 -0.32664 -0.63297

0.34496 -0.39651 -0.65659

0.45259 -0.27584 -0.36962

0.26278 -0.61542 -0.46424

0.33219 -0.56144 -0.48537

0.47248 -0.68406 -0.18319

0.20881 -0.75370 -0.35429

0.42287 -0.51350 -0.40888

The input loading matrix Λ has < rows and : columns and results from the analysis of an original data matrix

with = rows (i.e. cases) and < columns (i.e. variables), where : factors have been calculated for : ≤ <.

Example 2

If the input loading matrix is not standardized to unit length rows, this can be done interactively, as in the next

example which also illustrates the use of Varimax rotation to simplify the interpretation of loadings containing

negative values by forming a rotated loading matrix with most values positive.
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Results from Varimax rotation

Number of rows: 10

Number of columns: 2

Type: Row standardized

Scaling: Varimax (W = 1)

Original data Λ

0.789 -0.403

0.834 -0.234

0.740 -0.034

0.586 -0.185

0.676 -0.248

0.654 0.140

0.641 0.234

0.629 0.351

0.564 0.054

0.808 0.414

Rotation matrix '

0.7279 0.6857

-0.6857 0.7279

Rotated matrix Λ∗ = _'
0.8506 0.2477

0.7675 0.4016

0.5619 0.4827

0.5534 0.2672

0.6621 0.2830

0.3800 0.5504

0.3061 0.6099

0.2171 0.6868

0.3735 0.4260

0.3042 0.8554
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In these diagrams it is clear that factor 1 loads most heavily on variables 1 to 5 (i.e. as rows 1 to 5 of the

loading matrix with symbols r1 to r5), while factor 2 loads most heavily on variables 6 to 10 (i.e. as rows 6 to

10 of the loading matrix with symbols r6 to r10). However it should be noted that before rotation there were

both positive positive and negative loadings in the left hand figure as emphasized by the red line, while after

rotation all loadings are now positive. So, the dependence of factors and loadings may be thought easier to

appreciate after the rotation to make all values positive as in the right hand figure.

The SimFIT Varimax procedure is made available when loading matrices are calculated and provides the

facility to plot any selection of two or three columns of a loading matrix before or after rotation.
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Theory

The rotated matrix Λ∗ is calculated so that the elements _∗8 9 are either relatively large or small. This involves

maximizing the function

+ =

:∑
9=1

<∑
8=1

(_∗8 9 )4 − W

<

:∑
9=1

[
<∑
8=1

(_∗8 9 )2

]2

where there were < variables originally and : factors were chosen for : < <.

There are several cases as follows

• Varimax rotation: W = 1

• Quartimax rotation: W = 0.

• Equamax rotation: W = :/2.

• Parsimax rotation: W = <(: − 1)/(< + : + 2).

• User chosen rotation: W input.

The resulting rotation matrix ' satisfies Λ∗ = Λ' and, when the matrices have been calculated they can be

viewed, written to the results log file, saved to a text file, or plotted.
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6.4.5 Biplots in two or three dimensions

Biplots are widely used to view multivariate data in a space with smaller dimensions.

The data would normally be held in a spreadsheet program like Microsoft Office Excel or LibreOffice Calc, as

in this example of an unselected table of multivariate statistical data from K.R. Gabriel in Biometrika 1971,

58, 453–67.

Percent Christian Armenian Jewish Moslem American Shaafat A-Tur Silwan Sur-Bahar

Toilet 98.2 97.2 97.3 96.9 97.6 94.4 90.2 94 70.5

Kitchen 78.8 81 65.6 73.3 91.4 88.7 82.2 84.2 55.1

Bath 14.4 17.6 6 9.6 56.2 69.5 31.8 19.5 10.7

Electricity 86.2 82.1 54.5 74.7 87.2 80.4 68.6 65.5 26.1

Water 32.9 30.3 21.1 26.9 80.1 74.3 46.3 36.2 9.8

Radio 73 70.4 53 60.5 81.2 78 67.9 64.8 57.1

TV set 4.6 6 1.5 3.4 12.7 23 5.6 2.7 1.3

Refrigerator 29.2 26.3 4.3 10.5 52.8 49.7 21.7 9.5 1.2

Such tables must be rectangular, with optional row and column labels, and all other cells filled with numerical

data (missing data must be replaced by estimates). Often it would only be necessary to select cells containing

numerical values from such a table by highlighting as follows.

Percent Christian Armenian Jewish Moslem American Shaafat A-Tur Silwan Sur-Bahar

Toilet 98.2 97.2 97.3 96.9 97.6 94.4 90.2 94 70.5

Kitchen 78.8 81 65.6 73.3 91.4 88.7 82.2 84.2 55.1

Bath 14.4 17.6 6 9.6 56.2 69.5 31.8 19.5 10.7

Electricity 86.2 82.1 54.5 74.7 87.2 80.4 68.6 65.5 26.1

Water 32.9 30.3 21.1 26.9 80.1 74.3 46.3 36.2 9.8

Radio 73 70.4 53 60.5 81.2 78 67.9 64.8 57.1

TV set 4.6 6 1.5 3.4 12.7 23 5.6 2.7 1.3

Refrigerator 29.2 26.3 4.3 10.5 52.8 49.7 21.7 9.5 1.2

However, sometimes row and column labels could also be needed, when a labeled table with cells containing

either labels or numerical values would be selected, as follows.

Percent Christian Armenian Jewish Moslem American Shaafat A-Tur Silwan Sur-Bahar

Toilet 98.2 97.2 97.3 96.9 97.6 94.4 90.2 94 70.5

Kitchen 78.8 81 65.6 73.3 91.4 88.7 82.2 84.2 55.1

Bath 14.4 17.6 6 9.6 56.2 69.5 31.8 19.5 10.7

Electricity 86.2 82.1 54.5 74.7 87.2 80.4 68.6 65.5 26.1

Water 32.9 30.3 21.1 26.9 80.1 74.3 46.3 36.2 9.8

Radio 73 70.4 53 60.5 81.2 78 67.9 64.8 57.1

TV set 4.6 6 1.5 3.4 12.7 23 5.6 2.7 1.3

Refrigerator 29.2 26.3 4.3 10.5 52.8 49.7 21.7 9.5 1.2

Note that the dummy label in cell(1,1) is not used.

The structure of the default SimFIT test file houses.tf1 available after selecting [Statistics] from the SimFIT

main menu, followed by [Multivariate], then [Biplots] will now be explained.
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First of all, note that SimFIT is not constrained to work with spread sheet programs, and the data file

format is more universal and much simpler, being a simple ASCII table of space separated numerical values

with optional row and column labels. So the default test file houses.tf1 contains the following table of

observations.

98.2 97.2 97.3 96.9 97.6 94.4 90.2 94.0 70.5

78.8 81.0 65.6 73.3 91.4 88.7 82.2 84.2 55.1

14.4 17.6 6.0 9.6 56.2 69.5 31.8 19.5 10.7

86.2 82.1 54.5 74.7 87.2 80.4 68.6 65.5 26.1

32.9 30.3 21.1 26.9 80.1 74.3 46.3 36.2 9.8

73.0 70.4 53.0 60.5 81.2 78.0 67.9 64.8 57.1

4.6 6.0 1.5 3.4 12.7 23.0 5.6 2.7 1.3

29.2 26.3 4.3 10.5 52.8 49.7 21.7 9.5 1.2

Also, as the row and column labels would be required for a biplot, these are added to the test file as follows.

begin{labels}

Toilet

Kitchen

Bath

Electricity

Water

Radio

TV set

Refrigerator

Christian

Armenian

Jewish

Moslem

Am.Colony Sh.Jarah

Shaafat Bet-Hanina

A-Tur Isawyie

Silwan Abu-Tor

Sur-Bahar Bet-Safafa

end{labels}

An Excel macro called simfit6.xls is distributed with the SimFIT package and it can output spreadsheet

tables as correctly formatted SimFIT data files from within Excel. Another easy way is to copy and paste the

whole table directly into SimFIT using the [Paste] option from the file selection control, or to copy and paste

into program maksim which will then output a correctly formatted SimFIT data file. However, if this course

of action is to be followed, the following important restrictions may have to be noted.

1. There must be no missing values and every cell in the numeric part of the table must contain a valid

number, except cell(1,1) which is ignored.

2. Data copied to the clipboard from a spreadsheet program will have tab separated columns and so SimFIT

will be able to perform numerous format conversion procedures interactively.

3. If spaces are used as column separators instead of tabs, the data must be in scientific format using full

stops for decimal points not commas.

4. If spaces are used as column separators instead of tabs, there must no spaces in the labels, and any

must be replaced by undercores before copying to the clipboard from a standard ASCII text editor

such as notepad. For example, replace time of day by time_of_day, or cycles per second by

cycles_per_second. This restriction does not matter with formatted SimFIT data files as the row

labels followed by the column labels are added as sequential lines between the begin{labels} and

end{labels} section of the data file trailer.

The next figures illustrate typical biplots derived from houses.tf1.
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Figure 2: 3D Biplot
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As with other projection techniques, such as principal components, it is necessary to justify that the number

of singular values used to display a biplot does represent the data matrix adequately. To do this, consider the

next table from the singular value decomposition of houses.tf1.

Proportion of total variance captured by singular values

Data file: houses.tf1, rank = 8

Index f8 Fraction Cumulative f2
8 Fraction Cumulative

1 499.393 0.7486 0.7486 249394 0.9631 0.9631

2 88.3480 0.1324 0.8811 7805.36 0.0301 0.9933

3 33.6666 0.0505 0.9315 1133.44 0.0044 0.9977

4 17.8107 0.0267 0.9582 317.222 0.0012 0.9989

5 12.8584 0.0193 0.9775 165.339 0.0006 0.9995

6 10.4756 0.0157 0.9932 109.738 0.0004 1.0000

7 3.37372 0.0051 0.9983 11.3820 0.0000 1.0000

8 1.15315 0.0017 1.0000 1.32974 0.0000 1.0000

In this example, it is clear that the first two or three singular values do represent the data adequately, and this

is further reinforced by Figure 3 where the percentage variance represented by the successive singular values

is plotted as a function of the singular value index. Here we see the cumulative variance �+ (8)

�+ (8) =
100

∑8
9=1 f

2
9∑:

9=1 f
2
9

plotted as a function of the index 8, and such tables or plots should always be inspected to make sure that

�+ (8) is greater than some minimum value (say 70 percent, for instance) for 8 = 2 or 8 = 3 as appropriate.

95%

96%

97%

98%

99%

100%

1 2 3 4 5 6 7 8

Index i

P
er

ce
nt

ag
e 

V
ar

ia
nc

e

Figure 3: Cumulative Variance Plot

The theory behind the biplot options available in SimFIT will now be described.
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Theory

The biplot is used to explore relationships between the rows and columns of any arbitrary matrix, by projecting

the matrix onto a space of smaller dimensions using the singular value decomposition (SVD). It is based upon

the fact that, as a = by < matrix - of rank : can be expressed as a sum of : rank 1 matrices as follows

- = f1D1E
)
1 + f2D2E

)
2 + · · · + f:D:E): ,

then the best fit rank A matrix . with A < : which minimizes the objective function

( =

<∑
8=1

=∑
9=1

(G8 9 − H8 9 )2

= trace[(- − . ) (- − . )) ]

is the sum of the first A of these rank 1 matrices. Further, such a least squares approximation results in the

minimum value

(<8= = f
2
A+1 + f

2
A+2 + · · · + f2

:

so that the rank A least squares approximation. accounts for a fraction

f2
1
+ · · · + f2

A

f2
1
+ f2

2
+ · · · + f2

:

of the total variance, where : is less than or equal to the smaller of = and <, : is greater than or equal to A,

and f8 = 0 for 8 > :.

Figure 1 illustrates a biplot for the data in test file houses.tf1. The technique is based upon creating one of

several possible rank-2 representations of of a = by < matrix - with rank : of at least two as follows. Let the

SVD of - be

- = *Σ+)

=

:∑
8=1

f8D8E
)
8

so that the best fit rank-2 matrix . to the original matrix - will be

. =

©­­­­«

D11 D21

D12 D22

...
...

D1= D2=

ª®®®®
¬

(
f1 0

0 f2

) (
E11 E12 . . . E1<

E21 E22 . . . E2<

)
.

Then. can be written in several ways as��) , where� is a = by 2 matrix and � is a < by 2 matrix as follows.

1. General representation

. =

©­­­­
«

D11
√
f1 D21

√
f2

D12
√
f1 D22

√
f2

...
...

D1=
√
f1 D2=

√
f2

ª®®®®
¬

(
E11

√
f1 E12

√
f1 . . . E1<

√
f1

E21
√
f2 E22

√
f2 . . . E2<

√
f2

)

2. Representation with row emphasis

. =

©­­­­
«

D11f1 D21f2

D12f1 D22f2

...
...

D1=f1 D2=f2

ª®®®®
¬

(
E11 E12 . . . E1<

E21 E22 . . . E2<

)
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3. Representation with column emphasis

. =

©­­­­
«

D11 D21

D12 D22

...
...

D1= D2=

ª®®®®¬

(
E11f1 E12f1 . . . E1<f1

E21f2 E22f2 . . . E2<f2

)

4. User-defined representation

. =

©­­­­
«

D11f
U
1

D21f
U
2

D12f
U
1

D22f
U
2

...
...

D1=f
U
1

D2=f
U
2

ª®®®®
¬

(
E11f

V

1
E12f

V

1
. . . E1<f

V

1

E21f
V

2
E22f

V

2
. . . E2<f

V

2

)

where 0 < U < 1, and V = 1 − U.

To construct a biplot we take the = row effect vectors 68 and < column effect vectors ℎ 9 as vectors with origin

at (0, 0) and defined in the general representation as

6)8 = (D18

√
f1, D28

√
f2)

ℎ)9 = (E1 9

√
f1, E2 9

√
f2)

with obvious identities for the alternative row emphasis and column emphasis factorizations. The biplot

consists of = vectors with end points at (D18
√
f1, D28

√
f2) and < vectors with end points at (E1 9

√
f1, E2 9

√
f2)

so that interpretation of the biplot is then in terms of the inner products of vector pairs. That is, vectors

with the same direction correspond to proportional rows or columns, while vectors approaching right angles

indicate near orthogonality, or small contributions. Another possibility is to display a difference biplot in

which a residual matrix ' is first created by subtracting the best fit rank-1 matrix so that

' = - − f1D1E
)
1

=

:∑
8=2

f8D8E
)
8

and this is analyzed, using appropriate vectors calculated with f2 and f3 of course. Again, the row vectors

may dominate the column vectors or vice versa whatever representation is used and, to improve readability,

additional scaling factors may need to be introduced. For instance, the previous figures used the residual

matrix and scaling factors of -100 for rows and -1 for columns to reflect and stretch the vectors until comparable

size was attained. To do this over-rides the default auto-scaling option, which is to scale each set of vectors

so that the largest row and largest column vector are of unit length, whatever representation is chosen.

Biplots are most useful when the number of rows and columns is not too large, and when the rank-2

approximation is satisfactory as an approximation to the data or residual matrix. Note that biplot labels should

be short, and they can be appended to the data file as with houses.tf1, or pasted into the plot as a table

of label values. Fine tuning to re-position labels was necessary with these figures, and this can be done by

editing the PostScript file in a text editor, or by using techniques described elsewhere for moving labels in

scattergrams.

Sometimes, as with Figure 2, it is useful to inspect biplots in three dimensions. This has the advantage that

three singular values can be used, but the plot may have to be viewed from several angles to get a good idea

of which vectors of like type are approaching a parallel orientation (indicating proportionality of rows or

columns) and which pairs of vectors 8, 9 of opposite types are orthogonal (i.e., at right angles, indicating small

contributions to G8 9 )
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6.5 Multivariate analysis of variance (MANOVA)

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

6.5.1 Introduction

The multivariate analysis of variance technique is an extension of the standard univariate analysis of variance

procedure (ANOVA) to the situation where observations of more than one variable are made for each subject.

So, for instance, a simple application of ANOVA would be to assume that multiple observations have been

made of a single variable in several groups and, assuming that this variable is distributed normally in each

group with the same variance, to test if all the population means are identical. In the corresponding MANOVA

case it would be to assume that all the observations are from multivariate normal distributions with the same

covariance matrix, and to test for identical mean vectors in the populations.

For example, sometimes a designed experiment is conducted in which more than one response is measured at

each treatment, so that there are two possible courses of action.

1. Do a separate ANOVA analysis for each variable.

The disadvantages of this approach are that it is tedious, and also it relies upon the questionable

assumption that each variable is statistically independent of every other variable, with a fixed variance

for each variable. The advantages are that the variance ratio tests are intuitive and unambiguous, and

also there is no requirement that sample size per group should be greater than the number of variables.

2. Do an overall MANOVA analysis for all variables simultaneously.

The disadvantages of this technique are that it relies on the assumption of a multivariate normal

distribution with identical covariance matrices across groups, it requires a sample size per group greater

than the number of variables, and also there is no unique and intuitive best test statistic. Further, the

power will tend to be lower than the power of the corresponding ANOVA. The advantages are that

analysis is compact, and several useful options are available which simplify situations like the analysis

of repeated measurements.

Central to a MANOVA analysis are the assumptions that there are = observations of a random < dimensional

vector divided into 6 groups, each with =8 observations, so that = =
∑6

8=1
=8 where =8 ≥ < for 8 = 1, 2, . . . , 6.

If H8 9 is the < vector for individual 9 of group 8, then the sample mean H̄8 , corrected sum of squares and

products matrix �8 , and covariance matrix (8 for group 8 are

H̄8 =
1

=8

=8∑
9=1

H8 9

�8 =

=8∑
9=1

(H8 9 − H̄8) (H8 9 − H̄8))

(8 =
1

=8 − 1
�8 .

For each ANOVA design there will be a corresponding MANOVA design in which corrected sums of squares

and product matrices replace the ANOVA sums of squares, but where other test statistics are required in

place of the ANOVA � distributed variance ratios. This will be clarified by dealing with typical MANOVA

procedures, such as testing for equality of means and equality of covariance matrices across groups.



MANOVA examples 301

6.5.2 MANOVA examples

From the main SimFIT menu choose [Statistcs], [Multivariate], then [MANOVA], noting that several test files

named manova1.tfk are provided for : = 1 to : = 5. It is important to realize that the first column in all

data sets provided for MANOVA analysis must have the group numbers as successive integers in column 1 in

nondecreasing order, with further columns for observations.

MANOVA example 1. Testing for equality of all means

Example 1 describes the results from analyzing these data for three groups and two variables contained in test

file manova1.tf3.

1 3 10

1 5 16

1 5 16

1 4 14

1 1 9

2 8 12

2 4 8

2 4 6

2 2 6

2 9 14

3 10 16

3 4 10

3 10 18

3 4 14

3 10 16

Column 1 is the group number (in nondecreasing order), while columns 2 and 3 are the observations.

If all groups have the same multivariate normal distribution, then estimates for the mean ` and covariance

matrix Σ can be obtained from the overall sample statistics ˆ̀ = H̄ and Σ̂

ˆ̀ =
1

=

6∑
8=1

=8∑
9=1

H8 9

Σ̂ =
1

= − 1

6∑
8=1

=8∑
9=1

(H8 9 − ˆ̀) (H8 9 − ˆ̀))

obtained by ignoring group means H̄8 and summing across all groups. Alternatively, the pooled between-

groups �, within-groups, , and total sum of squares and products matrices ) can be obtained along with the

within-groups covariance matrix ( using the group mean estimates H̄8 as

� =

6∑
8=1

=8 ( H̄8 − H̄) ( H̄8 − H̄))

, =

6∑
8=1

=8∑
9=1

(H8 9 − H̄8) (H8 9 − H̄8))

=

6∑
8=1

(=8 − 1)(8

= (= − 6)(
) = � +,
= (= − 1)Σ̂.
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This table is typical, and clearly strong differences between groups will be indicated if � is much larger than

, .

Source of variation d.f. ssp matrix

Between groups 6 − 1 �

Within groups = − 6 ,

Total = − 1 T

The usual likelihood ratio test statistic is Wilk’s lambda defined as

Λ =
|, |

|�| + |, |

but other statistics can also be defined as functions of the eigenvalues of �,−1. Unlike � and, separately,

the matrix �,−1 is not symmetric and positive definite but, if the < eigenvalues of �,−1 are \8 , then Wilk’s

lambda, Roy’s largest root ', the Lawley-Hotelling trace ) , and the Pillai trace % can be defined as

Λ =

<∏
8=1

1

1 + \8
' = max(\8)

) =

<∑
8=1

\8

% =

<∑
8=1

\8

1 + \8
.

The next table of results was obtained when manova1.tf3 was analyzed, and the methods used to calculate

the significance levels will then be outlined.

MANOVA �0: all mean vectors are equal

Number of groups 3

Number of variables 2

Number of observations 15

Statistic Value Transform #�$� ?

Wilks lambda 0.1917 7.062 4, 22 0.0008 Reject �0 at 1%

Roys largest root 2.801

Lawley-Hotelling) 3.173 8.727 4, 11 0.0017 Reject �0 at 1%

Pillais trace 1.008

The next table indicates conditions on the number of groups 6, variables <, and total number of observations

= that lead to exact � variables for appropriate transforms of Wilk’s Λ.

Parameters � statistic Degrees of freedom

6 = 2, any <
(26 − < − 1) (1 − Λ)

<Λ
<, 26 − < − 1

6 = 3, any <
(36 − < − 2) (1 −

√
Λ)

<
√
Λ

2<, 2(= − < − 2)

< = 1, any 6
(= − 6) (1 − Λ)

(6 − 1)Λ 6 − 1, = − 6

< = 2, any 6
(= − 6 − 1) (1 −

√
Λ)

(6 − 1)
√
Λ

2(6 − 1), 2(= − 6 − 1)

For other conditions the asymptotic expression

−
(
2= − 2 − < − 6

2

)
logΛ ∼ �<,6−1
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is generally used. The Lawley-Hotelling trace is a generalized Hotelling’s )2
0

statistic, and so the null

distribution of this can be approximated as follows.

Defining the degrees of freedom and multiplying factors U and V by

a1 = 6 − 1

a2 = = − 6

a =
<a1(a2 − <)

a1 + a2 − <a1 − 1

U =
(a2 − 1) (a1 + a2 − < − 1)

(a2 − <) (a2 − < − 1) (a2 − < − 3)
V =

<a1

a2 − < + 1
,

then the case a > 0 leads to the approximation

) ∼ V�a,a2−<+1,

otherwise the alternative approximation

) ∼ Uj2
5

is employed, where 5 = <a1/{U(a2 − < − 1)}. The null distributions for Roy’s largest root and Pillai’s trace

are more complicated to approximate, which is one reason why Wilk’s Λ is the most widely used test statistic.

MANOVA example 2. Testing for equality of selected means

The next table resulted when groups 2 and 3 were tested for equality of selected means, another example of a

Hotelling’s )2 test.

MANOVA �0: selected group means are equal

First group 2 (5 cases)

Second group 3 (5 cases)

Number of observations 15 (to estimate CV)

Number of variables 2

Hotelling )2 12.00

Test statistic ( 5.498

Numerator �$� 2

Denominator �$� 11

%(� ≥ () 0.0221 Reject �0 at 5% significance level

MANOVA �0: selected group means are equal

First group 2 (5 cases)

Second group 3 (5 cases)

Number of observations 10 (to estimate CV)

Number of variables 2

Hotelling )2 15.18

Test statistic ( 6.640

Numerator �$� 2

Denominator �$� 7

%(� ≥ () 0.0242 Reject �0 at 5% significance level

The first result uses the difference vector 32,3 between the means estimated from groups 2 and 3 with the

matrix, = (= − 6)( estimated using the pooled sum of squares and products matrix to calculate and test )2
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according to

)2
=

(
(= − 6)=2=3

=2 + =3

)
3)2,3,

−132,3

= − 6 − < + 1

<(= − 6) )2 ∼ �<,=−6−<+1,

while the second result uses the data from samples 2 and 3 as if they were the only groups as follows

(2,3 =
(=2 − 1)(2 + (=3 − 1)(3

=2 + =3 − 2

)2
=

(
=2=3

=2 + =3

)
3)2,3(

−1
2,332,3

=2 + =3 − < − 1

<(=2 + =3 − 2) )
2 ∼ �<,=2+=3−<−1.

The first method could be used if all covariance matrices are equal (see next) but the second might be preferred

if it was only likely that the selected covariance matrices were identical.

MANOVA example 3. Testing for equality of all covariance matrices

The next data set in manova1.tf2 has three groups for three types of Cushing’s syndrome, the variables are

logarithms of urinary excretion rates (<6/ℎA) for two steroid metabolites, and the table below the data shows

the results from testing that the within-group variance-covariance matrices are equal.

1 1.1314 2.4596

1 1.0986 0.2624

1 0.6419 -2.3026

1 1.3350 -3.2189

1 1.4110 0.0953

1 0.6419 -0.9163

2 2.1163 0.0000

2 1.3350 -1.6094

2 1.3610 -0.5108

2 2.0541 0.1823

2 2.2083 -0.5108

2 2.7344 1.2809

2 2.0412 0.4700

2 1.8718 -0.9163

2 1.7405 -0.9163

2 2.6101 0.4700

3 2.3224 1.8563

3 2.2192 2.0669

3 2.2618 1.1314

3 3.9853 0.9163

3 2.7600 2.0281

MANOVA �0: all covariance matrices are equal

Number of groups 3

Number of observations 21

Number of variables 2

Test statistic � 19.24

Degrees of freedom 6

%(j2 ≥ �) 0.0038 Reject �0 at 1% significance level
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These results refer to using Box’s test to analyze manova1.tf2 for equality of covariance matrices. This

depends on the likelihood ratio test statistic � defined by

� = "

{
(= − 6) log |( | −

6∑
8=1

(=8 − 1) log |(8 |
}
,

where the multiplying factor " is

" = 1 − 2<2 + 3< − 1

6(< + 1) (6 − 1)

(
6∑
8=1

1

=8 − 1
− 1

= − 6

)

and, for large =, � is approximately distributed as j2 with <(< + 1) (6 − 1)/2 degrees of freedom. Just as

tests for equality of variances are not very robust, this test should be used with caution, and then only with

large samples, i.e. =8 >> <.

MANOVA example 4. Profile analysis

Test file manova1.tf1 has two groups and five variables as follows,

1 11 18 15 18 15

1 33 27 31 21 17

1 20 28 27 23 19

1 18 26 18 18 9

1 22 23 22 16 10

2 18 17 20 18 18

2 31 24 31 26 20

2 14 16 17 20 17

2 25 24 31 26 18

2 36 28 24 26 29

while the following table shows the results of statistical analysis using the profile option.

MANOVA �0: selected group profiles are equal

First group 1 (5 cases)

Second group 2 (5 cases)

Number of observations 10 (to estimate CV)

Number of variables 5

Hotelling )2 35.65

Test statistic ( 5.570

Numerator �$� 4

Denominator �$� 5

%(� ≥ () 0.0438 Reject �0 at 5% significance level

The next figure illustrates the results from plotting the group means from manova1.tf1 using the profile

analysis option, noting that error bars are not added as a multivariate distribution is assumed,



306 Multivariate analysis

10.0

20.0

30.0

1 2 3 4 5

MANOVA Profile Analysis

Variables

G
ro

up
 M

ea
ns

Group 1
Group 2

Profile analysis attempts to explore a common question that often arises in repeated measurements ANOVA

namely, can two profiles be regarded as parallel. This amounts to testing if the sequential differences between

adjacent means for groups 8 and 9 are equal, that is, if the slopes between adjacent treatments are constant

across the two groups, so that the two profiles represent a common shape.

To do this, we first define the < − 1 by < transformation matrix  by

 =

©­­­
«

1 −1 0 0 0 . . .

0 1 −1 0 0 . . .

0 0 1 −1 . . .

. . . . . . . . . . . . . . . . . .

ª®®®
¬
.

Then a Hotelling’s)2 test is conducted using the pooled estimate for the covariance matrix (8 9 = [(=8 −1)(8 +
(= 9 − 1)( 9]/(=8 + = 9 − 2) and mean difference vector 38 9 = H̄8 − H̄ 9 according to

)2
=

(
=8= 9

=8 + = 9

)
( 38 9 )) ( (8 9 ) )−1( 38 9 )

and comparing the transformed statistic

=8 + = 9 − <
(=8 + = 9 − 2) (< − 1))

2 ∼ �<−1,=1+=2−<

to the corresponding � distribution.

Clearly, from the above table, the profiles are not parallel for the data in test file manova1.tf1.
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6.6 Comparing groups
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6.6.1 Canonical variates (discriminant functions)

Canonical variates is a technique used to transform multivariate data into new coordinates in order to highlight

differences and similarities between groups of observations.

If MANOVA investigation suggests that at least one group mean vector differs from the the rest, it is usual to

proceed to canonical variates analysis, although this technique can be also be used for data exploration when

the assumption of multivariate normality with equal covariance matrices is not justified.

Example 1

From the main SimFIT menu choose [Statistics], [Multivariate], then [Canonical variates], and read in the test

file manova1.tf4 from the C:\Program Files\simfit\dem folder, which contains the following data for

three groups of three subjects, each with observations on three variables.

1 13.3 10.6 21.2

1 13.4 9.4 21.0

1 12.9 10.0 20.5

2 13.6 10.2 21.0

2 13.2 9.6 20.1

2 12.2 9.9 20.7

3 14.2 10.7 21.1

3 13.9 10.4 19.8

3 13.9 11.0 19.1

begin{values}

14.0 11.0 22.0

12.0 9.0 19.0

13.0 9.0 20.0

end{values}

Column 1 has the group numbers as nondecreasing integers, while columns 2, 3, and 4 are observations on

three variables. Because canonical variates are also used to see how closely additional unassigned observations

compare to the defined groups of the training set, these can be added as additional values to the end of the

data file as shown.

The table below shows the results from analyzing these data, and this is followed by a summary that will be

explained in more detail later.
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Results from analysis of manova.tf4: rank = 3

Correlations Eigenvalues Proportions j2 #�$� ?

0.8826 3.5238 0.9795 7.9032 6 0.2453

0.2623 0.0739 0.0205 0.3564 2 0.8368

Canonical variate means

0.9841 0.2797

1.181 -0.2632

-2.165 -0.01642

Canonical coefficients

-1.707 0.7277

-1.348 0.3138

0.9327 1.220

• The number of correlations is the larger of the rank and the number of groups less one.

• The eigenvalues are for the within group sum of squares matrix, and these are used to estimate the

proportion of variation explained by the canonical variates.

• The chi-square statistic is used to decide the number of canonical variates required to represent the data.

• The degrees of freedom and a ? value for the significance of this chi-square statistic are presented.

Perhaps the most useful application of this technique is to plot the group means together with the data and

95% confidence regions in canonical variate space in order to visualize how close or how far apart the groups

are. This is done for the first two canonical variates in the next figure.
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Using the option to edit plot parameters the above figure was constructed to show the labeled canonical

variate means (filled circles) together with 95% confidence confidence regions, along with the original data

and the three additional observations. Finally the ranges of data plotted were adjusted in order to display the

confidence ranges as circles instead of ellipses.

From this graph it is evident that groups 1 and 2 (circles and triangles) are similar but both groups are distinct

from group 3 (squares). Additional observation C (half filled diamonds) can be assigned the groups 1 and 2

but additional observations A and B do not belong to any of the training sets.
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Example 2

To appreciate the use of canonical variates to distinguish groups with a larger data set, consider the next

figures, which illustrate the famous Fisher Iris data set contained in manova1.tf5 using the first two principal

components, and also the first two canonical variates for comparison.
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Theory

First of all, note that canonical variates, unlike principal components, are not simply obtained by a distance

preserving rotation: the transformation is non-orthogonal and best represents the Mahalanobis distance

between groups.

The confidence range

In the first figure of Example 1 we see the group means identified by the filled symbols labeled as 1, 2 and

3, each surrounded by a 95% confidence region, which in this case is circular as equally scaled physical

distances are plotted along the axes. The canonical variates are uncorrelated and have unit variance so,

assuming normality, the 100(1 − U)% confidence region for the population mean is a circle radius

A =

√
j2
U,2

/=8 ,

where group 8 has =8 observations and j2
U,2

is the value exceeded by 100U% of a chi-square distribution with

2 degrees of freedom.

Note that, alternatively, a circle radius
√
j2
U,2

can be plotted as this defines a tolerance region, i.e. the region

within which 100(1 − U)% of the whole population is expected to lie.

The additional observations

Also, the test file manova1.tf4 has three other observations appended which are to be compared with the

main groups in order to assign group membership, that is, to see to which of the main groups 1, 2 and 3

the extra observations should be assigned. The half-filled diamonds representing these are identified by the

labels A, B and C which, like the identifying numbers 1, 2, and 3, are plotted automatically by SimFIT to

identify group means and extra data. In this case, as the data sets are small, the transformed observations

from groups 1, 2 and 3 are also shown as circles, triangles and squares respectively, which is easily done

by saving the coordinates from the plotted transforms of the observations in ASCII text files which are then

added interactively as extra data files to the means plot.

The calculation of canonical variates

The aim of canonical variate analysis is to find the transformations 08 that maximize �8 , the ratios of � (the

between group sum of squares and products matrices) to , (the within-group sum of squares and products

matrix), i.e.

�8 =
0)8 �08/(6 − 1)
0)8 ,08/(= − 6)

where there are 6 groups and = observations with < covariates each, so that 8 = 1, 2, . . . , ; where ; is the lesser

of the number of groups minus one and the rank of the data matrix. The canonical variates are obtained by

solving the symmetric eigenvalue problem

(� − _2,)G = 0,

where the eigenvalues _2
8 define the ratios �8 , and the eigenvectors 08 corresponding to the _2

8 define the

transformations. So, just as with principal components, a scree diagram of the eigenvalues in decreasing order

indicates the proportion of the ratio of between-group to within-group variance captured by the canonical

variates.

Note that the previous results table lists the rank : of the data matrix, the number of canonical variates

; = min(:, 6 − 1), the eigenvalues _2
8 , the canonical correlations _2

8 /(1 + _2
8 ), the proportions _2

8 /
∑;
9=1 _

2
9 , the

group means, the loadings, and the results of a chi-square test.



Comparing groups 311

The number of canonical variates

It is important to realize that the first two canonical variates may be insufficient to represent the data adequately.

A scree diagram can be plotted to estimate the minimum number required, or the eigenvalues, proportions, or

chi-square statistics calculated from the data can be used.

For instance. If the data are assumed to be from a common multivariate distribution, then to test for a

significant dimensionality greater than some level i, the statistic

j2
= (= − 1 − 6 − (: − 6)/2)

;∑
9=8+1

log(1 + _2
9 )

has an asymptotic chi-square distribution with (:−8) (6−1−8) degrees of freedom. If the test is not significant

for some level ℎ, then the remaining tests for 8 > ℎ should be ignored. It should be noted that the group

means and loadings are calculated for data after column centering and the canonical variates have within

group variance equal to unity. Also, if the covariance matrices V = �/(6 − 1) and l = ,/(= − 6) are used,

then l−1V = (= − 6),−1�/(6 − 1), so eigenvectors of,−1� are the same as those of l−1V, but eigenvalues

of,−1� are (6 − 1)/(= − 6) times the corresponding eigenvalues of l−1V.

In the iris plot of Example 2 there are only two canonical variates, so the canonical variates diagram is fully

representative of the data set, and both techniques illustrate the distinct separation of group 1 (circles = setosa)

from groups 2 (triangles = versicolor) and 3 (squares = virginica), and the lesser separation between groups 2

and 3.

Users of these techniques should always remember that, as eigenvectors are only defined up to an arbitrary

scalar multiple and different matrices may be used in the principal component calculation, principal compo-

nents and canonical variates may have to be reversed in sign and re-scaled to be consistent with calculations

reported using software other than SimFIT. To see how to compare extra data to groups involved in the

calculations, the test file manova1.tf4 should be examined.
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6.6.2 Discriminant analysis: Mahalanobis distances

Discriminant analysis is based on comparing multivariate observations made with different groups of subjects

in order to define the distances between the groups, and also to assign new observations to appropriate groups.

From the main SimFIT menus choose [Statistics], [Multivariate, [Discriminant analysis] then read in the

default test file g03daf.tf1 which has the following data.

1 1.1314 2.4596

1 1.0986 0.2624

1 0.6419 -2.3026

1 1.3350 -3.2189

1 1.4110 0.0953

1 0.6419 -0.9163

2 2.1163 0.0000

2 1.3350 -1.6094

2 1.3610 -0.5108

2 2.0541 0.1823

2 2.2083 -0.5108

2 2.7344 1.2809

2 2.0412 0.4700

2 1.8718 -0.9163

2 1.7405 -0.9163

2 2.6101 0.4700

3 2.3224 1.8563

3 2.2192 2.0669

3 2.2618 1.1314

3 3.9853 0.9163

3 2.7600 2.0281

This data set has three groups, indicated by the nondecreasing integers in columns 1, for three types of

Cushing’s syndrome, the variables in columns 2 and 3 are logarithms of urinary excretion rates (<6/ℎA) for

two steroid metabolites.

The following options are then available.

• Calculate the group sample means and the pooled sample means.

The numerical values for the vectors of means can be displayed.

• Test for equality of the vectors of population means.

If required, this can be done using the MANOVA options provided by SimFIT.

• Test if all population variance-covariance matrices are equal.

The results from discriminant analysis will differ depending on whether it is assumed that the variables

all have the same population covariance matrix (as estimated from the pooled samples) or different

covariance matrices (as estimated from the group samples).

• Calculate distances between the groups.

The Mahalanobis distance matrix �2
8 9 can be calculated assuming equal or unequal variance-covariance

matrices.

• Plot the groups.

The centroids can also be plotted to indicate the center of gravity of the groups while, for cases with

more than two variables, the principal components can be plotted instead.

The results from such a systematic investigation are now presented.

First of all here are the group and pooled means followed by a MANOVA test for equality of means.
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Table 1. Mean vectors

Group 1 1.0433 -0.6034

Group 2 2.0073 -0.2060

Group 3 2.7097 1.5998

Pooled 1.8991 0.1104

Table 2. MANOVA test for �0: population mean vectors are equal

Number of groups 3

Number of variables 2

Number of observations 21

Statistic Value Transform #�$� ?

Wilks lambda 0.3144 6.660 4, 34 0.0005 Reject �0 at 1% significance level

Roys largest root 1.801

Lawley-Hotelling T 1.937 8.231 4, 17 0.0006 Reject �0 at 1% significance level

Pillais trace 0.7625

A mean vector for a group is simply the vector consisting of sample means for each variable within that

group, and the results suggest that the population mean vectors for these three groups are not the same, so that

regarding the subjects as forming three distinct groups seems to be justified in this case.

The results in this next table for testing if the population variance-covariance matrices for the groups are

identical suggests that we should consider rejecting the null hypothesis.

Table 3. Testing �0: population variance-covariance matrices are equal

Number of groups 3

Number of observations 21

Number of variables 2

Test statistic � 19.24

Degrees of freedom 6

%(j2 ≥ �) 0.0038 Reject �0 at 1% significance level

Note that, in the following values for the Mahalanobis distances�2
8 between groups, assuming a common pop-

ulation variance-covariance matrix leads to a symmetric distance matrix, but for unequal variance-covariance

matrices the distance matrix is not symmetric.

Table 4. Mahalanobis distances

�2
8 9 assuming equal CV

0.00000 3.58476 11.7998

3.58476 0.00000 3.25922

11.7998 3.25922 0.00000

�2
8 9 assuming unequal CV

0.00000 9.55703 51.9737

8.51398 0.00000 25.2973

25.1215 4.71142 0.00000

Finally, the next figure displays the observations for the groups followed by the same data but with centroids

added together with spokes to emphasize the groups.

In the present case there are only two variables so these can be used as axes but, for more than two variables,

the option to plot principal components should be used
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Theory

Defining the mean vector

Consider a group of - of size = with < variables as in

- =



G11 G12 · · · G1<

G21 G22 · · · G2<

· · · · · · · · · · · ·
G=1 G=2 · · · G=<


for then the vector of column means

-̄ =
[
Ḡ1, Ḡ2, · · · Ḡ<

])
where Ḡ 9 is the mean of column 9 is generally referred to as the mean vector as in Table 1 and Table 2.

Alternatively, regarding the points as having unit mass, this is would be the center of mass or centroid of

the data regarded as a multivariate swarm. For two mean vectors to be equal requires all corresponding

component means to be equal.

Testing for equality of covariance matrices

The results from analyzingg03daf.tf1 in Table 3 refer to using Box’s test to analyze for equality of population

covariance matrices. This depends on = the overall sample size, < the number of variables, 6 the number

of groups, =8 the sample size in group 8, ( the pooled variance-covariance matrix with determinant |( |, (8
the within-group variance-covariance matrices with determinants |(8 |, and the likelihood ratio test statistic �

defined by

� = "

{
(= − 6) log |( | −

6∑
8=1

(=8 − 1) log |(8 |
}
.

Here the multiplying factor " is

" = 1 − 2<2 + 3< − 1

6(< + 1) (6 − 1)

(
6∑
8=1

1

=8 − 1
− 1

= − 6

)

and, for large =, � is approximately distributed as j2 with <(< + 1) (6 − 1)/2 degrees of freedom. Just as

tests for equality of variances are not very robust, this test should be used with caution, and then only with

large samples, i.e. =8 >> <.

The squared Mahalanobis distance between two groups

The squared Mahalanobis distance �2
8 9 between two group means Ḡ8 and Ḡ 9 referred to in Table 4 can be

defined as either

�2
8 9 = (Ḡ8 − Ḡ 9 )) (−1(Ḡ8 − Ḡ 9 )

or �2
8 9 = (Ḡ8 − Ḡ 9 )) (−1

9 (Ḡ8 − Ḡ 9 )

depending on whether the covariance matrices are assumed to be equal, when the pooled estimate ( is used

and �2
8 9 = �2

98 , or unequal when the group estimate ( 9 is used and �2
8 9 ≠ �2

98 . This distance is a useful

quantitative measure of similarity between groups, but often there will be extra measurements which can then

be appended to the data file, as with g03daf.tf1, so that the distance between measurement : and group 9

can be calculated as either

�2
: 9 = (G: − Ḡ 9 )) (−1(G: − Ḡ 9 )

or �2
: 9 = (G: − Ḡ 9 )) (−1

9 (G: − Ḡ 9 ) .
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6.6.3 Discriminant analysis: Allocating observations to training sets

Discriminant analysis provides methods for allocating new observations to existing training sets, i.e. groups

that have been defined on the basis of previous investigations.

From the main SimFIT menus choose [Statistics], [Multivariate, [Discriminant analysis] then read in the

default test file g03daf.tf1 which has the following data.

1 1.1314 2.4596

1 1.0986 0.2624

1 0.6419 -2.3026

1 1.3350 -3.2189

1 1.4110 0.0953

1 0.6419 -0.9163

2 2.1163 0.0000

2 1.3350 -1.6094

2 1.3610 -0.5108

2 2.0541 0.1823

2 2.2083 -0.5108

2 2.7344 1.2809

2 2.0412 0.4700

2 1.8718 -0.9163

2 1.7405 -0.9163

2 2.6101 0.4700

3 2.3224 1.8563

3 2.2192 2.0669

3 2.2618 1.1314

3 3.9853 0.9163

3 2.7600 2.0281

begin{values}

1.6292 -0.9163

2.5572 1.6094

2.5649 -0.2231

0.9555 -2.3026

3.4012 -2.3026

3.0204 -0.2231

end{values}

This data set has three groups, indicated by the nondecreasing integers in columns 1, for three types of

Cushing’s syndrome, the variables in columns 2 and 3 are logarithms of urinary excretion rates (<6/ℎA) for

two steroid metabolites, and the values below the data are additional observations for allocating to one of the

three groups. Such extra observations can also be added interactively and expanded training sets containing

the newly assigned data can be saved as SimFIT MANOVA type files.

Assigning new observations to groups defined by training sets can be made more objective by employing

Bayesian techniques than by simply using distance measures, but only if a multivariate normal distribution

can be assumed. For instance, the next table displays the results from assigning the six observations appended

to g03daf.tf1 to groups defined by using the data as a training set, under the assumption of unequal

variance-covariance matrices and equal priors.
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Method Predictive

CV-mat Unequal

Priors Equal

Observation Group-allocated

1 2

2 3

3 2

4 1

5 3

6 3

Posterior probabilities Atypicality indices

0.0939 0.9046 0.0015 0.5956 0.2539 0.9747

0.0047 0.1682 0.8270 0.9519 0.8360 0.0184

0.0186 0.9196 0.0618 0.9540 0.7966 0.9122

0.6969 0.3026 0.0005 0.2073 0.8599 0.9929

0.3174 0.0130 0.6696 0.9908 1.0000 0.9843

0.0323 0.3664 0.6013 0.9807 0.9779 0.8871

Plotting training sets and assigned observations

The next figure displays the training set from g03daf.tf1, together with the assignment of the extra observa-

tions appended to this test file as described previously. The additional observations allocated to the existing

training set to create this expanded training set are emphasized by solid arrows, which confirm what the

atypicality indices suggest, i.e. additional observation 5 is not particularly close to group 3.
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Theory

The results from discriminant analysis will differ depending on whether it is assumed that the variables

all have the same population covariance matrix so that this can be estimated from the pooled samples.

Alternatively estimates from the separate groups can used. However, estimating variance-covariance matrices

from multivariate samples requires sample sizes very much greater than the number of variables and, if this

condition is not met, poor estimates can lead to incorrect allocations. So, unless sample sizes in all training

sets are very much larger than the number of variables, it is probably best to use pooled estimates and ignore

the tests suggesting unequal variance-covariance matrices.

The calculation is for 6 groups, each with = 9 observations on < variables, and it is necessary to make

assumptions about the identity or otherwise of the variance-covariance matrices, as well as assigning prior

probabilities. Then Bayesian arguments lead to expressions for posterior probabilities @ 9 , under a variety of

assumptions, given prior probabilities c 9 as follows.

• Estimative with equal variance-covariance matrices (Linear discrimination)

log @ 9 ∝ − 1
2
�2
: 9 + log c 9

• Estimative with unequal variance-covariance matrices (Quadratic discrimination)

log @ 9 ∝ − 1
2
�2
: 9 + log c 9 − 1

2
log |( 9 |

• Predictive with equal variance-covariance matrices

@ 9 ∝
c 9

((= 9 + 1)/= 9)</2{1 + [= 9/((= − 6) (= 9 + 1))]�2
: 9
} (=−6+1)/2

• Predictive with unequal variance-covariance matrices

@ 9 ∝
c 9Γ(= 9/2)

Γ((= 9 − <)/2) ((=2
9 − 1)/= 9)</2 |( 9 |1/2{1 + (= 9/(=2

9 − 1))�2
: 9
}= 9 /2

Subsequently the posterior probabilities are normalized so that
∑6

9=1
@ 9 = 1 and the new observations are

assigned to the groups with the greatest posterior probabilities. In this analysis the priors can be assumed to

be all equal, proportional to sample size, or user defined. Also, atypicality indices � 9 are computed to estimate

how well an observation fits into an assigned group. These are

• Estimative with equal or unequal variance-covariance matrices

� 9 = %(�2
: 9/2, </2)

• Predictive with equal variance-covariance matrices

� 9 = '(�2
: 9/(�2

: 9 + (= − 6) (= 9 − 1)/= 9), </2, (= − 6 − < + 1)/2)

• Predictive with unequal variance-covariance matrices

� 9 = '(�2
: 9/(�2

: 9 + (=2
9 − 1)/= 9), </2, (= 9 − <)/2),

where %(G, U) is the incomplete gamma function, and '(G, U, V) is the incomplete beta function. Values of

atypicality indices close to one for all groups suggest that the corresponding new observation does not fit well

into any of the training sets, since one minus the atypicality index can be interpreted as the probability of

encountering an observation as or more extreme than the one in question given the training set.

The assignment of extra observations to the training sets depends on the data transformation selected and

variables suppressed or included in the analysis,and this must be considered when supplying extra observations

interactively.
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7 Survival analysis
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7.1 Introduction

Survival analysis attempts to develop a statistical model for situations where a group is observed from time

C = 0 onwards until a number of the subjects in the original group no longer survive. It can be used to model

numerous situations ranging from the failure of machinery by wear and tear to the death of individuals due to

disease or old age.

SimFIT provides several techniques to analyze the following types of survival data.

1. Estimates of proportions of a population surviving as a function of time are available by some technique

which does not directly estimate the number surviving in a populations of known initial size, rather,

proportions surviving are inferred by indirect techniques such as light scattering for bacterial density

or enzyme assay for viable organisms. In such instances the estimated proportions are not binomial

variables so fitting survival models directly by weighted least squares is justified, especially where

destructive sampling has to be used so that autocorrelations are less problematical. Program gcfit is

used in mode 2 for this type of fitting.

2. A population of individuals is observed and information on the times of censoring (i.e. leaving the

group) or failure are recorded, but no covariates are measured. In this case, survival density functions,

such as the Weibull model, can be fitted by maximum likelihood, and there are numerous statistical and

graphical techniques to test for goodness of fit. Program gcfit is used in mode 3 for this type of fitting.

3. When there are covariates as well as survival times and censored data, then survival models can be

fitted as generalized linear models. The SimFIT GLM simplified interface module is used for this type

of analysis.

4. The Cox proportional hazards model does not attempt to fit a complete model, but a partial model

can be fitted by the method of partial likelihood as long as the proportional hazards assumption is

justified independently. Actually, after fitting by partial likelihood, a piece-wise hazard function can be

estimated and residuals can then be calculated. The SimFIT GLM simplified interface module is also

used for this type of analysis.

To summarize, in the context of survival analysis, the random survival time ) with density 5 (C), cumulative

distribution function � (C), survivor function ((C), hazard function ℎ(C), and cumulative hazard function � (C)
are defined for C ≥ 0 by

5 (C) ≥ 0

� (C) =
∫ C

0

5 (D) 3D

((C) = 1 − � (C)
ℎ(C) = 5 (C)/((C)

� (C) =
∫ C

0

ℎ(D) 3D

5 (C) = ℎ(C) exp{−� (C)}.
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Clearly, the survivor function ((C) = exp{−� (C)} is the probability of surviving up to time C, which decreases

monotonically from 1 to zero as C increases, while the hazard function is the probability of failure at C given

survival up to this time. However, analysis is often complicated by left censoring when new individuals

join the group at some C > 0, or right censoring when individuals leave the original group without failing.

The alternative methods used to quantify the behavior of any particular group simply depend on the model

assumed, while any predictions made from estimated parameters also depend on the size and homogeneity of

the group under investigation in terms of covariates.

7.2 1-sample Kaplan-Meier survivor function

Given observations of some critical event such as survival, recovery from illness, failure of a machine, or death

of a subject, as a function of time within a given group, the Kaplan-Meier or product moment nonparametric

estimator for a suitable step function to model the survivor function has gained wide acceptance.

Example 1

From the main SimFIT menu choose [Statistics], [Time series and survival], then [Kaplan-Meier], and study

the default test file survive.tf2 which has the following format.

Time to relief Censorship Frequency

1.1 0 1

1.4 0 1

1.3 0 1

1.7 0 1

1.9 0 1

1.8 0 1

1.6 0 1

2.2 0 1

1.7 0 1

2.7 0 1

4.1 0 1

1.8 0 1

1.5 0 1

1.2 0 1

1.4 0 1

3.0 0 1

1.7 0 1

2.3 0 1

1.6 0 1

2.0 0 1

These data were for twenty patients taking an analgesic to relieve headache pain and the data have been

formatted according to this scheme, where the critical event in this case is freedom from pain.

1. First column

Time in hours (not necessarily ordered)

2. Second column

Censoring code (0 = occurrence of the critical event, 1 = right-censored)

3. Third column

Frequency of the observation

4. Note

The starting sample size will be taken as the sum of all the frequencies in column 3. So subjects

remaining at or after the last failure should be included as right-censored with the appropriate frequency.

Failure to do this will lead to an underestimate of the starting size for the group and a biased estimator.
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These data do not contain censored observations and all the subjects were observed until the headache ceased,

so the estimated survivor function (̂(C) was as displayed in the next table and graph.

Time to relief Estimate (̂(C) Standard Error

1.1 0.95 0.0487

1.2 0.90 0.0671

1.3 0.85 0.0798

1.4 0.75 0.0968

1.5 0.70 0.1025

1.6 0.60 0.1095

1.7 0.45 0.1112

1.8 0.35 0.1067

1.9 0.30 0.1025

2.0 0.25 0.0968

2.2 0.20 0.0894

2.3 0.15 0.0798

2.7 0.10 0.0671

3.0 0.05 0.0487

4.1 0.00 0.0000
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Example 2

The next table and graph are for the data contained in test file survive.tf1 which is for time to remission in

21 leukemia patients.
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This data set contains right-censored observations with a 1 instead of 0 in column two, and also records the

number of replicates with frequencies of 2 or 3 instead of 1 in column three.

Time to remission Censorship Frequency

6 1 1

6 0 3

7 0 1

9 1 1

10 0 1

10 1 1

11 1 1

13 0 1

16 0 1

17 1 1

19 1 1

20 1 1

22 0 1

23 0 1

25 1 1

32 1 2

34 1 1

35 1 1
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Note that the eleven points at times 6, 9, 10, 11, 17, 19, 20, 25, 32, 34, and 35 where loss by censoring

happened are indicated in the above diagram by plus signs (+).
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Theory

The nomenclature regarding the Kaplan-Meier estimator for a survivor function arose because it is most

widely used in reliability studies, where machinery is operated until failure occurs, and in clinical studies

where a group of patients under treatment is observed until some critical event like recovery from illness,

relief from suffering, or death happens. It is often complicated by the fact that right censoring occurs, where

a subject leaves the group without the critical event occurring, e.g. when a clinical trial is discontinued.

For these reasons it is well to remember that as ((C) = 1 − � (C) then � (C) = 1 − ((C) and there may be some

occasions where it could be more logical to regard � (C) as the survivor function.

Suppose that there are exactly : distinct times where at least one critical event, e.g. a failure occurred. Then

the calculation is based on ordering these : distinct times for failure into an increasing sequence

C1 < C2 < C3 < · · · < C:

and recording the number that failed at each time, but also taking note of the number lost at each time due to

censoring.

To understand the method, note that, as the times C8 are distinct and ordered failure times, i.e. C8−1 < C8 , and

the number in the sample that have not failed by time C8 is =8 , while the number that do fail is 38, then the

estimated probabilities of failure and survival at time C8 are given by

?̂(failure) = 38/=8
?̂(survival) = (=8 − 38)/=8 .

The Kaplan-Meier product limit nonparametric estimate of the survivor function is then defined as a step

function which is given in the interval C8 to C8+1 by the product of survival probabilities up to time C8 , that is

(̂(C) =
8∏
9=1

(
= 9 − 3 9
= 9

)

with variance estimated by Greenwood’s formula as

+̂ ((̂(C)) = (̂(C)2
8∑
9=1

3 9

= 9 (= 9 − 3 9 )
.

It is understood in this calculation that, if failure and censoring occur at the same time, the failure is regarded

as having taken place just before that time and the censoring just after it.

It should be pointed out that steps in the survivor function only occur at failure points and, in the absence of

any censored points, the Kaplan-Meier estimate for the survivor function at C = C8 is just the usual binomial

parameter estimate.
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7.3 1-sample Weibull survivor function

Often experimentalists prefer to fit a continuous parameteric survivor function to survival data in order to

quantify the data by best-fit parameters instead a nonparameteric step-wise approximation, and the Weibull

distribution is often used for this purpose.

From the main SimFIT menu choose [Statistics], [Time series and survival], then [Kaplan-Meier], and study

the default test file survive.tf2 which has the following format.

Time to relief Censorship Frequency

1.1 0 1

1.4 0 1

1.3 0 1

1.7 0 1

1.9 0 1

1.8 0 1

1.6 0 1

2.2 0 1

1.7 0 1

2.7 0 1

4.1 0 1

1.8 0 1

1.5 0 1

1.2 0 1

1.4 0 1

3.0 0 1

1.7 0 1

2.3 0 1

1.6 0 1

2.0 0 1

These data were for twenty patients taking an analgesic to relieve headache pain and the data have been

formatted according to this scheme, where the critical event in this case is freedom from pain.

1. First column

Time in hours (not necessarily ordered)

2. Second column

Censoring code (0 = occurrence of the critical event, 1 = right-censored)

3. Third column

Frequency of the observation

4. Note

The starting sample size will be taken as the sum of all the frequencies in column 3. So subjects

remaining at or after the last failure should be included as right-censored with the appropriate frequency.

Failure to do this will lead to an underestimate of the starting size for the group and a biased estimator.

These data do not contain censored observations and all the subjects were observed until the headache ceased.

The Kaplan-Meier menu then provides the option to fit a Weibull survivor function and to overlay it on the

Kaplan-Meier step function as in the next figure.
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Of course the maximum likelihood Weibull estimate displayed is only one possible curve, and SimFIT offers

the opportunity to fit alternative curves by weighted least squares, or generalized linear interactive modeling

(GLIM).

Tests for goodness of fit and for comparing parameter estimates require the actual parameter estimates and

standard errors, i.e. estimates for their their standard errors, where the numerical values for these will depend

upon the particular parameterization scheme used to define the Weibull model. So, as the next table shows,

the Weibull model can be fitted with several parameterizations, and the one used by SimFIT is designed to

stabilize the calculations for the maximum likelihood estimate, as described subsequently.

Alternative MLE Weibull parameterizations

((C) = exp[−exp(V)C�]
((C) = exp[−_C�]
((C) = exp[−(�C)�]

Parameter Value Standard error Lower95%cl Upper95%cl ?

� 2.7870 0.4273 1.889 3.685 0.0000

V -2.1073 0.4627 -3.079 -1.135 0.0002

_ 0.1216 0.0563 0.003 0.240 0.0444

� 0.4695 0.0401 0.385 0.554 0.0000

C1/2 1.8675 0.1761 1.497 2.238 0.0000

Correlation coefficient(V, �) = -0.8755
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Theory

To understand fitting the Weibull distribution, note that maximum likelihood parameter and standard error

estimates are reported for three alternative parameterizations, namely

((C) = exp(− exp(V)C�)
= exp(−_C�)
= exp(−(�C)�) .

Since the density and survivor function are

5 (C) = �_C�−1 exp(−_C�)
((C) = exp(−_C�),

and there are 3 failures and = − 3 right censored observations, the likelihood function ; (�, _) is proportional

to the product of the 3 densities for the failures in the overall set of = observations and the survivor functions,

that is

; (�, _) ∝ (�_)3
(∏
8∈�

C�−1
8

)
exp

(
−_

=∑
8=1

C�8

)

where � is the set of failure times.

Actually, the log-likelihood function objective function

!(�, V) = 3 log(�) + 3V + (� − 1)
∑
8∈�

log(C8) − exp(V)
=∑
8=1

C�8

with _ = exp(V) is better conditioned, so it is maximized and the partial derivatives

!1 = m!/mV
!2 = m!/m�
!11 = m2!/mV2

!12 = m2!/m�mV
!22 = m2!/m�2

are used to form the standard errors and correlation coefficient according to

se(�̂) =
√
−!11/(!11!22 − !2

12
)

se( V̂) =
√
−!22/(!11!22 − !2

12
)

corr(�̂, V̂) = !12/
√
!11!22.

Given the maximum likelihood estimates for � and V, the estimates for � and _ are calculated and the

standard errors worked out by the propagation of errors technique, while the half-time C1/2, which is the time

to 50% survival, is calculated numerically using the survivor function with parameters equal to the maximum

likelihood estimates.
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7.4 1-sample GLM survivor function with covariates

The general linear modeling technique (GLM) can be used to analyze survival data when there are covariates.

It should be emphasized that GLM is a very powerful technique, but it must be used with great care as it

requires more understanding from users than most analytical techniques. It defines an error type for the

observations, and assumes that the distribution of mean values is described in a link function which is a linear

combination of covariates. Further, additional model information in the form of data transformation, offsets,

weights, and strata may be required. For this reason SimFIT provides a simplified interface for fitting survival

data which will now be described

From the main SimFIT menu choose [Statistics], [Time series and survival], then [GLM], and study the default

test file cox.tf1 which has data from P. Feigel and M. Zelen Biometrics 21, 826-838 (1965) in the following

format.

covariate G1 covariate G2 covariate G3 observation H time in weeks C indicator B

0.8329 0 0 0 65.00 1

-0.2877 0 0 0 156.0 1

1.4586 0 0 0 100.0 1

0.9555 0 0 0 134.0 1

1.7918 0 0 0 16.00 1

2.3514 0 0 0 108.0 1

2.3026 0 0 0 121.0 1

2.8332 0 0 0 4.000 1

1.6864 0 0 0 39.00 1

1.9459 0 0 0 143.0 1

2.2407 0 0 0 56.00 1

3.4657 0 0 0 26.00 1

3.5553 0 0 0 22.00 1

4.6052 0 0 0 1.000 1

4.6052 0 0 0 1.000 1

3.9512 0 0 0 5.000 1

4.6052 0 0 0 65.00 1

1.4816 1 1.4816 0 56.00 1

1.0986 1 1.0986 0 65.00 1

1.3863 1 1.3863 0 17.00 1

0.4055 1 4.0547 0 7.000 1

2.1972 1 2.1972 0 16.00 1

1.6677 1 1.6677 0 22.00 1

2.3026 1 2.3026 0 3.000 1

2.9444 1 2.9444 0 4.000 1

3.2958 1 3.2958 0 2.000 1

3.3322 1 3.3322 0 3.000 1

3.4340 1 3.4340 0 8.000 1

3.2581 1 3.2581 0 4.000 1

3.0445 1 3.0445 0 3.000 1

4.3694 1 4.3694 0 30.00 1

4.6052 1 4.6052 0 4.000 1

4.6052 1 4.6052 0 43.00 1

The above data format, i.e. the meaning of these six columns of data for this example of GLM survival

analysis with three covariates must be thoroughly understood as will be explained.
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If there are < covariates the first < columns must be the covariates, then column < + 1 must be either 0

(failure) or 1 (right censoring), column < + 2 must be the nonnegative survival time, while column (m + 3)

could be a default value of 1, or the weight for replicates or (in some case) the stratum indicator.

For these data the particular details are as follows.

• Column 1:

covariate G1 = log white blood cell count (in thousands)

• Column 2:

covariate G2 = AG-factor positive or negative (0 or 1)

• Column 3:

covariate G3 (in this special case G3 = G1G2 i.e. column 1 multiplied by column 2)

• Column 4:

observation H (where H = 0 for failure, or H = 1 for censored)

• Column 5:

C = survival time in weeks (C must be > 0)

• Column 6:

B = 1 this should usually be 1. However, it could be interpreted as a weighting factor for replicates,

except for the SimFIT advanced Cox regression procedure when it would be assumed to be the stratum

indicator.

In order to fit survival data using generalized linear models (GLM) by maximum likelihood four components

must be defined.

1. A random variable, say . with mean � (. ) = `, and variance+ (. )

2. A set of covariates G1, G2, . . . , G< recorded at the same time as .

3. A link function 6(.) which is a function of `

4. A linear predictor function of the covariates [ =
∑<
9=1 V 9G8

In addition it is supposed that the relationship between � (. ) and [ is

6(`) = [

and the fit is achieved by an iterative process.

As the GLM technique for fitting survival models is very complicated, requiring careful choices for the

distribution of. and the link function 6(.) as well as the calculation of offsets and use of data transformations,

SimFIT supplies a simplified interface to handle the following four special cases.

• The exponential model

• The Weibull model

• The extreme distribution model

• The Cox model

The following table displays the results from analyzing the same test file cox.tf1 using each of these models

sequentially.
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Model: exponential survival

No. parameters = 4, Rank = 4, No. points = 33, Deg. freedom = 29

Parameter Value Lower95%cl Upper95%cl Std.error ?

�>=BC0=C -5.1498 -6.201 -4.098 0.5142 0.0000

�(1) 0.4818 0.115 0.849 0.1795 0.0119

�(2) 1.8705 0.374 3.367 0.7317 0.0161

�(3) -0.3278 -0.831 0.175 0.2460 0.1931 **

Deviance = 38.55, A = 1

Model: Weibull survival

No. parameters = 4, Rank = 4, No. points = 33, Deg. freedom = 29

Parameter Value Lower95%cl Upper95%cl Std.error ?

�>=BC0=C -5.0405 -6.182 -3.899 0.5580 0.0000

�(1) 0.4761 0.108 0.844 0.1800 0.0131

�(2) 1.8413 0.338 3.344 0.7349 0.0181

�(3) -0.3244 -0.829 0.180 0.2465 0.1985 **

U 0.9777 0.889 1.066 0.0434 0.0000

Deviance = 37.06

Deviance - 2= log[0;?ℎ0] = 38.55

Model: Extreme value survival

No. parameters = 4, Rank = 4, No. points = 33, Deg. freedom = 29

Parameter Value Lower95%cl Upper95%cl Std.error ?

�>=BC0=C -5.2457 -6.502 -3.989 0.6143 0.0000

�(1) 0.9024 0.520 1.284 0.1868 0.0000

�(2) 3.8711 2.272 5.471 0.7821 0.0000

�(3) -0.7195 -1.241 -0.198 0.2549 0.0085

U 0.0344 0.030 0.039 0.0020 0.0000

Deviance = 35.69

Deviance - 2= log[0;?ℎ0] = 258.1

Model: Cox proportional hazards

Deviance = 131.48, Number of time points = 33

Parameter Estimate Score Lower95%cl Upper95%cl Std.error ?

�(1) 0.7325 5.138E-06 0.248 1.217 0.2371 0.0043

�(2) 2.7557 1.886E-06 0.731 4.780 0.9913 0.0093

�(3) -0.5792 5.062E-06 -1.188 0.030 0.2981 0.0615 *

It is very difficult to check goodness of fit when using the simplified GLM procedure in a situation where, as

in this case, the number of covariates is greater than zero, because only a limited number of techniques are

available for checking the deviance residuals as the technique is not simply estimating the parameters of a

theoretical equation for survival as a function of time. The most useful technique is probably to examine the

half-normal residuals plot for apparent linearity. Another indication is the final deviance, and the pattern of

convergence displayed during the iteration to find the minimum deviance. Again, the statistical significance

of the parameter estimates should be taken into account. The ? values reported in the above table refer to a,

approximate two-tailed C test on the ratio of parameter estimate to the corresponding standard error in order

to test the null hypothesis

�0 : The population parameter is not significantly different from zero.

In other words, a ? value less than 0.05 suggests that the parameter estimate could be meaningful, i.e. the

corresponding parameter has been estimated reasonably well and it seems to be significantly different from

zero. However, when ? values exceed 0.05 this is indicated by stars as in the above table, drawing attention

to the fact that the 95% confidence region for that parameter includes zero.
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Theory

Many survival models can be fitted to #D uncensored together with #A right censored survival times with

associated explanatory variables using the GLM technique from SimFIT programs linfit, gcfit in mode 4, or

simstat.

For instance, the SimFIT simplified GLM interface allows you to read in data for the covariates, G, the variable

H which can be either 1 for right-censoring or 0 for failure, together with the times C in order to fit survival

models. With a density 5 (C), survivor function ((C) = 1 − � (C) and hazard function ℎ(C) = 5 (C)/((C) a

proportional hazards model is assumed for C ≥ 0 with

ℎ(C8) = _(C8) exp(
∑
9

V 9G8 9 )

= _(C8) exp(V) G8)

Λ(C) =
∫ C

0

_(D) 3D

5 (C) = _(C) exp(V) G − Λ(C) exp(V) G))
((C) = exp(−Λ(C) exp(V) G)) .

The SimFIT comprehensive GLM procedure allows almost any model to be fitted to survival data, but it

requires that users must understand the numerous choices that have to be made concerning distributions to be

assumed, starting estimates to provide, link functions required, offsets that have to be provided, etc.

For these reasons the SimFIT simplified GLM interface can fit several survival models using the appropriate

choices for error distribution, link function, offset, data transformation, etc. required, as long as data are

provided in the format demonstrated for the SimFIT test file cox.tf1.

The exponential survival model

The exponential model has constant hazard and is particularly easy to fit, since

[ = V) G

5 (C) = exp([ − C exp([))
� (C) = 1 − exp(−C exp([))
_(C) = 1

Λ(C) = C
ℎ(C) = exp([)

and � (C) = exp(−[),

so this simply involves fitting a GLM model with Poisson error type, a log link, and a calculated offset of

log(C).

The selection of a Poisson error type, the log link and the calculation of offsets are all done automatically

by the simplified interface from the data provided, as will be appreciated on fitting the test file cox.tf1. It

should be emphasized that the values for H in the simplified GLM procedure for survival analysis must be

either H = 0 for failure or H = 1 for right censoring, and the actual time for failure C must be supplied paired

with the H values.

Internally, the SimFIT simplified GLM interface reverses the H values to define the Poisson variables and uses

the C values to calculate offsets automatically. Users who wish to use the advanced GLM interface for survival

analysis must be careful to declare the Poisson variables correctly and provide the appropriate offsets as offset

vectors.
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The Weibull survival model

Weibull survival is similarly easy to fit, but is much more versatile than the exponential model on account of

the extra shape parameter U as in the following equations.

5 (C) = UCU−1 exp([ − CU exp([))
� (C) = 1 − exp(−C exp([))
_(C) = UCU−1

Λ(C) = CU

ℎ(C) = UCU−1 exp([)
� (C) = Γ(1 + 1/U) exp(−[/U) .

However, this time, the offset is U log(C), where U has to be estimated iteratively and the covariance matrix

subsequently adjusted to allow for the extra parameter U that has been estimated. The iteration to estimate U

and covariance matrix adjustments are done automatically by the SimFIT simplified GLM interface, and the

deviance is also adjusted by a term −2= log Û.

The extreme value survival model

Extreme value survival is defined by

5 (C) = U exp(UC) exp([ − exp(UC + [))

which is easily fitted, as it is transformed by D = exp(C) into Weibull form, and so can be fitted as a Weibull

model using C instead of log(C) as offset. However it is not so useful as a model since the hazard increases

exponentially and the density is skewed to the left.

The Cox proportional hazards model

This model assumes an arbitrary baseline hazard function _0 (C) so that the hazard function is

ℎ(C) = _0 (C) exp([) .

It should first be noted that Cox regression techniques may often yield slightly different parameter estimates,

as these will often depend on the starting estimates, and also since there are alternative procedures for allowing

for ties in the data. In order to allow for Cox’s exact treatment of ties in the data, i.e., more than one failure or

censoring at each time point, this model is fitted by the SimFIT GLM techniques after first calculating the risk

sets at failure times C8 , that is, the sets of subjects that fail or are censored at time C8 plus those who survive

beyond time C8 . Then the model is fitted using the technique for conditional logistic analysis of stratified data.

The model does not involve calculating an explicit constant as that is subsumed into the arbitrary baseline

function. However, the model can accommodate strata in two ways. With just a few strata, dummy indicator

variables can be defined as in test files cox.tf2 and cox.tf3 but, with large numbers of strata, data should

be prepared as for cox.tf4.

As an example, consider the results shown in the previous table from fitting an exponential, Weibull, then Cox

model to data in the test file cox.tf1. In this case there is little improvement from fitting a Weibull model

after an exponential model, as shown by the deviances and half normal residuals plots. The deviances from

the full models (exponential, Weibull, extreme value) can be compared for goodness of fit, but they can not

be compared directly to the Cox deviance.



332 Survival analysis

7.5 2-sample Mantel-Haenszel log-rank test

The Mantel-Haenszel test and related procedures are used to compare two sets of survival data and to test for

the suitability of the exponential, Weibull, Gompertz, Cox, and extreme value survival models.

From the main SimFIT menu choose [Statistics], [Time series and survival], then [Kaplan-Meier] for two

samples, and study the default test files survive.tf3 and survive.tf4 with data for remission from

Leukemia from Frierich et al, Blood, 21, 699-716, 1963 in the following formats.

survive.tf3: 6-MP data

Time Code Number

6 0 3

6 1 1

7 0 1

9 1 1

10 0 1

10 1 1

11 1 1

13 0 1

16 0 1

17 1 1

19 1 1

20 1 1

22 0 1

23 0 1

25 1 1

32 1 2

34 1 1

35 1 1

survive.tf4:Placebo data

1 0 2

2 0 2

3 0 1

4 0 2

5 0 2

8 0 4

11 0 2

12 0 2

15 0 1

17 0 1

22 0 1

23 0 1

• Column 1: time (not necessarily ordered)

• Column 2: censoring code (0 = failure, 1 = right-censored)

• Column 3: frequency of the observation

Note: The starting sample size will be taken as the sum of all the frequencies in column 3. So subjects

remaining at or after the last failure should be included as right-censored with the appropriate frequency.

The results from the Mantel-Haenszel log-rank test are recorded in the next table.
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For survive.tf3: 9 failures, 12 censored

For survive.tf4: 21 failures, 0 censored

�0 : ℎ�(C) = ℎ� (C) (equal hazards)

�1 : ℎ�(C) = \ℎ� (C) (proportional hazards)

&"� test statistic 16.79

%(j2 ≥ &"�) 0.0000 Reject �0 at 1% significance level

Estimate for \ 0.1915

95% confidence range 0.0828, 0.4429

The conclusion that the two groups differ significantly is reinforced by the next figure showing the Kaplan-

Meier survivor functions, including censored data, from this analysis.
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Also, various graphs can be plotted to explore the form of the estimated hazard function ℎ̂(C) and estimated

cumulative hazard function �̂ (C) for the commonly used models based on the identities

Exponential : � (C) = �C
Weibull : log(� (C)) = log �� + � log C

Gompertz : log(ℎ(C)) = log � + �C
Extreme value : log(� (C)) = U(C − V) .

For instance, �̂ (C) would be linear for the exponential model, for the Weibull distribution a plot of log(− log((̂(C))
against log C should be linear, while the proportional hazards assumption would merely alter the constant term

since, for ℎ(C) = \��(�C)�−1,

log(− log(((C)) = log \ + log �� + � log C.
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Theory

To understand the graphical and statistical tests used to compare two samples, and to appreciate the results

displayed in the previous results table, consider the relationship between the cumulative hazard function � (C)
and the hazard function ℎ(C) defined as follows

ℎ(C) = 5 (C)/((C)

� (C) =
∫ C

0

ℎ(D) 3D

= − log(((C)) .

Testing for the presence of a constant of proportionality in the proportional hazards assumption amounts to

testing the value of \ with respect to unity. If the confidence limits in the results table enclose 1, this can be

taken as suggesting equality of the two hazard functions, and hence equality of the two distributions, since

equal hazards implies equal distributions.

The &"� statistic given in the results table can be used in a chi-square test with one degree of freedom for

equality of distributions, and it arises by considering the 2 by 2 contingency tables at each distinct time point

C 9 of the following type.

Died Survived Total

Group A 3 9 � = 9 � − 3 9 � = 9 �
Group B 3 9� = 9� − 3 9� = 9�
Total 3 9 = 9 − 3 9 = 9

Here the total number at risk = 9 at time C 9 also includes subjects subsequently censored, while the numbers

3 9 � and 3 9� actually dying can be used to estimate expectations and variances such as

� (3 9 �) = = 9 �3 9/= 9

+ (3 9 �) =
3 9 (= 9 − 3 9)= 9 �= 9�

=2
9
(= 9 − 1)

.

Now, using the sums

$� =

∑
3 9 �

�� =

∑
� (3 9 �)

+� =

∑
+ (3 9 �)

as in the Mantel-Haenszel test, the log rank statistic can be calculated as

&"� =
($� − ��)2

+�
.

Clearly, the graphs, the value of \ with 95% confidence range not enclosing 1, and the chi-square test with

one degree of freedom all support the hypothesis that the the assumption of a Weibull distribution with

proportional hazards but not equal hazards cannot be rejected with these data.
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7.6 n-sample Cox regression

Cox regression can be used with data sets containing strata with covariates where it is not convenient to

use a nonparametric method or a fully defined statistical model. Rather it makes the somewhat restrictive

assumption of proportional hazards.

From the main SimFIT menu choose [Statistics], [Time series and survival], then [Cox regression], and study

the default test file cox.tf4 which has three covariates and three strata as shown next.

G1 G2 G3 H C B

0 0 0 1 1.0072 2

1 1 0 0 0.0209 1

0 1 0 0 0.7954 1

1 1 1 0 0.0582 2

0 0 1 1 0.0611 2

1 0 0 0 0.1750 2

1 0 1 0 0.2593 2

0 1 0 0 0.9463 1

0 1 1 1 0.0898 3

1 0 1 0 0.0787 2

0 0 1 0 0.1378 3

0 0 0 1 0.6303 2

1 0 0 1 0.2115 1

1 1 1 1 0.1085 3

0 0 0 1 0.5227 2

0 0 1 0 0.0164 3

1 1 0 0 0.6804 1

0 1 0 0 1.1091 2

0 0 0 0 0.0154 1

1 1 1 0 0.0816 2

1 0 1 0 0.4498 3

0 0 0 1 0.0847 2

1 1 1 0 1.0198 1

1 1 1 0 0.0607 2

0 0 0 0 0.0968 2

1 0 1 1 0.2083 2

0 0 0 1 5.0050 1

0 0 1 0 0.0243 2

1 0 0 1 1.0054 3

1 0 0 1 0.1810 1

0 1 1 1 0.0512 3

0 1 0 1 0.2579 2

1 0 0 1 0.5309 2

0 0 1 0 0.2753 3

0 1 1 0 0.1252 3

1 0 1 0 0.0664 3

0 1 0 1 0.6108 2

0 0 1 0 0.0187 1

0 0 1 0 0.1026 1

1 0 1 0 0.1016 2

0 0 1 0 0.4314 1

Continued on next page
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G1 G2 G3 H C B

1 0 1 0 0.7174 1

0 0 1 1 0.2297 1

1 1 0 1 0.0346 2

0 1 1 1 0.0478 2

0 1 0 0 0.1261 2

0 1 0 1 0.0827 3

1 0 0 0 0.8903 1

0 0 1 0 0.2746 1

1 0 0 1 0.9722 1

Note that Cox regression data files for < covariates must be formatted as follows G1, G2, ..., G<, H, C, B. Here,

for example, with test file cox.tf4 we have the following format.

• column 1, 2, and 3: covariates G1, G2, and G3

• column 4: H = 0 (failure) or H = 1 (right censored)

• column 5: time C

• column 6: strata B

The results table is shown next.

Deviance = 109.25, Number of time points = 50

�(8) Estimate Score Lower95%cl Upper95%cl Std.error ?

1 -0.4893 8.156E-05 -1.423 0.445 0.464 0.2973 ***

2 0.1609 -2.865E-05 -0.724 1.046 0.440 0.7162 ***

3 1.5749 2.992E-04 0.562 2.588 0.504 0.0030

Before proceeding to demonstrate further features of the SimFIT Cox regression procedure it is necessary

to caution about the fact that analyzing the same data using different software packages may give differing

results. This is inevitable with all nonlinear iterative methods and is because of several factors.

1. The Cox regression procedure does not completely specify a unique statistical model.

2. The solution point found is not unique but will depend on the method used and the starting values used.

3. The results obtained will depend on the technique used to deal with ties.

4. It is fairly common to find that some of the parameters are not well defined, i.e. not statistically different

from zero as shown by stars in the last column.

5. The scores are derived from the partial derivatives estimated at the solution point so any values much

less than about 10−6 can be regarded as effectively undefined due to rounding errors.

Probably the easiest way to check the goodness of fit is to inspect the half-normal residuals plot, while to

compare strata the collected survivor function estimates should be viewed. These two plots for the current

analysis are shown next.
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Theory

It should be pointed out that parameter estimates using the comprehensive Cox procedure may be slightly

different from parameter estimates obtained by the GLM procedure if there are ties in the data, as the Breslow

approximation for ties may sometimes be used by the comprehensive procedure, unlike the Cox exact method

which is employed by the GLM procedures.

Another advantage of the comprehensive procedure is that experienced users can input a vector of offsets, as

the assumed model is actually

_(C, G) = _0 (C) exp(V) G + l)

for parameters V, covariates G and offset l.

Then the maximum likelihood estimates for V are obtained by maximizing the Kalbfleisch and Prentice

approximate marginal likelihood

! =

=3∏
8=1

exp(V) B8 + l8)
[∑;∈' (C(8) ) exp(V) G; + l;)]38

where, =3 is the number of distinct failure times, B8 is the sum of the covariates of individuals observed to fail

at C (8) , and '(C (8) ) is the set of individuals at risk just prior to C (8) .

In the case of multiple strata, the likelihood function is taken to be the product of such expressions, one for

each stratum. For example, with a strata, the marginal likelihood will be

! =

a∏
:=1

!: .

Once parameters have been estimated the survivor function exp(−�̂(C (8) ) and residuals A (C;) are then calculated

using

�̂(C (8) ) =
∑
C 9≤C8

(
3 9∑

;∈' (C( 9) ) exp( V̂) G; + l;)

)

A (C;) =�̂ (C;) exp( V̂) G; + l;),

where there are 3 9 failures at C 9 .

Note that the deviance is minus twice the log of marginal likelihood and the significance of nested models

with different parameters contributing can be assessed by chi-square tests, as an alternative to the two-tailed

C test given in the results table. Also, stratum differences (i.e. differences between groups) can be examined

using the log-ranks test.
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8 Curve and surface fitting

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

8.1 Introduction

Curve and surface fitting aims to fit mathematical models described by equations or systems of equations to

observations in order to estimate parameters that can be used to interpret the experimental data.

An example to illustrate the advantages of curve fitting

As a typical example consider the results from using SimFIT program hlfit to fit the dose response data in test

file hlfit.tf4 to one then two binding sites, where the aim is to decide if the assumption of two sites can be

justified on statistical grounds and, if so, to estimate the parameters for the model

5 (G) = �1G

1 +  01G
+ �2G

1 +  02G
+ �

but with� = 0. hlfit displays the following plots to illustrate that fitting two sites gives significant improvement

over fitting one site, and hlfit also provides convincing evidence of this by showing how the overall fit results

as the sum of the distinct contributions from the low and high affinity sites.
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Not only does the evidence support the hypothesis that there are two classes of binding sites of differing

affinity and activity, but this is substantiated by the following results table for estimated parameters, their

standard errors, 95% confidence ranges, and significance levels.

Number Parameter Value Std.error Lower95%cl Upper95%cl p

1 �1 0.91175 0.2451 0.4079 1.416 0.0010

2 �2 1.0625 0.3055 0.4344 1.691 0.0018

3  01 0.97501 0.6857 -0.4345 2.385 0.1669 *

4  02 8.5829 2.004 4.463 12.70 0.0002

Apparent +<0G (i.e. �1 + �2 + · · · + �=) = 1.9742

Apparent  < (i.e. G0 where 5 (G0) − � = +<0G/2) = 0.31272

Here parameters �1 and �2 are proportional to the responses from two populations of binding sites with

binding constants  01 and  02, and the apparent overall response and half saturation point are calculated by

numerical techniques, which removes the subjective element involved in data interpretation. A brief survey

of the nomenclature used and procedures provided by SimFIT follows.
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The Data

In the simplest case an experimentalist would have # pairs of observations G(8), H(8), possibly together with

B(8), the estimated standard deviations of H(8) to use as weights F(8) = 1/B(8)2, as follows

- = G(1), G(2), G(3), . . . , G(#)
. = H(1), H(2), G(3), . . . , H(#)
( = B(1), B(2), B(3), . . . , B(#)

and there could be three possibilities.

1. Case 1

Values of G(8) are known with high accuracy, as fixed by experiment, and the error distribution of H(8)
is assumed to be one of constant variance. In this case it is usual to set all B(8) = 1.

2. Case 2

Values of G(8) are known with high accuracy, as fixed by experiment, and the error distribution of H(8)
is assumed to vary as a function of the experimental conditions, so values for B(8) are required.

3. Case 3

Values of G(8) and H(8) would both be measured, i.e. there could be error or variation in - and . .

Of course there are endless variations on this simple scheme, for instance, - and/or . could be multidimen-

sional, and the model might have to be defined as an implicit function, Φ(G, H) = 0, or require numerical

integration of a system of nonlinear differential equations.

The weighting

It is important to realize that all curve fitting is actually weighted curve fitting. The only issue is whether the

weighting is assumed to have a defined form, to be estimated from the sample, or to be estimated independently.

• Case 1

This is the simplest and most used technique because it assumes that - is an independent variable and

. values result from a random error n with constant variance added to an exact function value, i.e.

H(8) = 5 (G(8)) + n (8) .

With this approach no separate attempt is made to estimate the variance of . as the sample variance of

. is used. It has the great attraction of simplicity but there are two things to observe:

a) This assumption is almost never true as, in general, error variance is an increasing function |. |.
b) It diminishes the importance of low |. | values so that the resulting fit is dominated by large |. | values.

• Case 2

This is more realistic in that it accepts that the variance of . is not constant and attempts to remedy

this by providing or calculating a set of weighting factors B(8). However, if the B(8) are inaccurate, the

resulting fit can be even more biased than with Case 1. In particular, using a weighting scheme based

simply on the experimental. values or the estimated function values can lead to a situation the reverse

of Case 1, where the fit can be dominated by small values of the observations.

• Case 3

This requires that the variance-covariance matrix �+ (-,. ) be estimated, and sample estimates for

variance-covariance matrices are notoriously unreliable. For this reason this approach is often reserved

for the analysis of very large samples with very simple model equations, together with prior knowledge

of the covariance structure.

The model
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The model to be fitted will involve parameters that have to be estimated, e.g. a parameter vector Θ as in

Θ = \1, \2, \3, . . . , \<

and models are usually described as linear or nonlinear.

Linear models

Linear models are of the form 5 (Θ, G) = \1 51(G) + \2 52(G) + \3 53 (G) + · · · + \< 5<(G) and examples could be

A simple straight line: 5 (\, G) = \1 + \2G

A multilinear model: 5 (Θ, G) = \1G1 + \2G2 + \3G · · · + \<G<
A polynomial: 5 (Θ, G) = \1 + \2G + \3G

2 + · · · + \<G<−1.

These all have partial derivatives of 5 (Θ, G) with respect to \8 that are independent of Θ.

The advantage of linear models is that they can be fitted very easily and usually lead to unique solutions.

Another advantage is that the assumption of normally distributed errors zero means and constant variance

allows the application of convenient statistical tests for goodness of fit and parameter significance based on

the j2, C, and � distributions. The disadvantage is that the real world is nonlinear and linear models are not

based on scientific laws but are used for convenience when a meaningful mathematical model is not available.

Nonlinear models

Nonlinear models do not have have partial derivatives of 5 (Θ, G) with respect to \8 that are independent of Θ.

Examples could be the following.

Michaelis-Menten functions: 5 (Θ, G) = \1G

\2 + G
+ \3G

\4 + G
+ · · · + \<−1G

\< + G
Exponential functions: 5 (Θ, G) = \1 exp(−\2G) + \3 exp(−\4G) + · · · + \<−1 exp(−\<G)

Rational functions: 5 (Θ, G) =
\1G + \2G

2 + · · · + \</2G
</2

1 + \</2+1G + \</2+2G
2 + · · · + \<G</2 .

The advantage of using nonlinear models is that they may be a good approximation to reality based on scientific

laws. The disadvantage is that they have to be fitted by iterative techniques which depend critically on sensible

scaling, good starting estimates, and meaningful limits on parameter values. Because of this, local rather than

global solutions may be located.

However it is well to remember a distinct limitation of nonlinear regression: all the numerical techniques used

to fit the models, and all the statistical methods used to interpret the results, are based on the assumptions

that the model can be regarded as approximately linear at a solution point, and that the weighting factors are

known exactly.

The objective function

This will usually be,((&, the weighted sum of squared residuals defined as

,((& =

#∑
8=1

F(8) [H(8) − 5 (Θ, G(8)]2,

and the hope is that minimizing this expression with respect to parameters Θ will be equivalent to finding the

maximum likelihood estimates.
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Options

The SimFIT package provides many options to prepare data, define models, fit data, and test for model

discrimination, goodness of fit, and parameter redundancy as briefly summarized below.

• Programs for linear models

Simple linear models can be fitted by program linfit which also provides techniques for orthogonal

regression, generalized linear models (GLM), and partial least squares (PLS). Polynomials can be fitted

by program polnom, which also allows inverse prediction, i.e. generating calibration curves. Several

varieties of cubic splines can be fitted by program spline, and used to compare curves by compare,

while program calcurve is dedicated to using splines to construct calibration curves followed by inverse

prediction of G given H.

• Programs for simple nonlinear regression

The following programs attempt to guess starting estimates then fit models and output tables of statistical

results and graphs.

– mmfit fits Michaelis-Menten models.

– hlfit fits high and low affinity binding site models.

– sffit fits cooperative ligand binding isotherms.

– rffit fits positive rational functions.

– exfit fits several types of exponentials functions.

– gcfit fits classical nonlinear growth models.

• Advanced nonlinear regression

Program qnfit provides the following facilities but, as it is extremely comprehensive, it requires con-

siderable expertise and should only be used by experienced analysis.

– Models can be functions of one or several independent variables.

– Multiple linked or independent models can be fitted simultaneously.

– Parameters can be constrained interactively within user-defined limits.

– Three dimensional plots and contours of the objective function can be plotted at solution points.

– The best fit models can be used for evaluation or inverse prediction.

– Models can be used from a built-in library or supplied as text files.

– Single nonlinear differential equations can be fitted.

– Models defined as convolutions of two defined functions can be fitted.

• Differential equations

Program deqsol allows the simulation and fitting of systems of nonlinear differential equations but, like

qnfit, it should only be used by experts.

• Simulation

An essential technique required for advanced curve fitting is the ability to simulate exact data using

program makdat then add random error to simulate reality using program adderr. SimFIT also

provides numerous additional facilities to confirm the robustness of results from regression with respect

to sensitivity of the results to perturbations of parameter values, change in the range of variables, nature

of the error, etc.



344 Curve and surface fitting

How to interpret tables of parameter estimates

The meaning of the results generated by program exfit after fitting two exponentials to exfit.tf4 will now be

explained, as a similar type of analysis is generated by all the user-friendly curve fitting programs. Consider,

first of all the next table listing parameter estimates which result from fitting the two exponential function

5 (C) = �1 exp(−:1C) + �2 exp(−:2C) .

Parameter Value Std.error Lower95%cl Upper95%cl p

�1 0.8526 0.0677 0.713 0.992 0.0000

�2 1.1764 0.0747 1.023 1.330 0.0000

:1 6.7933 0.8541 5.038 8.549 0.0000

:2 1.1121 0.0511 1.007 1.217 0.0000

�*� 1.1834 0.0147 1.153 1.214 0.0000

�*� is the area under the curve from C = 0 to C = ∞
Initial time point (�) = 0.03598

Final time point (�) = 1.611

Area from C = � to C = � = 0.9383

Average over range (�, �) = 0.5958

The first column gives the estimated values for the parameters, i.e., the amplitudes �8 and decay constants

:8 , although it must be appreciated that the pairwise order of these is arbitrary. Actually program exfit will

always try to rearrange the output so that the amplitudes are in increasing order, and a similar rearrangement

will also occur with programs mmfit and hlfit. For situations where �8 > 0 and :8 > 0, the area from zero to

infinity, i.e. the �*�, can be estimated, as can the area under the data range and the average function value

calculated from it. The parameter �*� is not estimated directly from the data, but is a secondary parameter

estimated algebraically from the primary parameters. The standard errors of the primary parameters are

obtained from the inverse of the estimated Hessian matrix at the solution point, but the standard error of

the �*� is estimated from the partial derivatives of �*� with respect to the primary parameters, along

with the estimated variance-covariance matrix. The 95% confidence limits are calculated from the parameter

estimates and the C distribution, while the ? values are the two-tail probabilities for the estimates, i.e., the

probabilities that parameters as extreme or more extreme than the estimated ones could have resulted if the true

parameter values were zero. The windows defined by the confidence limits are useful for a quick rule of thumb

comparison with windows from fitting the same model to another data set; if the windows are disjoint then the

corresponding parameters differ significantly, although there are more meaningful tests. Clearly, parameters

with ? < 0.05 are well defined, while parameters with ? > 0.05 must be regarded as ill-determined.

Expert users may sometimes need the estimated correlation matrix

�8 9 =
�+8, 9√
�+88�+ 9 9

,

where −1 ≤ �8 9 ≤ 1, �88 = 1, which is shown in the next table, and where the index 8 refers to the natural

order of parameters, that is 8 = 1, 2, 3, 4 corresponds to �1, :1, �2, :2.

Parameter correlation matrix

1

-0.8756 1

-0.5961 0.8995 1

-0.8478 0.9485 0.8199 1
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How to interpret tables for goodness of fit

The next table, displaying the results from analyzing the residuals after fitting two exponentials to exfit.tf4,

is typical of many SimFIT programs. Residuals tables should always be consulted when assessing goodness

of fit.

Analysis of residuals: ,((& 24.397

%(j2 ≥ ,((&) 0.5533

'2, 22(theory,data)2 0.9934

Largest absolute relative residual 11.99%

Smallest absolute relative residual 0.52%

Average absolute relative residual 3.87%

Absolute relative residuals in range 0.1–0.2 3.33%

Absolute relative residuals in range 0.2–0.4 0.00%

Absolute relative residuals in range 0.4–0.8 0.00%

Absolute relative residuals > 0.8 0.00%

Number of negative residuals (=1) 15

Number of positive residuals (=2) 15

Number of runs observed (A) 16

%(runs ≤ A: given =1 and =2) 0.5759

5% lower tail point 11

1% lower tail point 9

%(runs ≤ A : given =1 plus =2) 0.6445

%(signs ≤ least number observed) 1.000

Durbin-Watson test statistic 1.8061

Shapiro-Wilks, statistic 0.9387

Significance level of , 0.0841

Akaike AIC (Schwarz SC) statistics 1.7979 (7.4027)

Verdict on goodness of fit: incredible

Several points should be remembered when assessing such residuals tables, where there are # observations

H(8), with weighting factors B(8), theoretical values 5 (G(8)), residuals A (8) = H(8)− 5 (G(8)), weighted residuals

A (8)/B(8), and where < parameters have been estimated. Theoretical details for the statistical tests will be

found in the SimFIT reference manual w_manual.pdf, or the appropriate tutorial documents.

• ,((&

The j2 test on # − < degrees of freedom using ,((&, the objective function at the solution point

where

,((& =

#∑
8=1

(
H(8) − 5 (G8)

B(8)

)2

,

is only meaningful if the weights defined by the B(8) supplied for fitting are good estimates of the

standard deviations of the observations at that level of the independent variable; say means of at least

five replicates. Inappropriate weighting factors will result in a biased chi-square test. Also, if all the

B(8) are set equal to 1, unweighted regression will be performed and an alternative analysis test based

on the coefficient of variation will be performed.

• '2

The '2 value is the square of the correlation coefficient between data and best fit points. It only

represents a meaningful estimate of that proportion of the fit explained by the regression for simple

unweighted linear models, and should be interpreted with restraint when nonlinear models have been

fitted.

• Absolute relative residuals
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The results based on the absolute relative residuals 0(8) defined using machine precision n as

08 =
2|A (8) |

max(n, |H(8) | + | 5 (G(8)) |)

do not have statistical relevance, but they do have obvious empirical justification, and they must be

interpreted with commonsense, especially where the data and/or theoretical values are very small.

• Run and sign tests

The probability of the number of runs observed given =1 negative and =2 positive residuals is a very

useful test for randomly distributed runs, but the probability of runs given # = =1 + =2, and also the

overall sign test are weak, except for very large data sets.

• Durbin-Watson test

The Durbin-Watson test statistic

�, =

#−1∑
8=1

(A (8 + 1) − A (8)2

#∑
8=1

A (8)2

is useful for detecting serially correlated residuals, which could indicate correlated data or an inappro-

priate model. The expected value is 2.0, and values less than 1.5 suggest positive correlation, while

values greater than 2.5 suggest negative serial correlation.

• Shapiro-Wilks test

Where # , the number of data points, significantly exceeds <, the number of parameters estimated,

the weighted residuals are approximately normally distributed, and so the Shapiro-Wilks test should be

taken seriously.

• Akaike and Schwarz criteria

The Akaike ��� statistic

��� = # log(,((&/#) + 2<

and Schwarz Bayesian criterion (�

(� = # log(,((&/#) + < log#

are only really meaningful if minimizing ,((& is equivalent to Maximum Likelihood Estimation.

Note that only differences between ��� with the same data, i.e. fixed # , are relevant, as in the evidence

ratio �', defined as �' = exp[(��� (1) − ��� (2))/2].

• The qualitative conclusion

The final verdict is calculated from an empirical look-up table, where the position in the table is

a weighted mean of scores allocated for each of the tests listed above. It is qualitative and rather

conservative, and has no precise statistical relevance, but a good result will usually indicate a well-

fitting model.

• Residuals plots

As an additional measure, plots of residuals against theory, and half-normal residuals plots can be

displayed after such residuals analysis, and they should always be inspected before concluding that any

model fits satisfactorily.

• Leverages

With linear models, SimFIT also calculates studentized residuals and leverages, while with generalized

linear models, deviance residuals can be tabulated.
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How to interpret tables for model discrimination results

After a sequence of models have been fitted, tables like the next one are generated.

,((&-previous 224.9

,((&-current 24.4

Number of parameters-previous 2

Number of parameters-current 4

Number of G-values 30

Akaike ���-previous 64.44

Akaike ���-current 1.798, �' = 3.998� + 13

Schwarz (�-previous 67.24

Schwarz (�-current 7.403

Mallows �? 213.7, �?/<1 = 106.9

Numerator degrees of freedom 2

Denominator degrees of freedom 26

� test statistic (�() 106.9

%(� ≥ �() 0.0000

%(� ≤ �() 1.0000

5% upper tail point 3.369

1% upper tail point 5.526

Conclusion based on the � test

Reject the previous model at 1% significance level

There is strong support for the extra parameters

Tentatively accept the current best fit model

First of all, note that the above model discrimination analysis is only strictly applicable for nested linear

models with known error structure, and should be interpreted with restraint otherwise. Now, if,((&1 with

<1 parameters is the previous (possibly deficient) model, while ,((&2 with <2 parameters is the current

(possibly superior) model, so that,((&1 > ,((&2, and <1 < <2, then

� =
(,((&1 −,((&2)/(<2 − <1)

,((&2/(# − <2)

should be � distributed with <2 − <1 and # − <2 degrees of freedom, and the � test for excess variance can

be used. Alternatively, if ,((&2/(# − <2) is equivalent to the true variance, i.e., model 2 is equivalent to

the true model, the Mallows �? statistic

�? =
,((&1

,((&2/(# − <2)
− (# − 2<1)

can be considered. This has expectation <1 if the previous model is sufficient, so values greater than <1, that

is �?/<1 > 1, indicate that the current model should be preferred over the previous one. However, graphical

deconvolution should always be done wherever possible, as with sums of exponentials, Michaelis-Mentens,

High-Low affinity sites, sums of Gaussians or trigonometric functions, etc., before concluding that a higher

order model is justified on statistical grounds.
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8.2 Goodness of fit

Goodness of fit analysis is always required before a model can be considered to be satisfactory, otherwise

using parameter estimates to characterize experimental observations can lead to false interpretation.

As an example consider the use of program gcfit to fit nonlinear growth models to data in the test file

gcfit.tf2 as shown in the next figure. A typical situation would be when an experimentalist would want to

fit growth curves to data with the main aim being to estimate parameters like the maximum growth rate, the

time at which this was achieved, and the final size attained in order to characterize a group under observation,

say bacterial colonies of several species incubated with alternative antibiotics.
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The models fitted were Model 1 (exponential), Model 2 (monomolecular) and Model 3 (logistic) as follows.

Model 1: 51(C) = �1 exp(:1C)
Model 2: 52(C) = �2 (1 − exp(−:2C))

Model 3: 53(C) =
�3

1 + � exp(−:3C)

It is perfectly clear in this case that Model 1 is completely unsatisfactory, Model 2 would give a rough estimate

for the final asymptotic size, while Model 3 would accurately fit all features of the data set. The aim of this

document is to show how SimFIT could be used to make a decision in situations where the outcome is not so

clear cut.

SimFIT program gcfit also displays the following summary.
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Model ,((&/#�$� %(� ≥ ,) %(Runs ≤ A) # > 10% # > 40% �E.A% Verdict

1 1.52E+02 0.000 0.000 29 17 40.03 Very bad

2 1.81E+01 0.000 0.075 20 0 12.05 Very poor

3 1.32E+00 0.113 0.500 0 0 3.83 Incredible

The way to interpret this goodness of fit summary table will now explained, but it must always be remembered

that the only situations where statistical tests are justified, and when minimizing ,((& is equivalent to

maxmimum likelihood, are when the following four conditions are met.

1. The values G(8) must be known exactly, and not subject to errors of estimation or natural variation. In

other words, - can be regarded as an independent variable and not a covariate.

2. The error of measurement n (8) must be normally distributed with mean zero.

3. The variance of n (8) has one of two forms.

(a) The homoscedastic case where weighting factors B(8) are all equal to one and ,((&/#�$�
estimates the constant variance.

(b) The heteroscedastic case where the variance of n (8) is a function of - and/or. and exact values for

the standard deviation of the n (8) are supplied as B(8). In other words, values of B(8) are supplied

to reduce this case to the homoscedastic case with error variance = 1.

4. The model is correct and linear.

As experimental errors are more like a Cauchy distribution than a normal distribution, variance of the

experimental error is usually an increasing function of the absolute value of the observations, values of B(8)
supplied are at best only determined with limited precision from independent studies or at worst are determined

from replicates, and the model is nonlinear and often only an approximation anyway, such results tables must

be interpreted with restraint.

• ,((&/#�$�
This is the objective function estimated by SimFIT and ,((&/#�$� should be approximately one

at the solution point, as the expectation of a chi-square variable is the number of degrees of freedom.

• %(� ≥ ,)
This is the very approximate result of a performing a j2 test on the weighted sum of squared residuals.

An alternative test is usually done by SimFIT based on the estimated coefficient of variation here and

for the previous result when all B(8) = 1.

• %('D=B ≤ A)
This is the probability of runs less than the number obtained, given the number of negative and positive

residuals.

• # > 10%

This is the number of data points where the ratio of absolute residual to absolute value of observation

exceeds 0.1.

• # > 40%

This is the number of data points where the ratio of absolute residual to absolute value of observation

exceeds 0.4.

• �E.A%

This is the average of absolute residual divided by absolute observation as a percentage.

• Verdict

This is a somewhat arbitrary decision based on a formula involving all of these, and also some other

factors.
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Analysis of residuals

Analysis of residuals and/or weighted residuals is a very important way to judge goodness of fit, especially

when there is only one independent variable, and SimFIT provides numerous ways to do this as follows.

1. Tables of residuals

These highlight residuals which indicate poor fit by colour changes and stars.

2. Tables summarizing goodness of fit based on residuals

3. Test for runs and serial correlations

These rely on the residuals being in a systematic order, such as in order of the independent variable.

4. Test for a normal distribution

Residuals cannot be normally distributed due to correlations induced by parameter estimation, nev-

ertheless the Shapiro-Wilks test is quiet robust when the number of observations greatly exceeds the

number of parameters estimated.

5. Methods for plotting residuals

(a) Residuals plotted against the independent variable

(b) Residuals plotted against the observations

(c) Residuals plotted against the best-fit model

(d) Normal and half-normal plots

Probably option (a) is the easiest to interpret and residuals have to deviate wildly from normality

before option (d) picks this up. Unfortunately this is the only option available when there are multiple

independent variables.

Residuals and/or weighted residuals should be scattered randomly about zero, and the next plot shows very

clearly that with Model 1 there is a systematic nonlinear drift which is much less with model 2, while model

3 shows a much more acceptable pattern
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A plot of the = ordered residuals or weighted residuals as. against normal order statistic medians as - should

be very close to linearity, since residuals should be approximately normally distributed when the number of

points is much greater than the number of parameters estimated. The medians are approximated using

G8 = Φ
−1(I8) where I8 = (8 − 3/8)/(= + 1/4) for 8 = 1, 2, · · · , =.

Here Φ−1 is the inverse standard normal distribution function. It is also possible to create a half-normal plot

where . are the ordered absolute residuals, and - values are calculated by a similar approximation but using

I8 = (= + 0.5 + 8)/(2= + 9/8) to allow for the wrapping round of the negative residuals. If correctly weighted

residuals are plotted, as in the next figure for the fitted logistic model, the . values should be in the range -3

to 3 for the normal plot, but 0 to 3 for the half normal plot.
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Best-fit lines for the regression of . on - are also plotted on these graphs along with the Pearson product-

moment correlation coefficient A. The significance level ? for the A will also be displayed when ? < 0.05, but

this only happens when the residuals show clear departure from linearity in these plots.
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Testing for differences between two parameter estimates

This can sometimes be a useful simple procedure when you wish to compare two parameters resulting from

a regression, e.g., the final size from fitting a growth curve model, or perhaps two parameters that have been

derived from regression parameters e.g., AUC from fitting an exponential model, or LD50 from bioassay.

You input the two parameter estimates \ and q, the standard error estimates B\ and Bq , the number of

experimental observations #\ and #q , and the number of parameters estimated from the regression "\ and

"q . A C test for equality is then performed with the correction for unequal variances by the the Satterthwaite

procedure, using a C2 statistic with a degrees of freedom calculated with the Welch correction for unequal

variances given by

C2 =
\ − q√
B2
\
+ B2

q

a =
(B2
\
+ B2q)2

B4
\
/(#\ − "\ ) + B4q/(#q − "q)

.

Here \ and q refer to the same parameter using the same mathematical model but estimated from two distinct

data sets of sizes #\ and #q .

Such C tests depend on the asymptotic normality of maximum likelihood parameters, and will only be

meaningful if the data set is fairly large and the best fit model adequately represents the data.

Note that C tests on parameter estimates can be especially unreliable because they ignore non-zero covariances

in the estimated parameter variance-covariance matrix.

Testing for differences between several parameter estimates

To take some account of the effect of significant off-diagonal terms in the estimated parameter variance-

covariance matrix you will need to calculate a Mahalanobis distance between parameter estimates e.g., to test

if two or more curve fits using the same model but with different data sets support the presence of significant

treatment effects. For instance, after fitting the logistic equation to growth data by nonlinear regression, you

may wish to see if the growth rates, final asymptotic size, half-time, etc. have been affected by the treatment.

Note that, after every curve fit, you can select an option to add the current parameters and covariance matrix

to your parameter covariance matrix project archive, and also you have the opportunity to select previous fits

to compare with the current fit. For instance, you may wish to compare two fits with < parameters, � in the

first set with estimated covariance matrix �� and � in the second set with estimated covariance matrix ��.

The parameter comparison procedure will then perform a C test for each pair of parameters, and also calculate

the quadratic form

& = (� − �)) (�� + ��)−1(� − �)

which has an approximate chi-square distribution with < degrees of freedom. You should realize that the rule

of thumb test using non-overlapping confidence regions is more conservative than the above C test: parameters

can still be significantly different despite a small overlap of confidence windows.

This technique must be used with care when the models fitted are themselves sums of : identical sub-functions

such as

5 (ΘG) = 51(Θ, G) + 52 (Θ, G) + · · · + 5: (Θ, G) .

Examples of where this can occur could be sums of exponentials, Michaelis-Menten terms, High-Low affinity

site binding isotherms, Gaussians, trigonometric terms, and so on. This is because the parameters are only

unique up to a permutation.
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For instance, the terms �8 and :8 are linked in the exponential function

5 (C) =
<∑
8=1

�8 exp(−:8 C)

but the order implied by the index 8 is arbitrary. So, when testing if �1 from fitting a data set is the same as

�1 from fitting another data set it is imperative to compare the same terms.

The user friendly programs exfit, mmfit, and hlfit attempt to assist this testing procedure by rearranging the

results into increasing order of amplitudes �8 but, to be sure, it is best to use qnfit, where starting estimates and

parameter constraints can be used from a parameter limits file. That way there is a better chance that parameters

and covariance matrices saved to project archives for retrospective testing for equality of parameters will be

consistent, i.e. the parameters will be compared in the correct order.

The next figure illustrates a common problem, where the same model has been fitted to alternative data sets

and it is wished to decide if one or more parameters differ significantly.
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In this case, the logistic model defined as

5 (C) = \1

1 + \2 exp(−\3C)

was simulated using makdat and adderr then fitted by gcfit, and the main interest is to decide if the estimated

final asymptote i.e. \̂1 differs significantly for the test files gcfit.tf2 and gcfit.tf3 which actually have

identical parameters \1 = 1, while gcfit.tf4 has a slightly larger asymptotic value \1 = 1.25, the other

parameters being identical \2 = 10 and \3 = 1.
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The next table illustrates how this technique works.

Table of Mahalanobis j2, and corrected pairwise C tests for

differences between parameters(�, �) and covariances(�0,�1).

Comparison 1: Parameters from gcfit.tf3 (�) and gcfit.tf2 (�)
& = (� − �)) (�0 + �1)−1(� − �) = 2.193� + 00, #�$� = 3

%(j2 ≥ &) = 0.5333

Index A B A - B t DOF p

1 0.996 0.999 -0.0033 -2.567E-01 53 0.7984

2 10.15 9.890 0.2600 7.224E-01 40 0.4743

3 0.985 0.988 -0.0033 -1.164E-02 37 0.9908

Comparison 2: Parameters from gcfit.tf4 (A) and gcffit.tf2 (B)

& = (� − �)) (�0 + �1)−1(� − �) = 7.492� + 02, #�$� = 3

%(j2 ≥ &) = 0.0000: Reject �0 at 1% significance level

Index A B A - B t DOF p

1 1.224 0.999 0.2251 19.17 57 0.0000 *****

2 10.04 9.890 0.1500 0.382 50 0.7038

3 0.969 0.988 -0.0191 -0.063 46 0.9501

Comparison 3: Parameters from gcfit.tf4 (A) and gcfit.tf3 (B)

& = (� − �)) (�0 + �1)−1(� − �) = 1.064� + 03, #�$� = 3

%(j2 ≥ &) = 0.0000: Reject �0 at 1% significance level

Index A B A - B t DOF p

1 1.224 0.996 0.2284 16.21 59 0.0000 *****

2 10.04 10.15 -0.1100 -0.443 52 0.6596

3 0.969 0.985 -0.0158 -0.093 52 0.9265

The data were fitted using gcfit using the option to store parameter estimates and covariance matrices. Then

the global tests for different parameter sets, and C tests for individual parameter differences were performed,

leading to the results indicated.

Clearly the parameter estimates for test files gcfit.tf2 and gcfit.tf3 indicate no significant differences,

while gcfit.tf4 differed significantly from both of these, due to a larger value for the asymptote \1 for

gcfit.tf4.

Graphical deconvolution

There are occasions when a model to be fitted consists of a sum of sub-functions and it is wished to estimate

the contribution of the sub-functions to the overall regression. In some instances it may be possible to plot

the overall function fitted to the data along with plots for the sub-functions.

This is particularly valuable with models such as the sum of Gaussians, which for three components is

5 (G) = �1√
2f1

exp−1

2

(
G − `1

f1

)2

+ �2√
2f2

exp−1

2

(
G − `2

f2

)2

+ �3√
2f3

exp−1

2

(
G − `3

f3

)2

.

This model is notoriously difficult to fit unless the amplitudes �8 and variances f2
8 are of similar size, but

the means `8 are distinct. However it is one of several models where the ability to do such plotting, which is

loosely referred to as graphical deconvolution in SimFIT, is provided.
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Using SimFIT program qnfit to analyze the data in test file gauss3.tf1 leads to the following table of

parameter estimates for parameters defined in terms of Θ as

5 (G) = \1√
2\7

exp−1

2

(
G − \4

\7

)2

+ \2√
2\8

exp−1

2

(
G − \5

\8

)2

+ \3√
2\9

exp−1

2

(
G − \6

\9

)2

.

The columns indicate: the parameter number, the lowest value allowed for the parameter, the highest value

allowed for the parameter, the value of the parameter estimate, the standard error of the parameter estimate,

the lower 95% confidence limit for the estimate, the upper 95% confidence limit for the estimate, and the

significance level for the estimate. The small ? values and absence of stars after the last column in the next

table of results indicates that all 9 parameters were well determined.

Number Low-Limit High-Limit Value Std. Error Lower95%cl Upper95%cl ?

1 0.000 2.000 0.90754 0.021624 0.8648 0.9503 0.0000

2 0.000 2.000 1.16433 0.042173 1.0810 1.2477 0.0000

3 0.000 2.000 0.92519 0.030130 0.8656 0.9848 0.0000

4 -2.000 2.000 -0.07298 0.015572 -0.1038 -0.0422 0.0000

5 2.000 6.000 3.74510 0.050816 3.6446 3.8456 0.0000

6 8.000 12.00 10.2774 0.096413 10.087 10.468 0.0000

7 0.100 2.000 0.92641 0.014331 0.8981 0.9547 0.0000

8 1.000 3.000 2.34330 0.070567 2.2038 2.4828 0.0000

9 2.000 4.000 2.76906 0.062637 2.6452 2.8929 0.0000

This conclusion is reinforced by the next graphical deconvolution plot showing the data as dots, the best-fit

curve as a dotted line, and the components contributing to the best-fit curve as red, green, and blue curves.
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8.3 Linear regression

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

8.3.1 Fitting a straight line: simple

Simple least squares linear regression is used when there are two variables, - which is known accurately

and can be regarded as an independent variable, and . which is a linear function of - except that there is

measurement error or random variation which is normally distributed with zero mean and constant variance.

From the SimFIT main menu choose [A/Z], open program linfit, choose simple linear regression and inspect

the default test file g02caf.tf1 which has the following data.

G H

0.0 10.0

0.0 15.5

1.0 20.0

2.5 24.5

4.0 28.3

5.0 31.2

7.5 45.0

10.0 99.0

Analysis yields the following results table and plot for the least squares best-fit straight line.

Parameter Value Std. Error Lower95%cl Upper95%cl ?

constant (2) 7.5982 6.6858 -8.7613 23.958 0.2991 **

slope (<) 7.0905 1.3224 3.8548 10.326 0.0017

(A2
= 0.8273, A = 0.9096, ? = 0.0017)
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The way to interpret this table is as follows.

Column 1 This indicates that the equation fitted is H = <G + 2.

Column 2 Values for the estimated parameters (<̂ and 2̂).

Column 3 The standard errors for the parameter estimates (B̂4< and B̂42).

Column 4 The lower 95% confidence limit for the true parameters.

Column 5 The upper 95% confidence limit for the true parameters.

Column 6 The significance level for the C variables C< = <̂/B̂4< and C2 = 2̂/B̂42 .

Column 7 The stars indicate that the constant is not significantly different from zero.

Last line This records the Pearson product-moment correlation coefficient A, and the significance level ?,

indicating that the probability of these data resulting from a bivariate distribution with zero correlation

parameter d is less than 1%.

Theory

The assumed model is that H8 = <G8 + 2 + n8 for = > 2 observations, where n8 is normally distributed with

zero mean and variance f2, and the best fit parameters are those at the minimum value of ((& defined as the

sum of squared residuals, that is

((& =

=∑
8=1

n2
8

=

=∑
8=1

(H8 − <̂G8 − 2̂)2.

The sample means Ḡ, H̄, standard deviations BG , BH , Pearson product-moment correlation coefficient A, and

estimates <̂, 2̂ are as follows.

Ḡ =
1

=

=∑
8=1

G8

H̄ =
1

=

=∑
8=1

H8

BG =

√√
1

= − 1

=∑
8=1

(G8 − Ḡ)2

BH =

√√
1

= − 1

=∑
8=1

(H8 − H̄)2

A =

=∑
8=1

(G8 − Ḡ) (H8 − H̄)
√√

=∑
8=1

(G8 − Ḡ)2

=∑
8=1

(H8 − H̄)2

<̂ =

=∑
8=1

(G8 − Ḡ) (H8 − H̄)

=∑
8=1

(G8 − Ḡ)2

2̂ = H̄ − <̂Ḡ
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In order to perform an analysis of variance and estimate parameter standard errors further quantities are

required. The total sum of squares (() with degrees of freedom =− 1, the sum of squares of deviations about

the regression ((� with degrees of freedom =− 2, the sum of squares attributable to the regression ((' with

degrees of freedom 1, and the mean square of deviations about the regression "(� are defined as follows.

(() =

=∑
8=1

(H8 − H̄)2

((� = ((&

((' = (() − ((�
"(� = ((&/(= − 2)

"(� is used as an estimate for the constant variance of H8 in order to estimate the standard errors of the slope

and constant. Then the standard errors of the slope B4< and constant B42 are

B̂4< =

√√√√√√√ "(�
=∑
8=1

(G8 − Ḡ)2

B̂42 =

√√√√√√√√√√√√√√
"(�

=∑
8=1

G2
8

=

=∑
8=1

(G8 − Ḡ)2

.

Another quantity that is sometimes required is the multiple correlation coefficient

'2
=

=∑
8=1

( Ĥ8 − H̄)2

=∑
8=1

(H8 − H̄)2

where Ĥ8 is the best-fit value evaluated at G8 , and ' is the correlation coefficient for H8 and Ĥ8 . '
2 is said to

measure the proportion of the total variation about Ĥ explained by the regression.

In the special case of fitting a straight line by least squares then we also have

'2
=

(
=∑
8=1

(G8 − Ḡ) (H8 − H̄)
)2

=∑
8=1

(G8 − Ḡ)2
=∑
8=1

(H8 − H̄)2

,

and so the multiple correlation coefficient equals the square of the Pearson product-moment correlation

coefficient A between - and . .

It should be emphasized that the equation

'2
= A2

is only true for the special situation where the best-fit equation is assumed to be the least squares line, that is

H(G) = <̂G + 2̂.
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8.3.2 Fitting a straight line: comprehensive

Comprehensive least squares linear regression is used when there are two variables, - which is known

accurately and can be regarded as an independent variable, and . which is a linear function of - , except that

there is measurement error or random variation which is normally distributed with zero mean and constant

variance. This option provides procedures to check for goodness of fit which are not available with the simple

linear regression option.

From the SimFIT main menu choose [A/Z], open program linfit, choose advanced linear regression and inspect

the default test file line.tf2 which has the following data.

G H

28.10 11.88

28.60 11.08

28.90 12.19

29.70 11.13

30.80 12.51

33.40 10.36

35.30 10.98

39.10 9.570

44.60 8.860

46.40 8.240

46.80 10.94

48.50 9.580

57.50 9.140

58.10 8.470

58.80 8.400

59.30 10.09

61.40 9.270

70.00 8.110

70.00 6.830

70.70 7.820

71.30 8.730

72.10 7.680

74.40 6.360

74.50 8.880

76.70 8.500

The two columns of data have the following meanings.

1. Column one is the independent G (with no error), the temperature in degrees Fahrenheit.

2. Column two is the dependent variable H (with error), in pounds of steam per month.

This options then fits a straight line in the form H = <G + 2 leading to the following results.

Table 1: Parameter estimates

Parameter Value Std. Error Lower95%cl Upper95%cl p

constant (c) 13.623 0.58146 12.420 14.826 0.0000

slope (m) -0.079829 0.010524 -0.1016 -0.058059 0.0000

A2 = 0.7144, A = −0.8452, ? = 0.0000
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Table 2: Residuals

G H Theory Residuals

28.1 1.188 1.138 0.5002

28.6 1.108 1.134 -0.2599

28.9 1.219 1.132 0.8741 *

29.7 1.113 1.125 -0.1221

30.8 1.251 1.116 1.3460 **

33.4 1.036 1.096 -0.5967 *

35.3 1.098 1.081 0.1750

39.1 9.570 1.050 -0.9317 *

44.6 8.860 1.006 -1.2030 **

46.4 8.240 9.919 -1.6790 **

46.8 1.094 9.887 1.0530 **

48.5 9.580 9.751 -0.1713

57.5 9.140 9.033 0.1072 *

58.1 8.470 8.985 -0.5149 *

58.8 8.400 8.929 -0.5291 *

59.3 1.009 8.889 1.2010 **

61.4 9.270 8.722 0.5485 *

70.0 8.110 8.035 -0.0750

70.0 6.830 8.035 -1.2050 **

70.7 7.820 7.979 -0.1591

71.3 8.730 7.931 0.7988 *

72.1 7.680 7.867 -0.1873

74.4 6.360 7.684 -1.3240 **

74.5 8.880 7.676 1.2040 **

76.7 8.500 7.500 0.9999 **

Table 3: Analysis of residuals

Sum of squared residuals: SSQ 18.223

Estimated average % coefficient of variation 9.45%

'2, correlation coefficient(theory,data)2 0.7144

Largest Absolute relative residual 18.85%

Smallest Absolute relative residual 0.93%

Average Absolute relative residual 7.80%

Percentage of absolute relative residuals in range 0.1–0.2 36.00%

Percentage of absolute relative residuals in range 0.2–0.4 0%

Percentage of absolute relative residuals in range 0.4–0.8 0%

Percentage of absolute relative residuals > 0.8 0%

Number of residuals < 0 (<) 13

Number of residuals > 0 (=) 12

Number of runs observed (A) 17

%(AD=B ≤ A : given < and =) 0.9502

5% lower tail point 9

1% lower tail point 7

%(AD=B ≤ A : given < plus =) 0.9680

%(B86=B ≤ least number observed ) 1.0000

Durbin-Watson test statistic 1.9930

Shapiro-Wilks, statistic 0.9596

Significance level of, 0.4064

Akaike AIC (Schwarz SC) statistics -3.904 (-1.467)

Verdict on goodness of fit: fantastic
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Table 1

This illustrates that there was a strong linear correlation between G and H with well determined parameters, as

all ? values were less than 0.01.

Table 2

This highlights large absolute relative residuals by the following scheme

∗ ∗ ∗ ∗ ∗∗ > 160%, ∗ ∗ ∗ ∗ ∗ > 80%, ∗ ∗ ∗∗ > 40%, ∗ ∗ ∗ > 20%, ∗∗ > 10%, ∗ > 5%

indicating that the fit is fairly reasonable, as there are only a few large values and no extremely large absolute

relative residuals. Absolute relative residuals are the absolute values of the ratios of residuals to the average

of experimental observations and best-fit values, that is

2|H8 − <̂G8 − 2̂ |
max(n, |H8 | + |<̂G8 + 2̂ |)

where n is machine precision. These are very useful because they summarize what, to most experimentalists,

would be an indicator of how well a model fits the data, even though they do not have any standard statistical

interpretation.

Table 3

This presents all the statistics that SimFIT uses to characterize goodness of fit leading to the qualitative, but

probably over-enthusiastic, conclusion of a fantastic fit.

The Half-Normal plot
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This shows a typical result with data winding around the best-fit line, and no sign of systematic deviation.
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The Best-Fit Line

The next plot shows the data and best fit line H = <̂G + 2̂ together with the 95% confidence envelope.

6.0

7.0

8.0

9.0

10.0

11.0

12.0

13.0

20.0 30.0 40.0 50.0 60.0 70.0 80.0

Best Fit Line with 95% Confidence Bands

x

y
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A 100(1−U/2)% confidence envelope can be added using the advanced line fitting and calibrating procedure

in linfit, or by reading the data file into polnom and fitting a polynomial of degree one then requesting the

addition of confidence limit curves. The confidence envelope is created using the two-valued function

5 (G) = <̂G + 2̂ ± C(= − 2, 1 − U/2)
©­­­­­«
1 + 1

=
+ (G − Ḡ)2

=∑
8=1

(G8 − Ḡ)2

ª®®®®®
¬

1/2

B

where C is the upper 0.975 point of a distribution with = − 2 degrees of freedom and U = 0.05, while B is the

variance estimate ((&/(= − 2).

The confidence curves are used by polnom to estimate confidence limits for predicting G from H when a

best-fit curve us used as a calibration curve.
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8.3.3 Fitting a straight line: orthogonal

Orthogonal linear regression is used when there are two variables, - and . , which both have error of

measurement, and/or natural variation due to sampling from a population. Because of this there is no sense

in which one variable can be regarded as an independent variable, and the other a dependent variable with

added noise: they are really covariates, but they could be sufficiently related to justify fitting a straight line.

The problem is to decide the criteria to use when selecting a best-fit line.

From the SimFIT main menu choose [A/Z], open program linfit, choose one of the options for orthogonal or

reduced major axis regression and inspect the default test file swarm.tf1 which has the following data.

G H

-5.0754 6.4669

-0.1053 11.6754

3.4949 15.4471

3.9864 5.0136

5.1110 7.8573

5.4251 -0.1269

5.7351 2.5006

5.9965 12.8566

6.5293 13.0522

6.6922 11.7522

6.7427 7.9817

8.9142 6.0645

9.6825 19.2638

12.0221 14.5156

14.5866 19.9856

15.4610 17.7134

16.3355 22.4164

16.8102 9.7428

16.9810 23.3692

17.2585 17.3129

18.9608 5.2797

20.2275 16.5656

24.2327 26.7548

25.0702 12.7738

27.6169 25.1028

The following straight line procedures could be considered.

1. Least squares fit for H = 0G + 1, i.e. . (-).

2. Least squares fit for G = UH + V, i.e. - (. ).

3. Reduced major axis regression.

This minimizes the sum of the areas of the triangles formed by projecting across and up or down from

the data points to the best-fit line.

4. Orthogonal or major axis regression.

This minimizes the sum of squares of the orthogonal projections from the points to the best-fit line.

Reduced major axis regression minimizes the sum of the areas of the triangles A, least squares. (-) minimizes

the sum of squares of the lengths B, least squares - (. ) minimizes the sum of squares of lengths C, while

orthogonal regression, minimizes the sum of squares of the lengths D as in the next diagram.
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A

B
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D

The following plot shows the fit of lines by least squares, reduced major axis, and major axis (orthogonal)

regression to the data in test file swarm.tf1. In general it seems that if the - and . data are similarly scaled

then the choice depends on the variance of - and. . If the variance of. is very much greater than the variance

of - then least squares regression of . on - could be preferred, and when the variance of . is very much

less than that of - then least squares regression of - on . might be better. With similar variance in . and . ,

as in correlation analysis, then either both linear regression lines should be plotted, or one of the alternatives

described in this tutorial should be used if only one line is to be plotted.
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Theory

For n pairs (G8 , H8) with mean G = Ḡ and mean H = H̄, the variances and covariance required are

(GG =
1

= − 1

=∑
8=1

(G8 − Ḡ)2

(HH =
1

= − 1

=∑
8=1

(H8 − H̄)2

(GH =
1

= − 1

=∑
8=1

(G8 − Ḡ) (H8 − H̄) .

Also, for an arbitrary point (G8 , H8) and a straight line defined by H = 0 + 1G the squares of the vertical,

horizontal, and orthogonal (i.e. perpendicular) distances, E2
8 , ℎ

2
8 , and >2

8 between the point and the line are

E2
8 = [H8 − (0 + 1G8)]2

ℎ2
8 = E

2
8 /12

>2
8 = E

2
8 /(1 + 12) .

Ordinary least squares

If G is regarded as an exact variable free from random variation or measurement error while H has random

variation, then the best fit line from minimizing the sum of E2
8 is

H1 (G) = V̂1G + [H̄ − V̂1Ḡ]

where V̂1 = (GH/(GG. However, if H is regarded as an exact variable while G has random variation, then the

best fit line for G as a function of H from minimizing the sum of ℎ2
8 would be

G2 (H) = (1/V̂2)H + [Ḡ − (1/V̂2) H̄]

where V̂2 = (HH/(GH or, rearranging to express the line as H2 (G),

H2 (G) = V̂2G + [H̄ − V̂2Ḡ],

emphasizing that the slope of the regression line for H2 (G) is the reciprocal of the slope for G2 (H). Since

neither of these two best fit lines can be regarded as satisfactory, SimFIT plots both lines such that H1 (G)
covers the range of G values while G2 (H) covers the range of H values. However these two lines intersect at

(Ḡ, H̄) and, from the fact that the ratio of slopes equals the square of the correlation coefficient, that is,

A2
= V̂1/V̂2,

then two best fit lines with similar slopes suggests strong linear correlation, whereas one line almost parallel to

the G axis and the other almost parallel to the H axis would indicate negligible linear correlation. For instance,

if there is no linear correlation between G and H, then the slope of the regression line for H(G) i.e. V̂1 would

be zero, as would be the slope of the regression line for G(H) i.e. 1/V̂2 leading to A2 = 0. Conversely strong

linear correlation would lead to V̂1 = V̂2 and A2 = 1.

The major axis and reduced major axis lines to be discussed next are attempts to get round the necessity to

plot two lines and just have one best fit line intermediate between these two lines to represent the correlation.
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The major axis line

Here it is the sum of >2
8 , the squares of the orthogonal distances between the points and the best fit line, that

is minimized to yield the slope as

V̂3 =
1

2

(
V̂2 − (1/V̂1) + W

√
4 + ( V̂2 − (1/V̂1))2

)

where W = 1 if (GH > 0, W = 0 if (GH = 0, and W = −1 if (GH < 0, so that the major axis line is

H3 (G) = V̂3G + [H̄ − V̂3Ḡ] .

Actually V̂3 is the slope of the first principal component axis and so it points in the direction of maximum

variability.

The reduced major axis line

Instead of minimizing the sum of squares of the vertical distances E2
8 , or horizontal distances ℎ2

8 , it is possible

to minimize the sum of the areas of the triangles formed by the E8 , ℎ8 with the best fit line as hypotenuse, i.e.

E8ℎ8/2, to obtain the reduced major axis line as

H4 (G) = V̂4G + [H̄ − V̂4Ḡ] .

Here

V̂4 = W

√
(HH/(GG

= W

√
V̂1 V̂2

so that the slope of the reduced major axis line is the geometric mean of the slopes of the regression of H on G

and G on H.

Weighting

In the unlikely case that weighting of one of the set is observations is desired, then the variable to be weighted

would have to be specified as the . variable, and weighted fitting could then performed using program qnfit.
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8.3.4 Fitting a polynomial: weighted least squares polynomial regression

Polynomial regression is used for data smoothing, detecting trends in noisy data, and for creating calibration

curves for inverse prediction. It is not much used for modeling data, as polynomial curves are too flexible, they

do not accommodate horizontal asymptotes, and they cannot be used for extrapolation. In many applications

nowadays they have been replaced by piecewise cubic splines.

From the main SimFIT menu choose the [A/Z] option, open program polnom, then browse the default test

file polnom.tf1 which contains the following data set.

G H B

0.0 0.098421 0.0056072

0.0 0.10950 0.0056072

0.0 0.10248 0.0056072

2.0 3.8448 0.052139

2.0 3.8647 0.052139

2.0 3.9434 0.052139

4.0 6.8490 0.38867

4.0 6.1469 0.38867

4.0 6.2091 0.38867

6.0 8.5864 0.22982

6.0 9.0156 0.22982

6.0 8.6585 0.22982

8.0 9.8616 0.45524

8.0 9.8748 0.45524

8.0 9.0798 0.45524

10.0 9.5218 0.51790

10.0 9.3098 0.51790

10.0 10.294 0.51790

The columns are for data simulated by SimFIT according to H = 0.1 + 2.0G + 0.1G2 and have the following

meanings.

1. The first column contains the independent variable G8 in triplicate.

2. The second column contains the dependent variable H8 arising from evaluating the model equation using

SimFIT program makdat, then adding 5% relative error using SimFIT program adderr to simulate

experimental error.

3. The third column are the sample standard deviations B8 calculated by SimFIT program adderr to use

for weights F8 = 1/B28 . In the absence of replicates to calculate sample standard deviations for H8 at

fixed G8 , the third column could be replaced by B8 = 1, or simply omitted, whereupon a default value of

B8 = 1 would be used for unweighted regression.

Program polnom will then proceed to fit polynomials of degree < according to

5 (G) = \0 + \1G + \2G
2 + \3G

3 + · · · + \6G
6

for< = 0, 1, 2, . . . , : where : ≤ 6 depends on the number of distinct values of G. That is, < = 0 for a constant

term, < = 1 for a straight line, < = 2 for a quadratic, < = 3 for a cubic, and so on. After fitting each degree,

several statistics are output to assess goodness of fit and determine the highest degree that can be justified.
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The idea of this systematic procedure is to determine if there is statistical evidence to justify a trend line or

progressive curvature in noisy data, or to select a model equation to use as a calibration curve for inverse

prediction. To appreciate this aspect consider the following results tables when the data are analyzed.

Table 1: Degree fitted and Chebyshev coefficients

< �0 �1 �2 �3 �4 �5

0 0.31113

1 16.034 7.9080

2 12.737 4.8194 -1.4456

3 12.735 4.8132 -1.4591 -0.0083774

4 12.762 4.8342 -1.4387 -0.055083 -0.059600

5 12.654 4.6602 -1.3858 -0.087456 -0.035275 0.22979

Another table of statistics required to determine the degree of the polynomial required is also displayed as

follows.

Table 2: Statistics to determine degree of the fitted polynomial

< f %change ,((& %change %(j2 ≥ ,((&) 5% �+ %(� ≥ �+) 5%

0 36.703 22901 0.0000 no

1 8.0833 77.98 1045.4 95.44 0.0000 no 334.50 0.0000 yes

2 0.9914 87.73 14.744 98.59 0.4700 yes 1048.6 0.0000 yes

3 1.0253 3.42 14.718 0.18 0.3977 yes 0.0249 0.8769 no

4 1.0511 2.52 14.363 2.41 0.3488 yes 0.3213 0.5805 no

5 1.0000 4.87 11.999 16.46 0.4457 yes 2.3639 0.1501 no

Here < is the degree fitted, f =
√
,((&/#�$�, and �+ is the � value for assessing the significance of

variance reduction by adding higher degree terms.

There are many results displayed in Tables 1 and 2 in order to suggest the highest degree that can be justified

statistically. The qualitative conclusions do not use a Bonferroni correction, but the actual significance levels

are also provided for purists. At this point SimFIT program polnom outputs the next table to aid decision.

Table 3: information to help you select a best-fit polynomial

Lowest degree where < 10% change in f 2

Lowest degree where < 10% change in,((& 2

Lowest degree by chi-sq. at 5% significance level 2

Lowest degree by chi-sq. at 1% significance level 2

Lowest degree by F test at 5% significance level 2

Lowest degree by F test at 1% significance level 2

Accepting the recommendations of Table 3 leads to Table 4 for the best-fit quadratic.

Table 4: Results for weighted fitting (F = 1/B2)
Parameter Value Std. error Lower95%cl Upper95%cl ?

\0 0.10347 0.0032091 0.096630 0.11031 0.0000

\1 2.1203 0.019731 2.0783 2.1624 0.0000

\2 -0.11565 0.0035714 -0.12326 -0.10803 0.0000

Correlation matrix

1

-0.0960 1

0.0516 -0.8432 1
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If you selected to predict G from H the following warning is issued.

You must be very careful if you wish to use this best-fit

curve as a calibration curve for predicting x given y since

there are turning points for -<8= ≤ G ≤ -<0G as follows:

G-value H-value

9.1673 9.8224

This is because the quadratic has a turning point within the range of the data, and so predicting G from H could

be misleading if a horizontal line for H = H0 for some H0 intersected the best fit curve twice. So you have to

choose whether to search upwards or downwards along the G axis for the prediction required. If a spurious

prediction results you have to change the search order. For degrees greater than two there may be multiple

turning points, so using degrees greater than two is not normally recommended for inverse prediction. Table

5 results from choosing to predict G from H and evaluate H given G along with 95% confidence ranges using

the data supplied in test files polnom.tf2 and polnom.tf3.

Table 5: Predicting G given H and evaluating H given G

Evaluation data for program polnom : G = 2, 4, 6, 8

G-input H-calculated 95% confidence limits

2.0 3.8816 3.8212, 3.9419

4.0 6.7345 6.6424, 6.8267

6.0 8.6623 8.5137, 8.8108

8.0 9.6649 9.3927, 9.9370

Inverse prediction data for program polnom : H = 2, 4, 6, 8

H-measured G-predicted 95% confidence limits

2.0 0.94293 0.92529, 0.96118

4.0 2.0718 2.0347, 2.1100

6.0 3.4182 3.3566, 3.4819

8.0 5.1976 5.0739, 5.3342

This next graph, constructed using SimFIT program qnfit, shows the data and best-fit quadratic along with

contributions of the individual components to the fit.
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Theory

It is possible to fit polynomials using multilinear regression with a constant term but with variables defined as

G1 = G, G2 = G2, G3 = G3, . . . , G< = G<. However, this is regarded as an inefficient and numerically inaccurate

technique. The best technique is to transform the original variables G into new variables−1 ≤ G̃ ≤ 1 according

to

G̃ =
2G − G<0G − G<8=
G<0G − G<8=

Then a polynomial of degree < is fitted using Chebyshev polynomials as follows

6<(G̃) = 0.5�<+1,1)0 (G̃) + �<+1,2)1 (G̃) + �<+1,3)2 (G̃) + · · · + �<+1,<+1)< (G̃) .

In this expression the ): (G̃) are Chebyshev polynomials of the first kind of degree : defined as follows.

): (G) = cos(: cos−1(G)), : ≥ 0

):+1 (G) = 2G): (G) − ):−1G, : ≥ 1

For instance, )0 (G) = 1

)1 (G) = G
)2 (G) = 2G2 + 1

)3 (G) = 4G3 − 3G.

The magnitude of the coefficients �<+1, 9 indicates the contribution of the correspondingCheyshev polynomial

to the corresponding power of G. When fitting polynomials sequentially the coefficients �<+1, 9 will tend to

stabilize for powers of G that are contributing to the fit, but will often tend to diminish as further irrelevant

powers are added to the polynomial. So Table 1 provides a quick method for assessing the highest degree

polynomial required for a satisfactory fit. Of course, the coefficients and best-fit curve are transformed back

into the original space after a satisfactory degree has been decided.

The techniques used by SimFIT for calculating confidence limits for evaluation and inverse prediction are based

on extending the methods used for standard unweighted straight line fitting to the case of fitting polynomials

to weighted data.
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8.3.5 Multilinear least squares regression

Multilinear regression is resorted to in situations where the value of a variable. is believed to depend on one

or more fixed variables - , but it has not proved possible to develop a mathematical model based on scientific

principles. Usually the variation in . due to experimental error or sampling variation is considerably greater

than the variation in - , and in addition variables - are assumed to be uncorrelated, so that . can be regarded

as a dependent variable, and - as independent variables.

From the main SimFIT menu choose the [A/Z] option, open program linfit, choose [multilinear regression]

using least squares, then browse the default test file linfit.tf2 which contains the following data set.

G1 G2 G3 G4 H B

7.00 26.0 6.00 60.0 78.50 1

1.00 29.0 15.0 52.0 74.30 1

11.0 56.0 8.00 20.0 104.3 1

11.0 31.0 8.00 47.0 87.60 1

7.00 52.0 6.00 33.0 95.90 1

11.0 55.0 9.00 22.0 109.2 1

3.00 71.0 17.0 6.00 102.7 1

1.00 31.0 22.0 44.0 72.50 1

2.00 54.0 18.0 22.0 93.10 1

21.0 47.0 4.00 26.0 115.9 1

1.00 40.0 23.0 34.0 83.80 1

11.0 66.0 9.00 12.0 113.3 1

10.0 68.0 8.00 12.0 109.4 1

The columns have the following meanings.

1. Column 1: % tricalcium aluminate

2. Column 2: % tricalcium silicate

3. Column 3: % tetracalcium alumino ferrite

4. Column 4: % dicalcium silicate

5. Column 5: Heat evolved in calories per gram of cement

6. Column 5: weighting factor.

Note that the weighting factor B must be supplied as the last column so that SimFIT knows how many variables

are present. It is usual to set all the values of B to one as in the above example, but if accurate estimates for

the standard deviations of . are known these could be used so that weighted least squares fitting can be done.

To conclude: if the data set supplied has : columns, then it will be presumed that there are : − 2 independent

variables - in columns 1, 2, . . . , : − 2, the dependent variable. is in column : − 1, and the weighting factors

are in column :. If these are all equal to one then unweighted regression will be carried out, but otherwise

the values B8 will be assumed to be standard errors for the H8 and weighted regression will be performed using

F8 = 1/B28 . Setting B = 0 suppresses corresponding rows of data but this is not recommended.

Analysis of these data then leads to the following tables of results using this model

H = V0G0 + V1G1 + V2G2 + · · · + V:−2G:−2

where G0 = 1 if V0 is to be estimated and a constant term is required, or V0 = 0 otherwise.
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Table 1: Parameter estimates

Number of parameters: 5, Rank: 5, Number of points: 13, Degrees of freedom: 8

Residual-((&: 47.864, Mallows’ �?: 5.0, '2: 0.9824

Parameter Value Lower95%cl Upper95%cl Std. Error p

V0 (Constant) 62.405 -99.179 223.99 70.071 0.3991 ***

V1 1.5511 -0.16634 3.2685 0.74477 0.0708 *

V2 0.51017 -1.1589 2.1792 0.72379 0.5009 ***

V3 0.10191 -1.6385 1.8423 0.75471 0.8959 ***

V4 -0.14406 -1.7791 1.4910 0.70905 0.8441 ***

The stars shown against the parameter estimates in Table 1 are displayed when the parameter estimates are not

significantly different from zero, so this table indicates that none of the five parameters were well determined.

Table 2: Residuals

Number H-value Theory Residual Leverage Studentized

1 78.500 78.495 0.0047604 0.55028 0.0029021

2 74.300 72.789 1.5112 0.33324 0.75662

3 104.30 105.97 -1.6709 0.57694 -1.0503

4 87.600 89.327 -1.7271 0.29524 -0.84108

5 95.900 95.649 0.25076 0.35760 0.12791

6 109.20 105.27 3.9254 0.12416 1.7148

7 102.70 104.15 -1.4487 0.36708 -0.74445

8 72.500 75.675 -3.1750 0.40854 -1.6878

9 93.100 91.722 1.3783 0.29431 0.67080

10 115.90 115.62 0.28155 0.70040 0.21029

11 83.800 81.809 1.9910 0.42551 1.0739

12 113.30 112.33 0.97299 0.26298 0.46335

13 109.40 111.69 -2.2943 0.30372 -1.1241

However Table 2 does show a good scatter of residuals about zero with no particular bias or runs indicated.

Table 3: Analysis of Variance

Source NDOF ((& Mean ((& �-value ?

Total 12 2715.8

Regression 4 2667.9 666.97 111.48 0.0000

Residual 8 47.864 5.9830

Table 3 is used in much the same way as for simple linear regression and is defined using Ĥ8 for the best-fit

model as follows.

((&C>C0; =

=∑
8=1

(H8 − H̄)2

((&A46A4BB8>= =

=∑
8=1

( Ĥ8 − H̄)2

((&A4B83D0; =

=∑
8=1

(H8 − Ĥ8)2

The � value is the ratio of mean regression ((& to mean residual ((&, and the significance level ? is used

to test the null hypothesis

�0 : V8 = 0 for all 8

against the alternative hypothesis

�� : V8 ≠ 0 for one or more 8.
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Clearly it must be concluded that, although none of the individual parameters were well determined as judged

by the C tests on the ratios of estimates to standard errors, there is a significant overall reduction in the sum of

squares by some combinations of variables.

At this point it is customary to see if a satisfactory regression could be achieved with fewer parameters, and a

variety of techniques are available to perform such subset regression to find the best explanation of the data in

terms of the smallest number of variables. When this is done systematically with large data sets it generates an

enormous amount of analysis, which is not normally justified because usually the experimentalist would have

a good idea which subsets of variables to try. This is fairly easy to do interactively in SimFIT by suppressing

variables until a fit is achieved where all the parameters are significantly different from zero with the two-tail

C test, and the fit is justified by the �? values.

The way to interpret the Mallows’ �? values should be explained. Program linfit first fits a full model and the

results from this analysis are saved. This fit is assumed to be the best possible for estimating the variance and

the effect of suppressing any variable can then be seen by comparing the effect on the �? value. From fitting

the full model the �? value will be equal to the total number of parameters and subsequent subset regressions

can be judged by the ratio of the �? values to the number of parameters, where values much greater than the

number of parameters estimated suggest a deficient model.

The next table summarizes the results from fitting a constant only, followed by fitting subsets of the additional

1, 2, and 3 variables.

Table 4: �? values

Variables �? Parameters

Constant only 442.9 1

+1,+2,+3,+4 202.5, 142.5, 315.2, 138.7 2

+12, +13, +14 2.7, 198.1, 5.5 3

+23, +24, +34 62.4, 138.2, 22.4 3

+123, +124, +134, +234 3.0, 3.0, 3.5, 7.3 4

+1234 5.0 5

In Table 4 the first column indicates the subscripts of the variables added to the constant term, column 2 holds

the corresponding�? variables, while column 3 contains the total number of parameters varied including the

constant term. Values where �? divided by the number of parameters in the regression are less than or equal

to one are highlighted, and it is perfectly clear that the combination of a constant plus variables 1 and 2 seems

to be strongly recommended.

Here, for example, are the results from suppressing variables 3 and 4.

Table 1A: parameter estimates with variables 3 and 4 suppressed

Number of parameters: 3, Rank: 3, Number of points: 13, Degrees of freedom: 10

Residual-((&: 57.904, Mallows’ �?: 2.6782, '2: 0.9787

Parameter Value Lower95%cl Upper95%cl Std. Error ?

V0 (Constant) 52.577 47.483 57.671 2.2862 0.0000

V1 1.4683 1.1980 1.7386 0.12130 0.0000

V2 0.66225 0.56008 0.76442 0.045855 0.0000
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Table 2A: Residuals with variables 3 and 4 suppressed

Number H-value Theory Residual Leverage Studentized

1 78.500 80.074 -1.5740 0.25119 -0.75590

2 74.300 73.251 1.0491 0.26189 0.50745

3 104.30 105.81 -1.5147 0.11890 -0.67061

4 87.600 89.258 -1.6585 0.24225 -0.79175

5 95.900 97.293 -1.3925 0.83616 -0.60451

6 109.20 105.15 4.0475 0.11512 1.7881

7 102.70 104.00 -1.3021 0.36180 -0.67732

8 72.500 74.575 -2.0754 0.24119 -0.99011

9 93.100 91.275 1.8245 0.17915 0.83687

10 115.90 114.54 1.3625 0.55002 0.84405

11 83.800 80.536 3.2643 0.18402 1.5018

12 113.30 112.44 0.86276 0.19666 0.40002

13 109.40 112.29 -2.8934 0.21420 -1.3564

Table 3A: Analysis of Variance with variables 3 and 4 suppressed

Source NDOF ((& Mean ((& �-value ?

Total 12 2715.8

Regression 2 2657.9 1328.9 229.50 0.0000

Residual 10 57.904 5.7904

Comparing the results with all variables present to those with variables 3 and 4 suppressed leads to the

following conclusions.

1. Table 1 compared to Table 1A

With all variables present no parameters were well-determined by a two-tail C test, but with variables 3

and 4 suppressed all parameters were well-determined.

2. Table 2 compared to Table 2A

There are no differences to indicate a poorer fit with the simpler model.

3. Table 3 compared to Table 3A

There are no differences to indicate a poorer fit with the simpler model.

Sometimes it is useful to evaluate the best-fit model and, as variables 3 and 4 do not seem to be making an

important contributionprediction, this will be demonstratedusing the model with variables 3 and 4 suppressed.

A vector of default values equal to 1 is supplied and this can be edited interactively to change the variables as

follows with variable 2.

Using the best-fit model to predict H given G

G0 = 1.0, coefficient = 52.577 (the constant term)

G1 = 1.0, coefficient = 1.4683

G2 = 1.0, coefficient = 0.66225

H(G) = 54.708

G0 = 1.0, coefficient = 52.577 (the constant term)

G1 = 1.0, coefficient = 1.4683

G2 = 5.0, coefficient = 0.66225

H(G) = 57.357

Of course, users cannot alter the value of G0 which is always equal to 1, and included or excluded from the

regression depending on whether a constant (i.e. intercept) term is included.

Note that, for more advanced analysis of such data sets (including prediction and inverse prediction) the

SimFIT partial least squares procedure should be used.
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Theory

Program linfit fits a multilinear model in the form

H = V0G0 + V1G1 + V2G2 + · · · + V<G<,

where G0 = 1, but you can choose interactively whether or not to include a constant term V0, you can decide

which variables are to be included, and you can use a weighting scheme if this is required. For each regression

sub-set, you can observe the parameter estimates and standard errors, '-squared, Mallows �? , and �#$+�

table, to help you decide which combinations of variables are the most significant. Unlike nonlinear regression,

multilinear regression, is based on the assumptions

. = -V + n,
E(n) = 0,

Var(n) = f2�,

where - is the over-determined data matrix (e.g., the 13 rows and first 4 columns of test file linfit.tf2), .

is the observation vector (e.g., column 5 of test file linfit.tf2), V is the parameter vector and n is the error

vector. This allows us to introduce the hat matrix

� = - (-) -)−1-) ,

then define the leverages ℎ88 , which can be used to asses influence, and the studentized residuals

'8 =
A8

f̂
√

1 − ℎ88
,

which may offer some advantages over ordinary residuals A8 for goodness of fit assessment from residuals

plots. In the event of weighting being required, . , - and n above are simply replaced by ,
1
2. , ,

1
2 - , and

,
1
2 n , where, is the diagonal weighting matrix.

Note that examining parameter reliability using the C test as in Tables 1 and 1A and also model discrimination

analysis using the � test is applicable for nested linear models as fitted by SimFIT program linfit. So several

additional options are provide by linfit to perform such further investigations. For instance, to perform an �

test for excess variance note that, if ,((&1 with <1 parameters is the previous (possibly deficient) model,

while ,((&2 with <2 parameters is the current (possibly superior) model, so that ,((&1 > ,((&2, and

<1 < <2, then

� =
(,((&1 −,((&2)/(<2 − <1)

,((&2/(# − <2)
should be � distributed with <2 − <1 and # − <2 degrees of freedom, and the � test for excess variance can

be used. Alternatively, if ,((&2/(# − <2) is equivalent to the true variance, i.e., model 2 is equivalent to

the true model, the Mallows’ �? statistic

�? =
,((&1

,((&2/(# − <2)
− (# − 2<1)

can be considered. This has expectation <1 if the previous model is sufficient, so values greater than <1, that

is �?/<1 > 1, indicate that the current model should be preferred over the previous one. In the linfit results

tables �? values refer to the full model being fitted as the reference case.

Finally it should be noted that, for successful analysis of data, the units used to provide values of - should

be such that the numerical values are of similar size. If categorical data are mixed with continuous data, or

the data set is ill-conditioned, or less than full rank for any reason, a linear model will still be fitted using the

singular value decomposition. However, in such cases linfit will issue a warning that the estimated parameters

are not independent, and the data should be re-scaled, or the number or variables should be reduced until

the columns of the - matrix are independent, i.e. the rank is at least as large as the number of parameters

estimated.
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8.3.6 Partial least squares (PLS)

Partial least squares is also known as regression by projection to latent structures, or simply PLS, and it is

sometimes useful when a = by A matrix of responses . , with A ≥ 1, is observed with a = by < matrix of

predictor variables - , with < > 1, and one or more of the following conditions may apply:

1. There is no deterministic model to express the A columns of . as functions of the < columns of the

matrix - .

2. The number of columns of - is too large for convenient analysis, or the number of observations = is not

significantly greater than the number of predictor variables <, e.g. the rank of - is less than <.

3. The - variables may be correlated and/or the . variables may be correlated.

The idea behind PLS is to express the - and. matrices in terms of sets of : factors, with : ≤ <, derived from

the matrices by projection and regression techniques. The - scores would have maximum covariance with the

. scores, and the principal problem is to decide on a sufficiently small dimension ;, with ; ≤ :, that would be

needed to represent the relationship between . and - adequately. Having obtained satisfactory expressions

for approximating - and . using these factors, they can then be used to treat - as a training matrix, then

predict what new . would result from a new = by < matrix / that is expressed in the same variables as the

training matrix - . Hence the use of this technique in multivariate calibration, or quantitative structure activity

relationships (QSAR).

Data format

From the main SimFIT menu choose [A/Z], open program linfit, then select [PLS] and inspect the two test
files. The file g02laf.tf1 contains the following 15 by 15 matrix of - data

-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 1.9607 -1.6324 0.5746 1.9607 -1.6324 0.5740 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 1.9607 -1.6324 0.5746 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 1.9607 -1.6324 0.5746 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 2.8369 1.4092 -3.1398 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 -4.7548 3.6521 0.8524 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 -1.2201 0.8829 2.2253

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 2.4064 1.7438 1.1057 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

2.2261 -5.3648 0.3049 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

-4.1921 -1.0285 -0.9801 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

-4.9217 1.2977 0.4473 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 2.2261 -5.3648 0.3049 2.2261 -5.3648 0.3049 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 -4.9217 1.2977 0.4473 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 -4.1921 -1.0285 -0.9801 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

while the test file g02laf.tf2 contains the following 15 by 1 matrix with . data.

.1

0.00

0.28

0.20

0.51

0.11

2.73

0.18

1.53

-0.10

-0.52

0.40

0.30

-1.00

1.57

0.59
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Choosing the number of factors

Select a maximum of 12 factors then plot the cumulative variance plot as in the next figure.
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This graph shows that most of the variance in the . data (green bars) can be explained by only two factors

while at least six to eight factors are required to account for a significant proportion of the variance in the -

data (red bars).

The main point of PLS analysis is to choose the number of factors that subsequently will be used in the

predictive procedures, as the number of factors will be the dimension of the subspace used in the projection

of the - data into a space of smaller dimension.

It must be stressed that these factors are like principal components in that every factor is a linear combination

of all the variables, and SimFIT provides several ways to determine the influence of the original variables in

the factors.

Contribution of variables to the projection

For example, the next table shows the variable influence on projection (+�%) results which indicate that
variables 7, 8, 9, 10, and 11 seem to make the most significant contribution to the factors. That is because the
sum of squared VIP values equals the number of - variables and a large +�%(8) value indicates that variable
8 has an important influence on projection.

Variable 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

VIP 0.611 0.318 0.751 0.504 0.272 0.359 1.577 2.435 1.132 1.223 1.180 0.884 0.213 0.213 0.213

* * * * *
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Correlation between scores

Another way to assess the number of factors required to adequately represent the model is to examine the

correlation between the scores as, unlike with principal components which are select to maximize variance,

PLS factors are selected to maximize covariance between factors.

In the next figure are plotted the successive correlations between the - and. scores. Each plot shows the best

fit linear regression for the D8 i.e. . scores on the C8 i.e. - scores, and also the best fit linear regression of the

- scores on the . scores, together with the correlation coefficients A and and significance levels ?.

y=A+Bx, x=C+Dy, r= 0.9468, p < .0001
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-0.800 -0.400 0.000 0.400 0.800

-10.0

-5.0

0.0

5.0

10.0

15.0

y=A+Bx, x=C+Dy, r= 0.8697, p < .0001
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y=A+Bx, x=C+Dy, r= 0.4286, p=0.1109

t3
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y=A+Bx, x=C+Dy, r= 0.3474, p=0.2045
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y=A+Bx, x=C+Dy, r= 0.2872, p=0.2992
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y=A+Bx, x=C+Dy, r= 0.3968, p=0.1431
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Clearly the scores corresponding to the first two factors are highly correlated, but thereafter the correlation is

very weak.
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Predicting . given new -

Once a model has been selected with an appropriate number of factors, a set of parameters can be calculated

to express . as a function of the - matrix. In other words, the original - and . matrices can be regarded as a

training set, then a new - data matrix can be input to predict a new . matrix of responses.

For instance, select a model with 7 factors and then read in the default test file g02laf.tf3 as a / matrix

which has the following data.

/1 /2 /3 /4 /5 /6 /7 /8 /9 /10 /11 /12 /13 /14 /15

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 1.9607 -1.6324 0.5746 1.9607 -1.6324 0.574 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 1.9607 -1.6324 0.5746 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 1.9607 -1.6324 0.5746 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 2.8369 1.4092 -3.1398 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 -4.7548 3.6521 0.8524 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 -1.2201 0.8829 2.2253

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 2.4064 1.7438 1.1057 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

2.2261 -5.3648 0.3049 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

-4.1921 -1.0285 -0.9801 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

-4.9217 1.2977 0.4473 3.0777 0.3891 -0.0701 0.0744 -1.7333 0.0902 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 2.2261 -5.3648 0.3049 2.2261 -5.3648 0.3049 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 -4.9217 1.2977 0.4473 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

-2.6931 -2.5271 -1.2871 3.0777 0.3891 -0.0701 -4.1921 -1.0285 -0.9801 0.0744 -1.7333 0.0902 2.8369 1.4092 -3.1398

This can then be used to predict a new set of responses, say .̃ , with the following values.

.̃

0.1408592

0.2991056

0.1383467

0.2967188

0.1304868

2.6278021

0.1862098

1.4820439

-0.1140479

-0.4532927

0.4052814

0.2922055

-1.0294603

1.7814955

0.5962458

When using this technique it is important to realize that the training matrices and the prediction matrices

must be centered and scaled using exactly the same mean vectors and scaling factors otherwise biased

predictions will result. That is why it is best to submit the data without centering and scaling then SimFIT

will automatically use the centering and scaling from the training set with the prediction data and will map the

predicted results back into the original coordinates. This will be explained with more detail in the theoretical

section that follows.
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Theory

The idea behind PLS is to express the = by < matrix - and = by A matrix . in terms of sets of : factors, with

: ≤ <, derived from the matrices by projection and regression techniques. The - scores would have maximum

covariance with the . scores, and the principal problem is to decide on a sufficiently small dimension ;, with

; ≤ :, that would be needed to represent the relationship between . and - adequately.

If -1 is the centered matrix obtained from - by subtracting the - column means, and .1 is obtained from

. by subtracting the . column means, then the first factor is obtained by regressing on a column vector of =

normalized scores C1, as in

-̂1 = C1?
)
1

.̂1 = C12
)
1

C)1 C1 = 1,

where the column vectors of < G-loadings ?1 and A H-loadings 21 are calculated by least squares, i.e.

?)1 = C)1 -1

2)1 = C)1 .1.

The G-score vector C1 = -1F1 is the linear combination of -1 that has maximum covariance with the H-scores

D1 = .121, where the G-weights vector F1 is the normalized first left singular vector of -)
1
.1. The further

: − 1 orthogonal factors are then calculated successively using

-8 = -8−1 − -̂8−1

.8 = .8−1 − .̂8−1, 8 = 2, 3, . . . , :

C)8 C 9 = 0, 9 = 1, 2, . . . , 8 − 1.

Once a set of : factors has been calculated, these can be used to generate the parameter estimates necessary

to predict a new . matrix from a / matrix, given the original training matrix - . Usually : would be an upper

limit on the number of factors to consider, and the < by A parameter estimates matrix � required for ; factors,

where ; ≤ :, would be given by

� = , (%),)−1�) .

Here, is the < by : matrix of G-weights, % is the < by : matrix of G-loadings, and � is the A by : matrix of

H-loadings. Note that � calculated in this way is for the centered matrices -1 and .1, but parameter estimates

appropriate for the original data are also calculated.

Before proceeding further it is important to emphasize a complication which can arise when predicting a new

. matrix using the parameter estimates. In most multivariate techniques it is immaterial whether the data

are scaled and centered before submitting a sample for analysis, or whether the data are scaled and centered

internally by the software. In the case of PLS, the . predicted will be incorrect if the data are centered and

scaled independently before analysis, but then the / matrix for prediction is centered and scaled using its own

column means and variances.

So there are just two ways to make sure PLS predicts correctly.

1. You can submit - and . matrices that are already centered and scaled, but then you must submit a /

matrix that has not been centered and scaled using its own column means and standard deviations, but

one that has been processed by subtracting the original - column means and scaled using the original

- column standard deviations.

2. Do not center or scale any data. Just submit the original data for analysis, request automatic centering

and scaling if necessary, but allow the software to then center and scale internally.
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As the first method is error prone and will predict scaled and centered predictions, which could be confusing,

the advice to PLS users would be:

Do not center or scale any training sets, or Z-data for predicting new Y, before PLS analysis.

Always submit raw data and allow the software to perform centering and scaling.

That way predictions will be in coordinates corresponding to the original Y-coordinates.

Several techniques are available to decide how many factors ; out of the maximum calculated : should be

selected when using a training set for prediction.

For instance, the previous figure displaying cumulative variance was obtained by using test file g02laf.tf1

with 15 rows and 15 columns as the source of - prediction data, and test file g02laf.tf2 with 15 rows and

just 1 column as the source of . response data, then fitting a PLS model with up to a maximum of : = 12

factors. It illustrates how the cumulative percentage of variance in - and a column of . is accounted for the

factor model as the number of factors is steadily increased. It is clear that two factors are sufficient to account

for the variance of the single column of . in this case but more, probably about 6 to 8, are required to account

for the variance in the - matrix, i.e. we should choose 6 ≤ ; ≤ 8.

Alternatively, the previous figures showing the successive correlations between the - and . scores should be

inspected. Each plot shows the best fit linear regression for the D8 i.e. . scores on the C8 i.e. - scores, and also

the best fit linear regression of the - scores on the . scores, together with the correlation coefficients A and

and significance levels ?. Clearly the scores corresponding to the first two factors are highly correlated, but

thereafter the correlation is very weak.

Note that the PLS model can be summarized as follows

- = -̄ + )%) + �
. = .̄ +*�) + �
* = ) + �

where � , �, and � are matrices of residuals.

So the SimFIT PLS routines also allow users to study such residuals, to see how closely the fitted model

predicts the original. data for increasing numbers of factors before the number of factors to be used routinely

is decided. Various tests for goodness of fit can be derived from these residuals and, in addition, variable

influence on projection (VIP) statistics can also be calculated.
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8.4 Generalized linear models (GLM)

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

8.4.1 Summary of GLM techniques

Generalized linear modeling (GLM) is used to fit statistical models to observations that have a known error

distribution, and where covariates can be assumed to contribute in a linear manner via a specified intermediate

link function.

Introduction

The GLM technique is intermediate between linear regression, which is trivial and gives uniquely determined

parameter estimates but is rarely appropriate, and nonlinear regression, which is very hard and does not

usually give unique parameter estimates, but is justified with normal errors and a known model.

To understand the motivation for this technique, it is usual to refer to a typical doubling dilution experiment

in which diluted solutions from a stock containing infected organisms are plated onto agar in order to count

infected plates, and hence estimate the number of organisms in the stock. Suppose that before dilution the

stock had # organisms per unit volume, then the number per unit volume after G = 0, 1, . . . , < dilutions will

follow a Poisson dilution with `G = #/2G . Now the chance of a plate receiving no organisms at dilution G

is the first term in the Poisson distribution, that is exp(−`G), so if ?G is the probability of a plate becoming

infected at dilution G, then

?G = 1 − exp(−`G), G = 1, 2, . . . , <.

Evidently, where the ?G have been estimated as proportions from HG infected plates out of =G plated at dilution

G, then # can be estimated using

log[− log(1 − ?G)] = log# − G log 2

considered as a maximum likelihood fitting problem of the type

log[− log(1 − ?G)] = V0 + V1G

where the errors in estimated proportions ?G = HG/=G are binomially distributed.

The SimFIT generalized models interface can be used from gcfit, linfit or simstat as it finds many applications,

ranging from bioassay to survival analysis.

Basic theory

So, to fit a generalized linear model, you must have independent evidence to support your choice for an

assumed error distribution for the dependent variable . from the following possibilities:

• normal

• binomial

• Poisson

• gamma

in which it is supposed that the expectation of . is to be estimated, i.e.,

� (. ) = `.
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The associated pdfs are parameterized as follows.

normal : 5. =
1

√
2c f

exp

(
− (H − `)2

2f2

)

binomial: 5. =

(
#

H

)
cH (1 − c)#−H

Poisson: 5. =
`H exp(−`)

H!

gamma: 5. =
1

Γ(a)

(
aH

`

)a
exp

(
− aH
`

)
1

H

It is a mistake to make the usual unwarranted assumption that measurements imply a normal distribution,

while proportions imply a binomial distribution, and counting processes imply a Poisson distribution, unless

the error distribution assumed has been verified for your data. Another very questionable assumption that has

to made is that a predictor function [ exists, which is a linear function of the < covariates, i.e., independent

explanatory variables, as in

[ =

<∑
9=1

V 9G 9 .

Finally, yet another dubious assumption must be made, that a link function 6(`) exists between the expected

value of . and the linear predictor. The choice for

6(`) = [

depends on the assumed distribution as follows. For the binomial distribution, where H successes have been

observed in # trials, the link options are the logistic, probit or complementary log-log

logistic: [ = log

(
`

# − `

)

probit: [ = Φ
−1

( `
#

)
complementary log-log: [ = log

(
− log

(
1 − `

#

))
.

Where observed values can have only one of two values, as with binary or quantal data, it may be wished

to perform binary logistic regression. This is just the binomial situation where H takes values of 0 or 1,

# is always set equal to 1, and the logistic link is selected. However, for the normal, Poisson and gamma

distributions the link options are

exponent: [ = `0

identity: [ = `

log: [ = log(`)
square root: [ =

√
`

reciprocal: [ =
1

`
.

In addition to these possibilities, you can supply weights and install an offset vector along with the data set,

the regression can include a constant term if requested, the constant exponent 0 in the exponent link can be

altered, and variables can be selected for inclusion or suppression in an interactive manner. However, note

that the same strictures apply as for all regressions: you will be warned if the SVD has to be used due to

rank deficiency and you should redesign the experiment until all parameters are estimable and the covariance

matrix has full rank, rather than carry on with parameters and standard errors of limited value.
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The simplified GLM interface

Although generalized linear models have widespread use, specialized knowledge is sometimes required to

prepare the necessary data files, weights, offsets, etc.

For this reason, there is a simplified SimFIT interface to facilitate the use of GLM techniques in such fields as

the following.

• Bioassay, assuming a binomial distribution and using logistic, probit, or log-log models to estimate

percentiles, such as the LD50.

• Logistic regression and binary logistic regression.

• Logistic polynomial regression,generating new variables interactively as powers of an original covariate.

• Contingency table analysis, assuming Poisson errors and using log-linear analysis to quantify row and

column effects.

• Survival analysis, using the exponential, Weibull, extreme value, and Cox (i.e., proportional hazard)

models.

Of course, by choosing the advanced interface, users can always take complete control of the GLM analysis,

but for many purposes the simplified interface will prove much easier to use for many routine applications.

Warning

The GLM procedure involves an iterative technique to estimate parameters from starting estimates and, in this

respect, it is similar to nonlinear regression in that it will only succeed if the following conditions are satisfied.

1. The error type and link function (i.e. the model) must be chosen sensibly.

2. The data must be formatted in a specific manner depending on the error type and link function selected,

as will be explained in subsequent worked examples.

3. The data must be sufficiently accurate and cover a wide enough range to allow the parameters to be

estimated.

4. Error messages about failure to fit or poor parameter estimates must be interpreted sensibly, and then

appropriate action taken.

Only when all these conditions are satisfied will SimFIT be able to fit a GLM model.
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8.4.2 GLM: Examples using standard formats

This section illustrates fitting generalized linear models (GLM) with various error types and link functions.

Test files and data formats

From the main SimFIT menu choose [Statistics], [Generalized linear models], then [Comprehensive GLM

options], and after selecting an error and link type view the test file provided which will be one of these.

glm.tf1 (≡ g02gaf.tf1): normal error and reciprocal link

glm.tf2 (≡ g02gbf.tf1): binomial error and logistic link (logistic regression)

glm.tf3 (≡ g02gcf.tf1): Poisson error and log link

glm.tf4 (≡ g02gdf.tf1): gamma error and reciprocal link

Here the data format for : variables, observations H and weightings B is

G1, G2, . . . , G: , H, B

except for the binomial error which has

G1, G2, . . . , G: , H, #, B

for H successes in # independent Bernoulli trials.

It is absolutely essential to have a final column of B values in the data as the number of columns is used to

indicate the number of covariates. In most cases these values would be B = 1, but note that the weights F

used are actually F = 1/B2 if advanced users wish to employ weighting, e.g., using B as the reciprocal of the

square root of the number of replicates for replicate weighting, except that when B ≤ 0 the corresponding data

points are suppressed. Also, observe the alternative measures of goodness of fit, such as residuals, leverages

and deviances. The residuals A8 , sums of squares ((& and deviances 38 and overall deviance depend on the

error types as indicated in the examples.

GLM example 1: G02GAF, normal errors and reciprocal link

The test file glm.tf1 contains the following data.

G H B

1.0 25.0 1

2.0 10.0 1

3.0 6.0 1

4.0 4.0 1

5.0 3.0 1

The next table has the results from fitting a reciprocal link with mean but no offsets to glm.tf1,

No. parameters = 2, Rank = 2, No. points = 5, Deg. freedom = 3

Parameter Value Lower95%cl Upper95%cl Std. error ?

Constant -0.0238725 -0.0327174 -0.0150276 0.00277926 0.0033

B(1) 0.0638107 0.0554160 0.0722054 0.00263782 0.0002

,((& = 0.387173, ( = 0.129058, � = 1
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while the table of deviance residuals and leverages was as follows.

Number . -value Theory Dev-resid Leverage

1 25.0 25.0387 -0.038665 0.995407

2 10.0 9.63865 0.361348 0.457746

3 6.0 5.96802 0.031977 0.268103

4 4.0 4.32207 -0.322074 0.166606

5 3.0 3.38775 -0.387751 0.112138

Note that the scale factor (( = f2) can be input or estimated using the residual sum of squares ((& defined

as follows

For normal errors: 38 = H8 − ˆ̀8

Deviance residuals: A8 = 38

((& =

=∑
8=1

A8 .

GLM example 2: G02GBF, binomial errors with logistic link

The next table shows the results from fitting a logistic link and mean but no offsets to test file glm.tf2 which

contains the following data for covariate G, number of successes H in # Bernoulli trials, with no weighting

(i.e. all B = 1).

G H # B

1.0 19 516 1

0.0 29 560 1

-1.0 24 293 1

No. parameters = 2, Rank = 2, No. points = 3, Deg. freedom = 1

Parameter Value Lower95%cl Upper95%cl Std. error ?

Constant -2.86822 -4.41463 -1.32180 0.121705 0.0270

B(1) -0.42637 -2.45654 1.60380 0.159778 0.2283 ***

Deviance = 0.0735389

Number . -value Theory Dev-resid Leverage

1 19.0 18.4508 0.129596 0.768720

2 29.0 30.0984 -0.207027 0.422046

3 24.0 23.4508 0.117828 0.809234

The estimates are defined as follows

For binomial errors: 38 = 2

{
H8 log

(
H8

ˆ̀8

)
+ (C8 − H8) log

(
C8 − H8
C8 − ˆ̀8

)}

Deviance residuals: A8 = sign(H8 − ˆ̀8)
√
38

Deviance =

=∑
8=1

38 .

Note that, unlike the situation with normal errors as in Example 1, the deviance residuals in the column headed

as Dev-resid in the previous residuals table are not the same as the usual residuals from a regression.
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GLM example 3: G02GCF, Poisson errors with a log link

This example illustrates using the choice for Poisson error and a log link to analyze a contingency table. and

the test file for this option is glm.tf3 which has columns for 8 variables G8 , then a column H for the Poisson

variable, and a final column of weights B = 1. However, to understand the format for these data it must

be pointed out that this is a representation of a 3 by 5 contingency table contained in test file loglin.tf1.

Because there are 3 rows and 5 columns in the contingency table there will be 8 categorical variables with a

1 representing true and a 0 representing false. To clarify the situation consider the following table displaying

the contingency table along with equivalent data file

Test file loglin.tf1 Test file glm.tf3

21 22 23 24 25 G1 G2 G3 G4 G5 G6 G7 G8 H B

A1 141 67 114 79 39 1 0 0 1 0 0 0 0 141 1

A2 131 66 143 72 35 1 0 0 0 1 0 0 0 67 1

A3 36 14 38 28 16 1 0 0 0 0 1 0 0 114 1

1 0 0 0 0 0 1 0 79 1

1 0 0 0 0 0 0 1 39 1

0 1 0 1 0 0 0 0 131 1

0 1 0 0 1 0 0 0 66 1

0 1 0 0 0 1 0 0 143 1

0 1 0 0 0 0 1 0 72 1

0 1 0 0 0 0 0 1 35 1

0 0 1 1 0 0 0 0 36 1

0 0 1 0 1 0 0 0 14 1

0 0 1 0 0 1 0 0 38 1

0 0 1 0 0 0 1 0 28 1

0 0 1 0 0 0 0 1 16 1

Hence, because cell 1,1 indicates 141 number of times that category 1,1 occurred then row 1 of the data file

will have a 0 everywhere except for G1 = 1 and G4 = 1 indicating row 1 and column 1 of the contingency

table. In other words variables G1, G2, G3 represent rows 1, 2, 3 in the contingency table, while variables

G4, G5, G6, G7, G8 represent columns 1, 2, 3, 4, 5 in the contingency table.

To summarize. If a contingency table ) has A rows and 2 columns then the equivalent data file � will have A2

rows and A + 2 + 2 columns. The value in contingency table cell )8 9 will be the value in data cell �:; with

: = (8 − 1)2 + 9 and ; = A + 2 + 1. However, all the data cells �:; will be zero for ; ≤ A + 2 except for ; = 8

and ; = 9 + A which will be one.

The next tables show the results from fitting a log link and mean but no offsets to glm.tf3.

No. parameters = 9, Rank = 7, No. points = 15, Deg. freedom = 8

Parameter Value Lower95%cl Upper95%cl Std. error ?

Constant 2.59766 2.53813 2.65719 0.0258152 0.0000

B(1) 1.26195 1.16091 1.36299 0.0438171 0.0000

B(2) 1.27773 1.17714 1.37833 0.0436224 0.0000

B(3) 0.05798 -0.09595 0.21190 0.0667511 0.4104 ***

B(4) 1.03069 0.90365 1.15773 0.0550913 0.0000

B(5) 0.29102 0.12229 0.45976 0.0731714 0.0041

B(6) 0.98757 0.85859 1.11654 0.0559316 0.0000

B(7) 0.48798 0.33224 0.64371 0.0675352 0.0001

B(8) -0.19960 -0.40795 0.00875 0.0903524 0.0582 *

Deviance = 9.03788, A = 1
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Number . -value Theory Dev-resid Leverage

1 141 132.993 0.68750 0.603533

2 67 63.4740 0.43857 0.513759

3 114 127.380 -1.20721 0.596285

4 79 77.2915 0.19363 0.531602

5 39 38.8616 0.02218 0.481976

6 131 135.109 -0.35531 0.608326

7 66 64.4838 0.18808 0.519638

8 143 129.406 1.17492 0.601167

9 72 78.5211 -0.74647 0.537265

10 35 39.4799 -0.72715 0.488239

11 36 39.8979 -0.62759 0.392649

12 14 19.0422 -1.21309 0.255123

13 38 38.2139 -0.03464 0.381546

14 28 23.1874 0.96754 0.282457

15 16 11.6585 1.20279 0.206435

The definitions are

For Poisson errors: 38 = 2

{
H8 log

(
H8

ˆ̀8

)
− (H8 − ˆ̀8)

}

Deviance residuals: A8 = sign(H8 − ˆ̀8)
√
38

Deviance =

=∑
8=1

38,

but note that an error message is output to warn you that the solution is over-determined, i.e., the parameters

and standard errors are not unique.

Thus, in order to obtain unique parameter estimates, it is necessary to impose constraints so that the resulting

constrained system is of full rank. Let the singular value decomposition (SVD) %∗ be represented, as in

G02GKF, by

%∗
=

(
�−1%)

1

%)
0

)
,

and suppose that there are < parameters and the rank is A, so that there need to be =2 = < − A constraints, for

example, in a < by =2 matrix � where

�) V = 0.

Then the constrained estimates V̂2 are given in terms of the SVD parameters V̂BE3 by

V̂2 = �V̂BE3

= (� − %0(�) %0)−1�) ) V̂BE3,

while the variance-covariance matrix + is given by

+ = �%1�
−2%)1 �

) ,

provided that (�) %−1
0
) exists.

This approach is commonly used in log-linear analysis of contingency tables, but it can be tedious to first fit

the overdetermined Poisson GLM model then apply a matrix of constraints as just described. For this reason

SimFIT provides an automatic procedure to calculate the dummy indicator matrix from the contingency table

then fit a log-linear model and apply the further constraints that the sum of row effects and sum of column

effects are zero.
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This simplified GLM log-linear analysis of contingency tables is available from the SimFIT main menu

[Statistics] option using either the [Standard statistical tests] sub-menu or the [Generalized linear models]

options.

For instance, the next table illustrates how this is done with loglin.tf1 using the GLM log-linear contingency

table analysis procedure to read in a contingency table, fit a Poisson model, then apply the correction to apply

the equations of constraint

=2>;∑
8=1

Column parameter8 = 0

=A>F∑
8=1

Row parameter8 = 0

to obtain well-defined parameter estimates.

No. rows = 3, No. columns = 5

Deviance (D) = 9.03788E+00, Deg. freedom = 8

%(j2 ≥ �) = 0.3391

Parameter Value Lower95%cl Upper95%cl Std. error ?

Constant 3.98308 0.0395833 3.89180 4.07435 0.0000

Row 1 0.39606 0.0458291 0.29038 0.50175 0.0000

Row 2 0.41185 0.0456995 0.30646 0.51723 0.0000

Row 3 -0.80791 0.0621905 -0.95132 -0.66450 0.0000

Col 1 0.51116 0.0561557 0.38166 0.64065 0.0000

Col 2 -0.22851 0.0727114 -0.39618 -0.06084 0.0137 *

Col 3 0.46804 0.0569148 0.33679 0.59933 0.0000

Col 4 -0.03156 0.0675080 -0.18723 0.12412 0.6527 ***

Col 5 -0.71913 0.0887225 -0.92373 -0.51454 0.0000

Data Model Delta Dev-resid Leverage

141 132.9931 8.0069 0.6875 0.6035

67 63.4740 3.5260 0.4386 0.5138

114 127.3798 -13.3798 -1.2072 0.5963

79 77.2915 1.7085 0.1936 0.5316

39 38.8616 0.1384 0.0222 0.4820

131 135.1089 -4.1089 -0.3553 0.6083

66 64.4838 1.5162 0.1881 0.5196

143 129.4063 13.5937 1.1749 0.6012

72 78.5211 -6.5211 -0.7465 0.5373

35 39.4799 -4.4799 -0.7271 0.4882

36 39.8979 -3.8979 -0.6276 0.3926

14 19.0422 -5.0422 -1.2131 0.2551

38 38.2139 -0.2139 -0.0346 0.3815

28 23.1874 4.8126 0.9675 0.2825

16 11.6585 4.3415 1.2028 0.2064
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GLM example 4: G02GDF, gamma errors with a reciprocal link

The next tables show the results from fitting a reciprocal link and mean but no offsets to glm.tf4.

No. parameters = 2, Rank = 2, No. points = 10, Deg. freedom = 8

Parameter Value Lower95%cl Upper95%cl Std. error ?

Constant 1.44085 -0.08812 2.96981 0.663037 0.0615 *

B(1) -1.28653 -2.82436 0.25131 0.666882 0.0898 *

Adjusted Deviance = 35.0344, S = 1.07418, A = 1

Number . -value Theory Dev-resid Leverage

1 1.00 6.48000 -1.39085 0.2

2 0.30 6.48000 -1.92278 0.2

3 10.5 6.48000 0.52365 0.2

4 9.70 6.48000 0.43179 0.2

5 10.9 6.48000 0.56784 0.2

6 0.62 0.69404 -0.11071 0.2

7 0.12 0.69404 -1.32870 0.2

8 0.09 0.69404 -1.48152 0.2

9 0.50 0.69404 -0.31063 0.2

10 2.14 0.69404 1.36648 0.2

Note that with gamma errors, the scale factor (a−1) can be input or estimated using the degrees of freedom, :,

and

â−1
=

=∑
8=1

[(H8 − ˆ̀8]/ ˆ̀8]2

# − :

For gamma errors: 38 = 2

{
log( ˆ̀8) +

(
H8

ˆ̀8

)}

Deviance residuals: A8 =
3(H

1
3

8
− ˆ̀8

1
3 )

ˆ̀8
1
3

Deviance: =

=∑
8=1

38
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8.4.3 GLM: Loglinear contingency table analysis

In addition to chi-square and Fisher exact analysis of contingency tables, using generalized linear models

(GLM) to perform loglinear analysis is often preferred as it provides more insight into the structure of the

table, and can be extended to contingency tables with more than two dimensions.

From the main SimFIT menu select [Statistics], [Generalized linear models], [Contingency table analysis],

then observe the format of the default data file loglin.tf1 which contains the following contingency table.

21 22 23 24 25

A1 141 67 114 79 39

A2 131 66 143 72 35

A3 36 14 38 28 16

When these data are analyzed, SimFIT creates a temporary data file formatted for GLM analysis using Poisson

error with a log link then applies the constraint that the sum of row coefficients and also the sum of column

coefficients add to zero to output the next tables of results.

No. rows = 3, No. columns = 5

Deviance (D) = 9.03788E+00, Deg. freedom = 8

%(j2 ≥ �) = 0.3391

Parameter Value Lower95%cl Upper95%cl Std. error ?

Constant 3.98308 0.0395833 3.89180 4.07435 0.0000

Row 1 0.39606 0.0458291 0.29038 0.50175 0.0000

Row 2 0.41185 0.0456995 0.30646 0.51723 0.0000

Row 3 -0.80791 0.0621905 -0.95132 -0.66450 0.0000

Col 1 0.51116 0.0561557 0.38166 0.64065 0.0000

Col 2 -0.22851 0.0727114 -0.39618 -0.06084 0.0137 *

Col 3 0.46804 0.0569148 0.33679 0.59933 0.0000

Col 4 -0.03156 0.0675080 -0.18723 0.12412 0.6527 ***

Col 5 -0.71913 0.0887225 -0.92373 -0.51454 0.0000

Data Model Delta Dev-resid Leverage

141 132.9931 8.0069 0.6875 0.6035

67 63.4740 3.5260 0.4386 0.5138

114 127.3798 -13.3798 -1.2072 0.5963

79 77.2915 1.7085 0.1936 0.5316

39 38.8616 0.1384 0.0222 0.4820

131 135.1089 -4.1089 -0.3553 0.6083

66 64.4838 1.5162 0.1881 0.5196

143 129.4063 13.5937 1.1749 0.6012

72 78.5211 -6.5211 -0.7465 0.5373

35 39.4799 -4.4799 -0.7271 0.4882

36 39.8979 -3.8979 -0.6276 0.3926

14 19.0422 -5.0422 -1.2131 0.2551

38 38.2139 -0.2139 -0.0346 0.3815

28 23.1874 4.8126 0.9675 0.2825

16 11.6585 4.3415 1.2028 0.2064
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Theory

A contingency table is an array of nonnegative frequencies with = rows and < columns, such as this table

contained in SimFIT test file chisqd.tf4, for 15 observations carried out on two populations to test for equal

probabilities of success.

Success Failure

Sample 1 3 3 6

Sample 2 7 2 9

10 5 15

Here, the cell frequencies 58 9 are (3, 3, 7, 2), the sum of row frequencies known as row marginals are (6, 9),
the sum of column frequencies known as column marginals are (10, 5), and obviously the row and column

marginals must separately both add up to the total number of frequencies (15). The null hypothesis is usually

to test for homogeneity or independence, which is the condition that the 58 9 only depend on row 8 and column

9 , and there are no additional influences affecting frequencies in special cells.

To be precise, in the general case there will be frequencies 58 9 where 8 = 1, 2, . . . , =, and 9 = 1, 2, . . . , <, and

it is wished to test for homogeneity, i.e. independence, or no association between the variables, which can be

stated as the null hypothesis

�0 : `8 9 = `8+`+ 9 , for 8 = 1, 2, . . . , =, and 9 = 1, 2, . . . , <

where each cell probability `8 9 is completely determined by the corresponding row marginal `8+, and the

column marginal `+ 9 probabilities.

To do this, SimFIT defines dummy indicator variables for the rows and columns, then fits a generalized linear

model assuming a Poisson error distribution and log link, but imposing the constraints that the sum of row

coefficients is zero and the sum of column coefficients is zero, to avoid fitting an over-determined model, and

to be consistent with an assumed loglinear model.

The advantage of this approach is that the deviance, predicted frequencies, deviance residuals, and leverages

can be calculated for the model

log(`8 9 ) = \ + U8 + V 9 ,

where `8 9 are the expected cell frequencies expressed as functions of an overall mean \, row coefficients

U8 , and column coefficients V 9 . The row and column coefficients reflect the main effects of the categories,

according to the above model, where
=∑
8=1

U8 =

<∑
9=1

V 9 = 0

and the deviance, which is a likelihood ratio test statistic, can be used to test the justification for a mixed term

W8 9 in the saturated model

log(`8 9 ) = \ + U8 + V 9 + W8 9 ,

which fits exactly, i.e., with zero deviance.

SimFIT performs a chi-square test on the deviance to test the null hypotheses of homogeneity, which is the

same as testing that all W8 9 are zero, the effect of individual cells can be assessed from the leverages, and

various deviance residuals plots can be done to estimate goodness of fit of the assumed loglinear model.

Clearly, the chi-square test for data in test file loglin.tf1 presented in the previous table does not support

rejection of the null hypothesis of homogeneity.
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8.4.4 GLM: Logistic regression

Logistic regression is widely used to model experiments with only one of two outcomes such as success

or failure which, unlike the simple method for analysis of binomial proportions, depend on the values of :

covariates G1, G2, . . . , G: , where : ≥ 1.

Example 1: Alcohol and congenital abnormalities

From the main SimFIT menu choose [Statistics], [Generalized linear models], then [Logistic regression], and

examine the default test file logistic.tf3 containing the following data.

G H # B

0.0 48 17066 1

0.5 38 14464 1

1.5 5 788 1

4.0 1 126 1

7.0 1 37 1

These data were taken from a study of the effects of consuming alcoholic drinks on congenital abnormalities

noted in infants after birth.

1. Column 1: G, alcoholic drinks consumed per day by mother

2. Column 2: H, infants born with abnormalities

3. Column 3: # , sample size

4. Column 4: B, weighting factors (B = 1 indicates unweighted analysis)

Logistic regression by was used to fit the GLM model

log[H/(# − H)] ≈ V0 + V1G

which yielded the following parameter estimates, residuals, then observed and estimated frequencies.

Number of parameters = 2, Rank = 2, Number of points = 5, Degrees of freedom = 3

Parameter Value Lower95%cl Upper95%cl Std. error ? 4G?(V1)
Constant -5.95840 -6.32583 -5.59097 0.115454 0.0000

V1 0.31927 -0.08038 0.71889 0.125574 0.0845 * 1.37611

Deviance = 1.96760

Number . -value Theory Dev-resid. Leverage

1 48 43.9856 0.597220 0.584800

2 38 43.7119 -0.885127 0.476721

3 5 3.27338 0.886968 0.097194

4 1 1.15684 -0.149976 0.246568

5 1 0.87238 0.135174 0.594717

Observed Estimated

0.0028 0.0026

0.0026 0.0030

0.0064 0.0041

0.0079 0.0092

0.0270 0.0236
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Example 2: The symmetrical case with one variable

Logistic regression is frequently used to model the variation in binomial probability ? as a simple linear

function of a variable G often without realizing that, because of the necessary symmetry of the logistic

function, this will usually lead to a biased fit.

For instance, consider the data file logistic.tf4 below

5 0 39 1

7 0 30 1

9 11 28 1

11 26 40 1

13 29 30 1

15 20 20 1

and its complement logistic.tf5

5 39 39 1

7 30 30 1

9 17 28 1

11 14 40 1

13 1 30 1

15 0 20 1

simulated by SimFIT using a random choice from an integer uniform distribution for # (20 ≤ # ≤ 40)

followed by a random choice from a binomial distribution for H given # and ?(G) which were then fitted as

indicated in the next graph.
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Exact parameters were V0 = −10, V1 = 1 for ?(G) and V0 = 10, V1 = −1 for 1− ?(G) and the best fit parameters

are in the next tables.
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Number of parameters = 2, Rank = 2, Number of points = 6, Degrees of freedom = 4

Parameter Value Lower95%cl Upper95%cl Std. error ? 4G?(V1)
Constant -10.2573 -14.5246 -5.98991 1.53699 0.0026

V1 1.01996 0.60551 1.43440 0.14927 0.0024 2.77307

Deviance = 7.07433

Number of parameters = 2, Rank = 2, Number of points = 6, Degrees of freedom = 4

Parameter Value Lower95%cl Upper95%cl Std. error ? 4G?(V1)
Constant 10.2573 5.98391 14.5307 1.53915 0.0026

V1 -1.01996 -1.43498 -0.60494 0.14948 0.0024 0.360610

Deviance = 7.07433

Due to the symmetry of the logistic curves for ? and 1 − ? about their midpoints G1/2

? =
1

1 + exp(−[) = 1 − ? =
1

1 + exp([) =
1

2

so that the mid point requires [ = 0, that is G1/2 = −V0/V1.

Moving a horizontal distance _ to either side of the midpoint generates two vertical distancesΔ1 andΔ2 which

are equal as shown in this next graph.
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This is because

Δ1 =
1

1 + exp(−V1_)
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Theory

In a situation where the probability of success is a fixed constant ? and . is the number of successes in #

trials (# ≥ 1), then the probability the . equals any specific value H where 0 ≤ H ≤ # is

%(. = H) =
(
#

H

)
?H (1 − ?)#−H

and ? can be estimated as ?̂ where the estimate, expectation and variance are

?̂ = H/#
� (H) = #?
+ (H) = #?(1 − ?) .

When the binomial parameter is a function of some variables G1, G2, . . . , G: then a functional relationship

must be proposed to model ?(G) and this must be fitted to estimate parameters accounting for the variation in

?. It is usual to do this by fitting a generalized linear model (GLM) with assumed binomial error and logistic

link, but the reason for this model is not because it is the correct model but because of the following fact. In

the simple case of one variable G the log odds ratio from fitting a GLM model with H1 at G and H2 at G + 1 can

then be expressed as

log

(
H1

# − H1

)
≈ V0 + V1G

log

(
H2

# − H2

)
≈ V0 + V1(G + 1)

and hence the odds ratio can be estimated as

?̂2/(1 − ?̂2)
?̂1/(1 − ?̂1)

≈ exp(V1) .

From this we could conclude that an increase of one alcoholic drink per day can be estimated to change the

odds ratio for congenital malformation by about 1.376.

It is this seemingly easy method for interpreting the parameter estimates from logistic regression that has been

responsible for the widespread and often uncritical adoption of this technique and its extension into areas such

as

• Including multiple variables

• Analyzing cases with categorical variables.

So, in order to confirm goodness of fit, SimFIT outputs the deviance and deviance residuals defined as follows

For binomial errors: 38 = 2

{
H8 log

(
H8

ˆ̀8

)
+ (#8 − H8) log

(
#8 − H8
#8 − ˆ̀8

)}

Deviance residuals: A8 = sign(H8 − ˆ̀8)
√
38

Deviance =

=∑
8=1

38 .

where there are = observations and ˆ̀8 = #8 ?̂8 , and these should always be considered before accepting a fit.
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8.4.5 GLM: Binary logistic regression

Binary logistic regression is widely used to model experiments with only one of two outcomes such as success

or failure which, unlike the simple method for analysis of binomial proportions, depend on the values of :

covariates G1, G2, . . . , G: , where : ≥ 1.

Example 1: Fitting a binary logistic model

From the main SimFIT menu choose [Statistics], [Generalized linear models], then [Binary logistic regression]

(with no strata), then examine the default test file logistic.tf1 containing the following data.

G1 G2 H # B

3.70 0.825 1 1 1

3.50 1.090 1 1 1

0.75 1.500 1 1 1

1.25 2.500 1 1 1

0.80 3.200 1 1 1

0.70 3.500 1 1 1

0.60 0.750 0 1 1

1.10 1.700 0 1 1

0.90 0.750 0 1 1

0.90 0.450 0 1 1

0.80 0.570 0 1 1

0.55 2.750 0 1 1

0.60 3.000 0 1 1

1.40 2.330 1 1 1

0.75 3.750 1 1 1

2.34 1.640 1 1 1

3.20 1.600 1 1 1

0.85 1.415 1 1 1

1.70 1.060 0 1 1

1.80 1.800 1 1 1

0.40 2.000 0 1 1

0.95 1.360 0 1 1

1.35 1.350 0 1 1

1.50 1.360 0 1 1

1.60 1.780 1 1 1

0.60 1.500 0 1 1

1.80 1.500 1 1 1

0.95 1.900 0 1 1

1.90 0.950 1 1 1

1.60 0.400 0 1 1

2.70 0.750 1 1 1

2.35 0.030 0 1 1

1.10 1.830 0 1 1

1.10 2.200 1 1 1

1.20 2.000 1 1 1

0.80 3.330 1 1 1

0.95 1.900 0 1 1

0.75 1.900 0 1 1

1.30 1.625 1 1 1
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The format of this data file will now be explained. These are vasoconstriction data from Finney D. J. (1947)

Biometrika, 34, 320-34 with the following meanings.

• Column 1: G1 (volume of air inspired)

• Column 2: G2 (rate of air inspiration)

• Column 3: H = 1 (vasoconstriction), or H = 0 (no vasoconstriction)

• Column 4: # = 1 (sample size)

• Column 5: B = 1 (unweighted)

It is important to note that for binary logistic regression, H must be 1 (e.g. for success) or 0 (e.g. for failure),

and # must be 1 because H is the outcome from a single Bernoulli trial, whereas for normal logistic regression,

H must be in the range 0 ≤ H ≤ # with # ≥ 1 for the number of trials resulting in H (e.g. the number of

successful outcomes). The weighting factors would normally be B = 1 except for experienced users.

Fitting a generalized linear model with a mean, no offsets, binomial error and a logistic link leads to the

following results table and half-normal residuals plot.

Number of parameters = 3, Rank = 3, Number of points = 39, Degrees of freedom = 36

Parameter Value Lower95%cl Upper95%cl Std. error ? exp(V8)
Constant -9.51999 -16.0587 -2.98131 3.22405 0.0055

V1 3.87719 0.986847 6.76753 1.42515 0.0100 48.2882

V2 2.64683 0.797466 4.49619 0.91187 0.0063 14.1092

Deviance = 29.7656
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Example 2: Predicting probabilities

Binary logistic regression seeks to find an approximation ?̂(G) to a population binomial probability ?(G) that

is not a constant probability but one that depends on covariates G as in the following model for the logodds

log

(
?(G)

1 − ?(G)

)
≈ [(G)

where [(G) = V0 + V1G1 + V2G2 + · · · + V:G:
and where the approximation results from fitting a generalized linear model (GLM) with binomial error, using

a logistic link, when there are : covariates. The constant parameter V0 in this polynomial simply estimates

the logodds when all : covariates are zero, and can be included or omitted from the model.

Having estimated best-fit parameters and confirmed that the model is satisfactory it is often useful to predict

what the probability would be given a set of covariates using the best-fit parameters in the next expressions

[̂ = V̂0 + V̂1G1 + V̂2G2 + · · · + V̂:G:

?̂ =
exp([̂)

1 + exp([̂)

=
1

1 + exp(−[̂) .

So, after fitting has been completed, SimFIT offers the possibility to do this either by inputting a set of

covariates from the terminal or from a data file containing a matrix of covariates. Here, for instance, are the

data contained in the test file logistic.tf2

G1 G2

0.4 1.0

0.6 1.0

0.8 1.0

1.0 1.0

1.0 0.8

1.0 0.6

1.0 0.4

which lead to these predictions after evaluation using the best-fit model from fitting logistic.tf1.

File: logistic.tf2

Data: Covariates to evaluate ? after fitting logistic.tf1

. (G) evaluated for G1 to G2

Model includes a constant term

Binomial # = 1

H predicted Probability estimated Range of covariates

H1 = 4.85785E-03 Binomial ? = 0.004858 G = 0.4, ..., 1.0

H2 = 1.04893E-02 Binomial ? = 0.010489 G = 0.6, ..., 1.0

H3 = 2.25015E-02 Binomial ? = 0.022502 G = 0.8, ..., 1.0

H4 = 4.76080E-02 Binomial ? = 0.047608 G = 1.0, ..., 1.0

H5 = 2.85997E-02 Binomial ? = 0.028600 G = 1.0, ..., 0.8

H6 = 1.70450E-02 Binomial ? = 0.017045 G = 1.0, ..., 0.6

H7 = 1.01099E-02 Binomial ? = 0.010110 G = 1.0, ..., 0.4

As binary logistic regression is so widely used, often uncritically and without justification, to predict prob-

abilities given covariates it is as well to consider the basic principles behind this method which will now be

done.
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Theory

The ideas behind binary logistic regression will be explained under several headings, namely

1. definitions;

2. one quantitative variable;

3. several quantitative variables;

4. categorical variables;

5. fitting technique; then

6. conclusion.

1. Definitions

A random integer variable . can be formulated as taking a value depending on the result of an experiment

with only one of two possible outcomes, such as heads/tails in coin tossing, death/survival following a serious

illness, positive/negative of a value with respect to a baseline, etc. Arbitrarily calling one outcome a success

and the other a failure we can sometimes define . as taking two possible values, 1 or 0, depending on a

probability ? where 0 ≤ ? ≤ 1 that is

Probability(H = 1) = ?
Probability(H = 0) = 1 − ?.

When the certain and impossible outcomes are excluded (i.e. 0 < ? < 1) the Odds can be defined as the ratio

of success to failure as can the Log Odds, its natural logarithm, that is

Odds =
?

1 − ?

Log Odds = log

(
?

1 − ?

)
.

Given one trial with probability ?1 where 0 < ?1 < 1 and one with probability ?2 where 0 < ?2 < 1 the

Odds Ratio and Log Odds Ratio are then given by

Odds Ratio =
?2/(1 − ?2)
?1/(1 − ?1)

Log Odds Ratio = log

(
?2/(1 − ?2)
?1/(1 − ?1)

)
.

At this point it should be emphasized that exponentials and logarithms to base 4 are used in theoretical

developments and computational implementation, but many users prefer to present results using logarithms

to base 10 in order to immediately clarify changes in orders of magnitude as powers of 10.

Of course such probabilities are never known exactly but must be estimated by sampling. In the case of #

successive Bernoulli trials which are independent with identical probability it is usual to define a binomial

variable, as

, = H1 + H2 + · · · + H#
so that the probability that, = F where 0 ≤ F ≤ # is

%(, = F) =
(
#

F

)
?F (1 − ?)#−F
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with expectation and variance given by

� (,) = #?
+ (,) = #?(1 − ?) .

From such a series of trials an estimate for the binomial parameter ?̂ is easily seen to be

?̂ =
F

#

and SimFIT provides dedicated analysis of proportions routines to calculate ?̂ with unsymmetrical confidence

limits and plot these as a function of a parameter such as time, which only serves to order the observations for

plotting and does not enter into the calculations.

Logistic regression using GLM is an extension of this subject to the case where additional variables G affect

the probabilities under the assumption that each set of additional variables alters the binomial distribution

distribution, i.e. ? = ?(G), while binary logistic regression is just the special case where # = 1.

2. One quantitative variable

The GLM technique is used to adjust the two parameters V0 and V1 until the best-fit values are located to

satisfy the approximation

log

(
?̂(G)

1 − ?̂(G)

)
≈ V̂0 + V̂1G

according to the maximum likelihood criterion.

A special case is where the continuous variable is used at just two levels differing by one unit, say G and G + 1,

for then we have that, since

Odds =
?

1 − ?
= exp([)

then for the two levels G and G + 1

Odds Ratio =
Odds(G + 1)

Odds(G)

=
exp( V̂0 + V̂1(G + 1))

exp( V̂0 + V̂1G)
= exp( V̂1)

so that the Odds multiply by the factor exp( V̂1) for every one unit increase in the variable G or, alternatively,

V̂1 = Log Odds Ratio.

3. Several quantitative variables

Now, for : variables we have

[ = V0 + V1G1 + V2G2 + · · · + V:G:
which becomes difficult to fit as : increases, especially if the variables are not expressed in units so that the

values are of similar size. Further, the arguments about interpreting the estimated parameters in terms of Log

Odds Ratios, imply that only one variable is increased at a time with the others remaining fixed.
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4. Categorical variables

Frequently the covariates are qualitative variables which can be included in the model by defining appropriate

dummy indicator variables. For instance, suppose a factor has< levels, then we can define< dummy indicator

variables G1, G2, . . . , G< as in the next table.

Level G1 G2 G3 . . . G<
1 1 0 0 . . . 0

2 0 1 0 . . . 0

3 0 0 1 . . . 0

. . . . . . . . . . . . . . . . . .

< 0 0 0 . . . 1

The data file would be set up as if to estimate all < parameters for the < factor levels but because only < − 1

of the dummy indicator variables are independent, one of them would have to be suppressed if a constant

were to be fitted, to avoid aliasing, i.e., the model would be overdetermined and the parameters could not be

estimated uniquely. Suppose, for instance, that the model to be fitted was for a factor with three levels, i.e.,

log

{
?(G)

1 − ?(G)

}
= 00 + 01G1 + 02G2 + 03G3

but with any one of the G8 suppressed, G1 for instance, since

G18 + G28 + G38 = 1

for every 8.

Then the estimated parameters could be interpreted as log odds ratios for the factor levels with respect to level

1, the suppressed reference level. This is because for probability estimates ?̂1, ?̂2 and ?̂3 we would have the

odds estimates

?̂1

1 − ?̂1

= exp(0̂0) (G1 = 1, G2 = 0, G3 = 0)

?̂2

1 − ?̂2

= exp(0̂0 + 0̂2) (G1 = 0, G2 = 1, G3 = 0)

?̂3

1 − ?̂3

= exp(0̂0 + 0̂3) (G1 = 0, G2 = 0, G3 = 1)

and estimates for the corresponding log odds ratios involving only the corresponding estimated coefficients

log

{
?̂2/(1 − ?̂2)
?̂1/(1 − ?̂1)

}
= 0̂2

log

{
?̂3/(1 − ?̂3)
?̂1/(1 − ?̂1)

}
= 0̂3.

5. Fitting technique

The first thing to note about binary logistic regression is that we cannot fit the model

log

(
H

1 − H

)
= V0 + V1G1 + V2G2 + · · · + V:G:

directly as all the H values are 0 or 1. Instead starting estimates are generated and an iterative procedure is

used to find the maximum likelihood solution point and estimate the deviance and deviance residuals. In the
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event that the data matrix is not of full rank this will be reported and the singular value decomposition will be

used, so parameter estimates will still be generated but will not then be unique.

Note that, for standard logistic regression where F8 is the 8’th binomial variable for < samples of size #8 , and

not either 0 or 1 with a sample size of 1 as with binary logistic regression, the deviance is

<∑
8=1

dev(F8 , ˆ̀8) = 2

<∑
8=1

{
F8 log

(
F8

ˆ̀8

)
+ (#8 − F8) log

(
#8 − F8
#8 − ˆ̀8

)}

and the deviance residuals A8 are

A8 = sign(F8 − ˆ̀8)
√

dev(F8 , ˆ̀8).

Of course these expressions are corrected for the extreme cases F8 = 0 or F8 = #8 which will happen from

time to time with standard logistic regression, but will happen all the time with binary logistic regression.

6. Conclusions

Binary logistic regression is widely used to analyze large data sets, sometimes even containing mixtures of

qualitative and quantitative variables, and often in order to estimate Log Odds Ratios. It is incumbent upon

users that any conclusions drawn about predicting probabilities are justified by taking account of the following

suggestions.

• Add a constant term to the regression unless it is clear that ? = 0.5 when all the covariates are zero.

• Scale all the variables to similar orders of magnitude prior to regression.

• Take care about the need with categorical variables to suppress a variable if a constant is fitted.

• Check the deviance, deviance residuals, and leverages to make sure the model gives a sensible fit.

• Do not ignore warnings if the rank is less than full or iteration has not converged.

• Only using parameters to estimate log odds ratio if the number of variables is small and that a unit

change in a variable makes sense.

• Be careful not to confuse exponentials and logarithms to base 4 with powers of ten and logarithms to

base 10.
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8.5 Nonlinear regression: simple

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

8.5.1 Fitting Michaelis-Menten enzyme kinetic models

Michaelis–Menten models are used to analyze quasi steady state data when the enzymes concerned do

not exhibit substrate inhibition, substrate activation, or any other complicating features such as allosterism.

The one site version can be extended to cover the case of an enzyme with several kinetically differing but

independent sites, or mixtures of isoenzymes.

Example 1: Substrate varied mode

From the main SimFIT menu select [A/Z], open program mmfit, select the substrate-varied option, and view
the default test file mmfit.tf4 which has the following data.

( E B4(E)
0.21759 0.20273 0.0054324

0.21759 0.20050 0.0054324

0.21759 0.19241 0.0054324

0.39440 0.31925 0.015018

0.39440 0.34123 0.015018

0.39440 0.31252 0.015018

0.71490 0.50336 0.011163

0.71490 0.48104 0.011163

0.71490 0.49241 0.011163

1.2958 0.67103 0.018464

1.2958 0.70535 0.018464

1.2958 0.67639 0.018464

2.3488 0.90847 0.015994

2.3488 0.93885 0.015994

2.3488 0.91501 0.015994

4.2575 1.1107 0.021537

4.2575 1.1439 0.021537

4.2575 1.1035 0.021537

7.7172 1.3639 0.048544

7.7172 1.2947 0.048544

7.7172 1.3882 0.048544

13.988 1.6565 0.042217

13.988 1.5894 0.042217

13.988 1.5785 0.042217

25.355 1.6468 0.078963

25.355 1.7954 0.078963

25.355 1.6748 0.078963

45.959 1.8712 0.029314

45.959 1.8568 0.029314

45.959 1.8148 0.029314

The columns contain data in the following format.

Column 1: (, the non–negative substrate concentration which must be in non-decreasing order.

Column 2: E, the non–negative initial rate measured for the concentration in column 1.

Column 3: B4, the positive sample standard deviation of the replicate rate measurements.

Note that column 3 can be omitted or set to 1 if unweighted regression is required.
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To illustrate the functionality of the SimFIT program mmfit we shall fit a one site model followed by a two

site model (or mixture of two isoenzymes) and see if any improvement in fit can be supported by statistical

analysis. The two models are as follows.

51(() =
+<0G(

 < + (

52(() =
+<0G1

(

 <1
+ ( +

+<0G2
(

 <2
+ (

To fit these two models choose to start fitting at order 1 and end fitting at order 2, using the further default

settings, to obtain the following results tables.

Table 1: For best-fit 1:1 Michaelis-Menten function 51
Number Parameter Value Std. Error Lower95%cl Upper95%cl ?

1 +<0G 1.7861 0.040866 1.7024 1.8698 0.0000

2  < 1.9734 0.097463 1.7738 2.1731 0.0000

Parameter correlation matrix for model 51
1

0.8185 1

Table 2: For best-fit 2:2 Michaelis-Menten function 52
Number Parameter Value Std. Error Lower95%cl Upper95%cl ?

1 +<0G1
1.0254 0.10377 0.81211 1.2387 0.0000

2 +<0G2
1.0290 0.13352 0.75455 1.3035 0.0000

3  <1
9.7460 2.8652 3.8566 15.636 0.0022

4  <2
1.0433 0.11698 0.80283 1.2837 0.0000

Predicted maximum rate (i.e. apparent +<0G) = 2.0544

Predicted half saturation point (i.e. apparent  <) = 3.1811

Parameter correlation matrix for model 52
1

-0.9568 1

-0.8573 0.9638 1

-0.9631 0.9810 0.9088 1

In order to determine if a significant improvement in fit has resulted we need to consider the following

questions.

1. Are the parameters well-determined with both fits ?

2. Does the residuals analysis indicate satisfactory fits ?

3. Does the � test for excess variance support model 52 in preference to 51 ?

4. Can the best-fit curves be seen to differ when plotted against the data ?

5. Does the graphical deconvolution display convincing evidence that both components of 52 are con-

tributing to the overall fit ?

The results displayed in Tables 1 and 2 show that both models fit well with parameters that differ significantly

from zero. Table 3 indicates that an excellent fit has resulted for model 52 and Table 4 supports the conclusion

that there is statistical evidence that model 52 should be accepted as explaining the data better than model 51.

This is then further emphasized by the graphical displays showing the data with best-fit curves for 51 and 52,

and the deconvolution of the 52 fit into the two contributing components.
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Table 3: Goodness of fit for model 52
Analysis of residuals: ,((& 28.293

%(j2 ≥ ,((&) 0.3442

'2, 22(Cℎ4>AH, 30C0)2 0.9963

Largest Absolute relative residual 5.88%

Smallest Absolute relative residual 0.25%

Average Absolute relative residual 2.28%

Absolute relative residuals in range 0.1-0.2 0.00%

Absolute relative residuals in range 0.2-0.4 0.00%

Absolute relative residuals in range 0.4-0.8 0.00%

Absolute relative residuals > 0.8 0.00%

Number of negative residuals (<) 13

Number of positive residuals (=) 17

Number of runs observed (A) 22

%(runs ≤ A : given < and =) 0.9957

5% lower tail point 10

1% lower tail point 9

%(runs ≤ A : given < plus =) 0.9959

%(signs ≤ least number observed) 0.5847

Durbin-Watson test statistic 2.5008 >2.5, -ve serial correlation?

Shapiro-Wilks, statistic 0.9678

Significance level of , 0.4806

Akaike ��� (Schwarz (�) stats 6.2425 ( 11.847)

Verdict on goodness of fit: incredible

Table 4: � test results for model 52 against 51
,((& previous 257.18

,((& current 28.293

Number of parameters previous 2

Number of parameters current 4

Number of G values 30

Akaike ��� previous 68.458

Akaike ��� current 6.2425, ER = 3.2346E+13

Schwarz (� previous 71.260

Schwarz (� current 11.847

Mallows’ �? 210.34, �?/2 = 105.17

Numerator degrees of freedom 2

Denominator degrees of freedom 26

� test statistic (�() 105.17

%(� ≥ �() 0.0000

%(� ≤ �() 1.0000

5% upper tail point 3.3690

1% upper tail point 5.5263

Conclusion based on � test

Reject previous model at 1% significance level

There is strong support for the extra parameters

Tentatively accept the current best fit model
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Example 2: Isotope displacement mode

When there is no appreciable kinetic isotope effect, that is, the binding or kinetic transformation process is the

same whether the substrate is labeled or not, this allows experiments in which labeled ligand is displaced by

unlabeled ligand, or where the flux of labeled substrate is inhibited by unlabeled substrate. Since the ratios of

labeled ligand to unlabeled ligand in the bound state, free state, and in the total flux are equal, a modified form

of Michaelis-Menten equations can be used to model the binding or kinetic processes. For instance, suppose

that total substrate, ( say, consists of labeled substrate, [�>C] say, and unlabeled substrate, [�>;3] say. Then

the flux of labeled substrate for : ≥ 1 active sites will be given by

−3 [�>C]
3C

=
+<0G1

[�>C]
 <1

+ [�>C] + [�>;3] +
+<0G2

[�>C]
 <2

+ [�>C] + [�>;3] + · · · +
+<0G: [�>C]

 <:
+ [�>C] + [�>;3] .

So, if [�>C] is kept fixed and [�>;3] is regarded as the independent variable, then program mmfit can be

used to fit the resulting data. In other words, cold substrate is being used as a competitive inhibitor of the flux

of hot substrate in such experiments.

Using the isotope displacement option in program mmfit with the default test file hotcold.tf1 establishes

that two sites is a statistically significant improvement over one site, and leads to the following deconvolution

plot to display the best-fit curve together with the separate components.

0

8

16

-2 -1 0 1 2 3 4 5

Isotope Displacement Kinetics

log10[Cold]

-d
[H

ot
]/

dt

Data
Best Fit
Component 1
Component 2

Note that an important difference between using mmfit in this mode rather than in straightforward kinetic

mode is that the kinetic constants are modified in the following sense: the apparent +<0G values estimated

are actually the true values multiplied by the concentration of labeled substrate, while the apparent  < values

estimated are the true ones plus the concentration of labeled substrate.

Where the actual concentration of [�>C] is known it is possible to fit such data in a more satisfactory and

discerning manner by using SimFIT program qnfit, where the [�>C] can be input as a fixed constant term so

that the actual kinetic constants can be estimated rather than the apparent ones mentioned above.
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Theory

Quasi steady-state enzyme kinetics is actually based on the assumption that the substrate concentration remains

constant, i.e. 3(/3C = 0, while the initial rate of product production 3%/3C ≥ 0 is measured. Although it is a

contradiction of nomenclature it is a widely used short hand convention nevertheless that an initial rate E(()
can defined as a flux from substrate ( into product % as follows

E(() = 3%

3C
= −3(

3C

and, in the case of : ≥ 1 independent active sites, the appropriate model equation is

E(() = +<0G1
(

 <1
+ ( + +<0G2

(

 <2
+ ( + · · · +

+<0G:(

 <:
+ ( .

In bygone times before the advent of computers, experimentalists had to fit such equations by plotting in

transformed spaces, such as the Lineweaver-Burke double reciprocal plot, and then extrapolating to estimate

slopes and intercepts, but thankfully this era is long since gone. However, this does not mean that fitting such

an equation by constrained weighted least squares is a simple process. It is not. In fact the case with : = 1 is

trivial, the case with : = 2 is reasonable, but the cases : > 2 require data that is very extensive and accurate,

and where the parameters are sufficiently distinct to allow model discrimination. For this particular model

that requires +<0G8 values to be similar, but  <8
to be distinct.

Program mmfit performs the following steps.

1. The E values are first weighted using F8 = 1/B42
8 , or used unweighted if all B48 = 1.

2. Using the ranges of (8 and E8 the data are transformed into internal coordinates of order unity.

3. Possible starting estimates are calculated for the parameters based on the internal coordinates, and then

these are altered by adding pseudo-random perturbations until an approximate minimum value for the

weighted sum of squares is located.

4. The parameters are then transformed into internal coordinates that will hopefully be of order unity to

stabilize the optimization.

5. From these random starting estimates the lowest and highest possible limits are calculated, then con-

strained optimization is performed by the quasi-Newton technique.

6. The internal parameters are transformed back into user-space, and the Hessian is estimated at the

solution point then inverted to calculate the parameter covariance matrix.

7. The order of parameters is permuted so that the subscripts for 8 = 1, 2, . . . , : refer to best-fit parameters

in the order +<0G1
≤ +<0G2

≤ . . . ≤ +<0G: . This is to allows retrospective comparison of fits to

alternative data sets.

8. The apparent (overall) +<0G is calculated as the sum of the +<0G8 and the apparent (overall)  < is

calculated numerically.

9. Analysis of the residuals is performed together with numerous statistical procedures to ascertain good-

ness of fit, parameter reliability, and model discrimination.

10. Results tables and graphs are then provided.

Program mmfit allows users to control the random search for starting estimates and the technique to be used

for calculating the gradient vector, and should the cases with : > 2 be required, users can perform extensive

random searches to obtain starting estimates that can be input retrospectively for manual starts. If these steps

do not succeed it is time to try the SimFIT advanced curve-fitting program qnfit.
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8.5.2 Fitting High–Low affinity ligand binding models

Ligand binding curves can be fitted by one binding site models or multiple binding sites with different affinity.

A distinction has to be made between high/low affinity receptor sites that are independent and can only show

negative cooperativity, and allosteric and other site-site interactions that can also give positive cooperativity.

Example 1: Ligand varied mode

From the main SimFIT menu select [A/Z], open program hlfit, select the ligand-varied option, and view the

default test file hlfit.tf4 which has the following data.

G H B4(H)
0.021759 0.19832 0.0091144

0.021759 0.19438 0.0091144

0.021759 0.18094 0.0091144

0.039440 0.30473 0.0047306

0.039440 0.29537 0.0047306

0.039440 0.29883 0.0047306

0.071490 0.46465 0.015273

0.071490 0.49460 0.015273

0.071490 0.48484 0.015273

0.12958 0.71278 0.048762

0.12958 0.67885 0.048762

0.12958 0.61663 0.048762

0.23488 0.87238 0.048295

0.23488 0.80269 0.048295

0.23488 0.89546 0.048295

0.42575 1.0246 0.044998

0.42575 1.1137 0.044998

0.42575 1.0806 0.044998

0.77172 1.4145 0.062457

0.77172 1.2934 0.062457

0.77172 1.3806 0.062457

1.3988 1.3619 0.13387

1.3988 1.6295 0.13387

1.3988 1.4897 0.13387

2.5355 1.7047 0.19446

2.5355 1.4435 0.19446

2.5355 1.8236 0.19446

4.5959 1.7486 0.043681

4.5959 1.7613 0.043681

4.5959 1.8298 0.043681

The columns contain data in the following format.

1. Column 1: the non–negative ligand concentration G which must be in non-decreasing order.

2. Column 2: the non–negative response H presumed to be dependent on fractional saturation of receptor

or binding site at the concentration in column 1.

3. Column 3: the positive sample standard deviation of the replicate response measurements.

Note that column 3 can be omitted or set to 1 if unweighted regression is required.
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To illustrate the functionality of the SimFIT program hlfit we shall fit a one site model followed by a two site

model (or mixture of two receptor types) and see if any improvement in fit can be supported by statistical

analysis. The two models are as follows.

51(G) =
� 0G

1 +  0G
+ �

52(!) =
�1 01

G

1 +  01
G
+ �2 02

G

1 +  02
G
+ �

To fit these two models, choose to start fitting at order 1 and end fitting at order 2, using the further default

settings but with � = 0 as there is no background signal with these data. This leads to the following results

tables.

Table 1: For best-fit order 1 saturation function 51
Number Parameter Value Std. Error Lower95%cl Upper95%cl ?

1 � 1.7482 0.038529 1.6693 1.8271 0.0000

2  0 5.2161 0.17513 4.8574 5.5749 0.0000

Apparent .<0G (i.e. �1 + �2 + ... + �=) = 1.7482

Apparent  0 (i.e. G0 where 5 (G0) − � = .<0G/2) = 0.19171

Parameter correlation matrix

1

-0.8715 1

Table 2: For best-fit order 2 saturation function 52
Number Parameter Value Std. Error Lower95%cl Upper95%cl ?

1 �1 0.91175 0.24512 0.40790 1.4156 0.0010

2 �2 1.0625 0.30555 0.43439 1.6905 0.0018

3  01
0.97501 0.68571 -0.43449 2.3845 0.1669 *

4  02
8.5829 2.0044 4.4629 12.703 0.0002

Apparent .<0G (i.e. �1 + �2 + ... + �=) = 1.9742

Apparent  0 (i.e. G0 where 5 (G0) − � = .<0G/2) = 0.31272

Parameter correlation matrix

1

-0.9770 1

0.9019 -0.9685 1

0.9845 -0.9936 0.9385 1

In order to determine if a significant improvement in fit has resulted we need to consider the following

questions.

1. Are the parameters well-determined with both fits ?

2. Does the residuals analysis indicate satisfactory fits ?

3. Does the � test for excess variance support model 52 in preference to 51 ?

4. Can the best-fit curves be seen to differ when plotted against the data ?

5. Does the graphical deconvolution display convincing evidence that both components of 52 are con-

tributing to the overall fit ?

The results displayed in Tables 1 and 2 show that both models fit well with parameters that differ significantly

from zero. Table 3 indicates that an excellent fit has resulted for model 52, and Table 4 supports the conclusion

that there is statistical evidence that model 52 should be accepted as explaining the data better than model 51.

This is then further emphasized by the graphical displays showing the data with best-fit curves for 51 and 52,

and the deconvolution of the 52 fit into the two contributing components. The concentration is often plotted

on a logarithmic scale which is then proportional to chemical potential.
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Table 3: Goodness of fit for model 52
Analysis of residuals: ,((& 29.952

%(j2 ≥ ,((&) 0.2696

'2, 22(Cℎ4>AH, 30C0)2 0.9834

Largest Absolute relative residual 14.25%

Smallest Absolute relative residual 0.26%

Average Absolute relative residual 4.42%

Absolute relative residuals in range 0.1-0.2 6.67%

Absolute relative residuals in range 0.2-0.4 0.00%

Absolute relative residuals in range 0.4-0.8 0.00%

Absolute relative residuals > 0.8 0.00%

Number of negative residuals (<) 14

Number of positive residuals (=) 16

Number of runs observed (A) 21

%(runs ≤ A : given < and =) 0.9820

5% lower tail point 11

1% lower tail point 9

%(runs ≤ A : given < plus =) 0.9879

%(signs ≤ least number observed) 0.8555

Durbin-Watson test statistic 3.1269 > 2.5, -ve serial correlation?

Shapiro-Wilks, statistic 0.9754

Significance level of, 0.6948

Akaike ��� (Schwarz (�) stats 7.9520 (13.557)

Verdict on goodness of fit: incredible

Table 4: � test results for model 52 against 51
,((& previous 86.634

,((& current 29.952

Number of parameters previous 2

Number of parameters current 4

Number of G values 30

Akaike ��� previous 35.815

Akaike ��� current 7.9520, ER = 1.1230e+06

Schwarz (� previous 38.617

Schwarz (� current 13.557

Mallows’ �? 49.203, �?/2 = 24.602

Numerator degrees of freedom 2

Denominator degrees of freedom 26

� test statistic (�() 24.602

%(� ≥ �() 0.0000

%(� ≤ �() 1.0000

5% upper tail point 3.3690

1% upper tail point 5.5263

Conclusion based on � test

Reject previous model at 1% significance level

There is strong support for the extra parameters

Tentatively accept the current best fit model
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Example 2: Isotope displacement mode

When there is no appreciable kinetic isotope effect, that is, the binding and response process process is the

same whether the ligand is labeled or not, this allows experiments in which labeled ligand is displaced by

unlabeled ligand. Since the ratios of labeled ligand to unlabeled ligand in the bound state, and free state are

equal, a modified form of high-low affinity sites equations can be used to model the binding processes. For

instance, suppose that total ligand, ! say, consists of labeled ligand held constant, [�>C] say, and unlabeled

ligand varied, [�>;3] say. Then the response of labeled substrate for = ≥ 1 active sites will be given by

5 ( [�>;3]) =
�1 01

[�>C]
1 +  01

( [�>C] + [�>;3]) +
�2 02

[�>C]
1 +  02

( [�>C] + [�>;3]) + · · · +
�= 0= [�>C]

1 +  0= ( [�>C] + [�>;3]) .

So, if [�>C] is kept fixed and [�>;3] is regarded as the independent variable, then program hlfit can be

used to fit the resulting data. In other words, cold substrate is being used as a competitive inhibitor of the

saturation by hot ligand in such experiments. Note that the parameters estimated will be clear when writing

the saturation with [�>C] = D and [�>;3] = E as follows

5 (D) = � 0D

1 +  0D

6(D, E) = � 0D

1 +  0 (D + E)

=
UV

1 + VE
U = �D

V =
 0

1 +  0D
.

This is how the estimated parameters displayed by program hlfit as in Table 5 must be interpreted, that is, �̂

estimated is really an estimate for �D and  ̂0 estimated is really an estimate for  0/(1 +  0D).

Using the isotope displacement option in program hlfit with the default test file hotcold.tf1 establishes that

two sites is a statistically significant improvement over one site, and leads to the following deconvolution plot

to display the best-fit curve together with the separate components.

Table 5: For best-fit order 2 isotope displacement function

Number Parameter Value Std. Error Lower95%cl Upper95%cl ?

1 �1 10.485 2.4284 5.5380 15.431 0.0001

2 �2 239.06 46.121 145.11 333.00 0.0000

3  1 1.0124 0.19498 0.61521 1.4095 0.0000

4  2 0.021593 0.0063982 0.0085604 0.034626 0.0019

Apparent .<0G (i.e. �1 1 + �2 2 + ... + �= =) = 15.776

Apparent  0 (i.e. G0 where 5 (G0) − � = .<0G/2) = 2.5163

Parameter correlation matrix

1

0.5405 1

-0.9799 -0.4559 1

-0.7615 -0.9450 0.6712 1

Note that an important difference between using hlfit in this mode rather than in straightforward binding mode

is that the binding constants are modified in the following sense, as previously described.

Where the actual concentration of [�>C] is known it is possible to fit such data in a more satisfactory and

discerning manner by using SimFIT program qnfit, where the [�>C] can be input as a fixed constant term

so that the actual amplitudes �8 and binding constants  08 can be estimated, rather than the apparent ones

mentioned above.
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Theory

SimFIT program hlfit assumes that a response is measured that depends on the fractional saturation of binding

sites with possibly differing affinity. The amplitude factors �8 can be interpreted as being proportional to the

population of the receptor types, possibly complicated by the situation where the fractional receptor occupancy

does not give the same response for the different receptor types. Program hlfit also allows for the situation

where there is background noise at level � that has to be estimated then substracted from the data so that the

response is zero at zero ligand concentration.

The first thing to point out is that this model does not have a standard binding polynomial to act as a

partition function, as it is a weighted sum of individual independent sites and can therefore only show negative

cooperativity. To understand the meaning of the parameters being estimated by program hlfit consider the

binding of a single ligand - to a protein % at equlibrium so that this is the binding process

% + - = %-

with the association constant  0 defined as

 0 =
[%-]
[%] [-]

and the fractional saturation of the protein with ligand - is 0 ≤ H ≤ 1 defined as

H =
 0 [-]

1 +  0-
.

However the response measured will be the fractional saturation multiplied by an arbitrary amplitude factor

�, unless fractional saturation is measured when the individual amplitude factors would be nonnegative and
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would have sum one. Some versions of programs hlfit and qnfit provide this feature as an additional option. In

addition, in some experiments there is an unavoidable background level � which can be estimated during the

fitting, or better estimated independently and then subtracted from the measured response, so that . (0) = 0.

In bygone days before the advent of computers, experimentalists had to fit binding equations by plotting

in transformed spaces, such as the Scatchard plot, and then extrapolating to estimate slopes and intercepts,

but thankfully this era has long since gone. However, this does not mean that fitting such an equation by

constrained weighted least squares is a simple process. It is not. In fact the case with : = 1 is trivial, the

case with : = 2 is reasonable, but the cases : > 2 require data that is very extensive and accurate, and where

the parameters are sufficiently distinct to allow model discrimination. For this particular model that requires

amplitudes �8 values to be similar, but binding constants  8 to be distinct.

Program hlfit performs the following steps.

1. The H8 values are first weighted using F8 = 1/B42
8 , or used unweighted if all B48 = 1.

2. Using the ranges of G8 and H8 the data are transformed into internal coordinates of order unity.

3. Possible starting estimates are calculated for the parameters based on the internal coordinates, and then

these are altered by adding pseudo-random perturbations until an approximate minimum value for the

weighted sum of squares is located.

4. The parameters are then transformed into internal coordinates that will hopefully be of order unity to

stabilize the optimization.

5. From these random starting estimates the lowest and highest possible limits are calculated, then con-

strained optimization is performed by the quasi-Newton technique.

6. The internal parameters are transformed back into user-space, and the Hessian is estimated at the

solution point then inverted to calculate the parameter covariance matrix.

7. The order of parameters is permuted so that the subscripts for 8 = 1, 2, . . . , : refer to best-fit parameters

in the order �1 ≤ �2 ≤ . . . ≤ �=. This is to allows retrospective comparison of fits to alternative data

sets.

8. The apparent (overall) � is calculated as the sum of the �8 (or �8 08 8 for isotope displacement) and the

apparent (overall)  0 is calculated numerically.

9. Analysis of the residuals is performed together with numerous statistical procedures to ascertain good-

ness of fit, parameter reliability, and model discrimination.

10. Results tables and graphs are then provided.

Program hlfit allows users to control the random search for starting estimates and the technique to be used

for calculating the gradient vector, and should the cases with : > 2 be required, users can perform extensive

random searches to obtain starting estimates that can be input retrospectively for manual starts. If these steps

do not succeed it is time to try the SimFIT advanced curve-fitting program qnfit.

Although hlfit can be used to fit more than two classes of sites it must be stressed that this requires extremely

accurate data over a large range of ligand concentration, and the automatic estimation of suitable starting

estimates may have to be replaced by user-supplied estimates. In any case it will be extremely difficult to

interpret binding data in terms of more than two classes of binding sites by curve-fitting alone unless there is

additional experimental evidence.
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8.5.3 Fitting allosteric and cooperative ligand binding models

Cooperative ligand binding models are used in the situation where a protein or receptor has more than one type

of binding site and these are linked in such a way as to display deviations from normal hyperbolic binding. If

a receptor has = > 1 binding sites that differ in binding constants but are independent this can only give rise to

apparent negative cooperativity. If the sites are linked in that the binding to one site influences the subsequent

binding of further ligands then positive or mixed cooperativity can be exhibited. These terms will be defined

subsequently.

From the main SimFIT menu choose [A/Z] then open program sffit and examine the default test file sffit.tf4

which contains the following data.

G H B4

0.085504 0.10022 0.0026739

0.085504 0.10533 0.0026739

0.085504 0.10142 0.0026739

0.11434 0.14319 0.010065

0.11434 0.16178 0.010065

0.11434 0.14578 0.010065

0.15291 0.24510 0.012043

0.15291 0.22191 0.012043

0.15291 0.22786 0.012043

0.20449 0.30735 0.019939

0.20449 0.32957 0.019939

0.20449 0.28978 0.019939

0.27346 0.43824 0.0071355

0.27346 0.43342 0.0071355

0.27346 0.44746 0.0071355

0.36569 0.57197 0.014359

0.36569 0.56004 0.014359

0.36569 0.58863 0.014359

0.48903 0.64381 0.030621

0.48903 0.63820 0.030621

0.48903 0.69382 0.030621

0.65398 0.75455 0.017667

0.65398 0.78973 0.017667

0.65398 0.77504 0.017667

0.87456 0.81456 0.030889

0.87456 0.82605 0.030889

0.87456 0.76774 0.030889

1.1695 0.95153 0.029772

1.1695 0.89315 0.029772

1.1695 0.91216 0.029772

The columns contain data in the following format.

1. Column 1: the non–negative ligand concentration G which must be in non-decreasing order.

2. Column 2: the non–negative response H presumed to be dependent on fractional saturation of receptor

or binding site at the concentration in column 1.

3. Column 3: the positive sample standard deviation of the replicate response measurements.

This column can be omitted or set to 1 if unweighted regression is required.
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The model 5 (G) fitted by SimFIT program sffit for = binding sites in the presence of ligand at concentration G

is based on a binding polynomial ?(G) and fractional saturation function H(G) expressed using overall binding

constants  8 as follows

?(G) = 1 +  1G +  2G
2 + · · · +  =G=

H(G) = 1

=

3 log ?(G)
3 log G

=
1

=

G?′(G)
?(G)

5 (G) = /H(G) + �.

Here / is an arbitrary factor relating the observed response to fractional saturation, while � is a possible

background noise in the absence of any ligand. It is supposed that the number of sites = would be known in

advance while the arbitrary scaling factor / and background noise � would be estimated in a preliminary run

and used to normalize the data so that 0 ≤ 5 (G) ≤ 1 for G ≥ 0.

Before proceeding to discuss the results from analyzing the test data two things should be noted.

1. When the data have been normalized so that / = 1 and � = 0, as with the data in test file sffit.tf4,

program sffit begins by scaling the data internally, performing a !1 norm fitting procedure for starting

estimates followed by a refinement by random searching. For low order models with accurate data over

a large range of G this will often mean that the starting estimates are very close to the best-fit parameters,

and the quasi-Newton constrained regression program will draw attention to the fact that only a small

percentage reduction in the objective function ,((& has been achieved. This simply indicates how

good the sffit algorithm has been in calculating starting estimates.

2. Users are given the option to fit several values of = in sequence with statistical tests for model discrim-

ination and goodness of fit. This facility is provided for preliminary analysis in the case where / is

estimated and/or = is not known in advance, and also so that sffit can be used as an empirical model for

data smoothing

Proceeding to start optimization at = = 2 and end optimization at = = 2 with / = 1 and � = 0 means that the

following model was fitted

5 (G) =
(
1

2

)
 1G + 2 2G

2

1 +  1G +  2G2

leading to this table of results.

For best-fit order 2 function ( 5 for fixed parameter)

Number Parameter Value Std. error Lower95%cl Upper95%cl ?

1  1 1.0734 0.063088 0.94414 1.2026 0.0000

2  2 10.042 0.17298 9.6881 10.397 0.0000

3 / 1.0000 0.0000 1.0000 1.0000 ... 5

4 � 0.0000 0.0000 0.0000 0.0000 ... 5

Apparent +<0G (i.e. / or 5 (∞) − �) = 1.0000

Apparent  < (i.e. G where 5 (G) − � = //2) = 0.31554

Parameter correlation matrix ( 5 for fixed parameter)

1

-0.5562 1

5 5 5

5 5 5 5

The excellent fit will be clear from the analysis of residuals and plot of data and best-fit curve as shown next.
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Goodness of fit for model with = = 2

Analysis of residuals: ,((& 33.100

%(j2 ≥ ,((&) 0.2321

'2, 22(Cℎ4>AH, 30C0)2 0.9928

Largest Absolute relative residual 10.87%

Smallest Absolute relative residual 0.04%

Average Absolute relative residual 3.47%

Absolute relative residuals in range 0.1-0.2 3.33%

Absolute relative residuals in range 0.2-0.4 0.00%

Absolute relative residuals in range 0.4-0.8 0.00%

Absolute relative residuals > 0.8 0.00%

Number of negative residuals (<) 17

Number of positive residuals (=) 13

Number of runs observed (A) 22

%(runs ≤ A : given < and =) 0.9957

5% lower tail point 10

1% lower tail point 9

%(runs ≤ A : given < plus =) 0.9959

%(signs ≤ least number observed) 0.5857

Durbin-Watson test statistic 2.441

Shapiro-Wilks, statistic 0.9781

Significance level of, 0.7729

Akaike ��� (Schwarz (�) stats 6.9509 (9.7529)

Verdict on goodness of fit: incredible
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At this point various options are available for further study of the best fitting order two saturation function.

Choosing cooperativity analysis we first observe the percentage saturation points given the  8 values, which

allows users to see at a glance the range of saturation spanned by the range of the data.

Overall association constants and % saturation points

 1 1.0734

 2 10.042

- start at G = 0.085504

- stop at G = 1.695

H = 0.05 at G = 0.0051378 The 5% saturation point

H = 0.10 at G = 0.084086 The 10% saturation point

H = 0.50 at G = 0.31556 The 50% saturation point

H = 0.90 at G = 1.1843 The 90% saturation point

H = 0.95 at G = 1.9381 The 95% saturation point

Evidently the range of these experimental data spans the range from around 10% saturation to just over the

point of 90% saturation. Perhaps it will not be often that experimentalists will be able to achieve such a wide

span.

The next table displays the values of the association constants and reciprocals for overall association constants

 8 , Adair constants �8 and Adair constants corrected for statistical factors �8 so that the results can be

compared between alternative computer packages. Note that SimFIT program qnfit can be used to fit these

alternative model formulations if confidence limits on parameter estimates and parameter correlation matrices

are required. All other goodness of fit and model discrimination results are the same irrespective of the model

formulation.

Alternative expressions for binding constants

Number  1/ � 1/� � 1/�
1 1.0734 0.93165 1.0734E+00 0.93165 0.53668 1.8633

2 10.042 0.099577 9.3560E+00 0.10688 18.712 0.053442

Intrinsic cooperativity coefficient Value Sign

�2 − �1 18.175 +

Intrinsic cooperativity coefficients are particularly easy to interpret in molecular terms. For instance, if

�8 > �8−1 this indicates that when ligand is bound to 8 − 1 sites the affinity increase for when the the next

ligand binds, whereas when �8 < �8 the affinity decreases. So, when there are only two binding sites, the

condition �2 > �1 is equivalent to positive cooperativity and the condition �2 < �1 is correctly referred to as

negative cooperativity. Unfortunately, for more than two sites this argument breaks down due to the additional

complication of species fractional populations (8 defined as

(8 =
 8G8

 0 +  1- +  2-2 + · · · +  =G=
.

for 8 = 0, 1, 2 . . . , =. Here  0 = 1, 0 ≤ (8 ≤ 1, (0 + (1 + (2 + · · · + (= = 1 and the (8 measure the

proportion of the macromolecule with 8 ligands bound as the concentration of ligand G varies. A similar

measure, the species fraction ( 5 8 , defined as

( 5 8 = 8(8/=

for 8 = 1, 2, . . . , = takes account of the stoichiometry and measures the contribution of the species with 8

ligands attached to the overall fractional saturation H(G) as

( 5 1 + ( 5 2 + . . . , +( 5 = = H(G) .

The next plot displays the population fractions for the current best-fit model showing that all the macromolecule

is free from ligand at G = 0, then the macromolecule with one ligand appears then disappears as G increases
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until eventually as G → ∞ all the binding sites are occupied. It is this fact that makes the interpretation of

the sign of cooperativity ambiguous when the order exceeds 2 which is where the Hill plot slope is a less

ambiguous measure of the sign and extent of cooperativity when viewed as a function of ligand activity.
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The Hill plot slope shown next is very simple to interpret in the case of fitting an order = = 2 saturation

function but, as will be discussed subsequently, the situation is not so simple for order = > 2, and this is an

area of unnecessarily great confusion.
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Theory

Ligand binding theory will be presented under the following headings.

1. Historical introduction

2. Binding polynomials

3. Definition of cooperativity

4. Factorability of the binding polynomial

5. Statistical interpretation of saturation functions

6. Cooperativity analysis

Historical Introduction

In 1910 Hill [1] proposed that the sigmoid binding curve for oxygen binding to haemoglobin could be

analyzed in terms of the binding of = ligands in one step with no appreciable intermediates, i.e. the mass

action description

�1 + =- ⇋ �1-=.

This leads to the Hill equation describing the fractional saturation H as a function of concentration G, and the

Hill plot of log[H/(1 − H)] as a function of log G as follows

H =
 G=

1 +  G=

log

(
H

1 − H

)
= = log G + log .

It is now realized that the Hill equation is simply an empirical equation that is at best a poor approximation to

any real binding situation since:

1. it is only an appropriate representation for a one-site binding process, i.e. for = = 1 ;

2. when = < 1 it has an infinite slope at the origin and cannot model any realistic binding situation;

3. when = > 1 it has zero slope at the origin and cannot model any realistic binding situation;

4. when = is not a positive integer it is pure nonsense; and

5. using it to discuss the effect of cooperativity on graphical features such as sigmoidicity in the H(G)
curve, or convexity in Lineweaver-Burke or Scatchard space, has resulted in considerable confusion.

Of course, before the days of computers and nonlinear regression, fitting a straight line to a Hill plot to get a

non-integer value for the estimated slope was all that could be done, and this non-integer value was correctly

taken to mean that this was a result of the model being incorrect.

Nowadays no one would dream of discussing cooperative binding in terms of the Hill equation or fitting a

straight line to a Hill plot but, by a serendipitous coincidence, it turns out that the variable slope of the curve

obtained by transforming a saturation curve into Hill space still provides an unambiguous definition of the

sign and magnitude of cooperativity that has got nothing at all to do with the Hill equation. That is because,

to use receptor terminology,
H

1 − H =
[Bound]
[Free] .
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Binding polynomials and their Hessians

In 1925 Adair [2] improved the description of binding isotherms by defining binding constants for the

individual binding events, and later it came to be appreciated that these have to be normalized by statistical

factors in order to discuss the affinity of receptor for ligand in adjacent binding events. In 1967 Wyman [3]

rationalized the situation by pointing out that, for a non-aggregating macromolecule with = binding sites and

only one ligand G varied, there would be binding polynomial which would act like a partition function in that

successive terms of degree 8 in the polynomial are proportional to the amount of macromolecule with 8 ligands

attached.

So now the binding of ligands to receptors can be defined for all possible cooperative binding schemes in

terms of a binding polynomial ?(G) in the free ligand activity G, as follows

?(G) = 1 +  1G +  2G
2 + · · · +  =G=

= 1 + �1G + �1�2G
2 + · · · +

=∏
8=1

�8G
=

= 1 +
(
=

1

)
�1G +

(
=

2

)
�1�2G

2 + · · · +
(
=

=

) =∏
8=1

�8G
=,

where the only difference between these alternative expressions concerns the meaning and interpretation of

the binding constants. The fractional saturation is just the scaled derivative of the log of the polynomial with

respect to log(G), and an important auxiliary function is ℎ(G), the Hessian of the binding polynomial defined

as follows

H(G) =
(
1

=

)
3 log ?(G)
3 log G

=

(
1

=

)
G?′(G)
?(G)

ℎ(G) = =??′′ − (= − 1)?′2.

Definition of cooperativity

Given a binding polynomial of degree = there are = − 1 cooperativity coefficients 28 defined as

28 = �8+1 − �8 for 8 = 1, 2, . . . , = − 1,

or alternatively as log(�8+1/�8), and the interpretation of these is perfectly clear: in a situation where 28 > 0

the macromolecule has greater affinity for binding the 8 + 1th ligand after the 8th ligand has been bound and it

is perfectly reasonable to describe this as mechanistic positive cooperativity. Hence every binding situation

for = ligands can be summarized by a succession of = − 1 signs and it might be thought that during the

actual saturation of macromolecule with ligand there would be a succession of phases with possibly differing

cooperativity. For instance, the sequence + − + might be supposed to give a saturation curve with positive,

then negative, then positive cooperativity. Unfortunately the cooperativity coefficients cannot be interpreted

in this way and they are not a unique indicator of the sign and magnitude of the type of cooperativity exhibited

during the saturation process. The reason for this is simply that binding does not occur in a succession of

isolated steps and at every stage for 0 < G < ∞ every species that is possible is present, that is no ligands

bound, one ligand bound, two ligands bound, etc. up to = ligands bound.

At every point in the range 0 < G < ∞ there is a one site binding curve H0?? with a uniquely defined apparent

binding constant  0?? according to the scheme

[Free sites] + - ⇋ [Occupied sites]
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that is

H0?? (G) =
 0??G

1 +  0??G
.

Surely all would agree that the sign and magnitude of cooperativity at that point in the saturation curve would

depend on whether  0?? is increasing or decreasing as a function of G. It turns out that

 0?? =
?′(G)

=?(G) − G?′(G) and

3 0??

3G
=

ℎ(G)
(=?(G) − G?′(G))2

so that increasing affinity (i.e. positive cooperativity) requires ℎ(G) > 0, decreasing affinity (i.e. negative

cooperativity) requires ℎ(G) < 0 while at a point where ℎ(G) = 0 cooperativity changes sign. Bardsley and

Wyman [4] emphasized that the magnitude of the Hill slope with respect to 1 is the unambiguous indicator of

cooperativity which also depends on the sign of the Hessian as follows

3 log[H/(1 − H)]
3 log G

= 1 + Gℎ(G)
?′(G) (=?(G) − G?′(G)) .

and Wood and Bardsley [5] proved that the Hessian can have at most = − 2 positive zeros.

Zeros of the binding polynomial

If the = zeros of the binding polynomial are U8 then the fractional saturation H can be expressed as

H =
( G
=

) =∑
8=1

1

G − U8
,

but further discussion depends on the nature of the zeros.

First observe that, for a set of < groups of receptors, each with =8 independent binding sites and binding

constant :8 , then the zeros are all real and

?(G) =
<∏
8=1

(1 + :8G)=8 ,

and H =
1∑<
8=1 =8

<∑
8=1

=8:8G

1 + :8G
,

so H is just the sum of simple binding curves, giving concave down double reciprocal plots, etc.

Actually Bardsley et al [6] and [7] proved that, if a binding polynomial factorizes into < polynomials ?8 with

positive coefficients according to

?(G) = ?1(G)?2(G) . . . ?<(G)
then the Hill plot slope cannot exceed that of the Hill plot slope for any of the individual factors. As a binding

polynomial can always be factorized into a product of linear factors with real negative zeros and complex

conjugate pairs forming quadratic factors it might be supposed that the Hill slope can never exceed two.

However, if a binding polynomial of degree > 2 has complex conjugate zeros, the Hill slope may exceed two

and there may be evidence of strong positive cooperativity. That is why Hill plot slopes up to a maximum of

the degree of the binding polynomial can be achieved if there are quadratic factors with negative coefficients,

corresponding to a group of at least three linked binding sites.

For instance, the binding polynomial for a four site Monod-Wyman-Changeux model is

?(U) = 1

1 + !

(
(1 + U)4 + !(1 + 2U)=

)
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and this can factorize into the form

@(G) = (1 + 01G + 11G
2) (1 − 02G + 12G

2)

with 01 > 0, 02 > 0, 11 > 0, 12 > 0 under certain constraints so that the meaningless quadratic factor with a

negative term allows Hill slopes greater than two.

Edelstein and Bardsley [8] subsequently explored the relationship between the Hill slope at half-saturation

and the Hessian of the binding polynomial.

Statistical interpretation of saturation functions

The species fractional populations B8 which are defined for 8 = 0, 1, . . . , = as

B8 =
 8G

8

 0 +  1G +  2G2 + · · · +  =G=

with  0 = 1, are interpreted as the proportions of the receptors in the various states of ligation as a function

of ligand activity. The species fractions defined as H8 = 8B8/= for 8 = 1, 2, . . . , = are the contributions of the

species to the overall saturation. Note that

=∑
8=0

B8 = 1, , while

=∑
8=1

H8 = (1/=)3 log ?/3 log G.

Such expressions are very useful when analyzing cooperative ligand binding data and they can be generated

from the best fit binding polynomial after fitting binding curves with program sffit, or by interactive input of

binding constants into program simstat. At the same time other important analytical results like factors of

the Hessian and minimax Hill slope are also calculated.

The species fractional populations can be also used in a probability model to interpret ligand binding in several

interesting ways. For this purpose, consider a random variable * representing the probability of a receptor

existing in a state with 8 ligands bound. Then the the probability mass function, expected values and variance

are

%(* = 8) = B8 (8 = 0, 1, 2, . . . , =),

� (*) =
=∑
8=0

8B8 ,

� (*2) =
=∑
8=0

82B8 ,

+ (*) = � (*2) − [� (*)]2

= G

(
?′(G) + G?′′(G)

?(G)

)
−

(
G?′(G)
?(G)

)2

= =
3H

3 log G
,

as fractional saturation H is � (*)/=. In other words, the slope of a semi-log plot of fractional saturation data

indicates the variance of the number of occupied sites, namely; all unoccupied when G = 0, distribution with

variance increasing as a function of G up to the maximum semi-log plot slope, then finally approaching all

sites occupied as G tends to infinity. You can input binding constants into the statistical calculations procedure

to see how they are mapped into all spaces, cooperativity coefficients are calculated, zeros of the binding
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polynomial and Hessian are estimated, Hill slope is reported, and species fractions and binding isotherms are

displayed, as is done automatically after every = > 1 fit by program sffit.

Cooperativity analysis

After fitting a model, program sffit outputs the binding constant estimates in all the conventions and, when

= > 2 it also outputs the zeros of the best fit binding polynomial and those of the Hessian of the binding

polynomial ℎ(G). The positive zeros of ℎ(G) indicate points where the theoretical one-site binding curve

coinciding with the actual saturation curve at that G value has the same slope as the higher order saturation

curve, which are therefore points of cooperativity change. The SimFIT cooperativity procedure allows users

to input binding constant estimates retrospectively to calculate zeros of the binding polynomial and Hessian,

and also to plot species population fractions.

For instance, for 4 sites with  1 = 100,  2 = 10,  3 = 1, and  4 = 0.1, the Hessian has a positive zero

at G = 5.86139, the minimum Hill slope in the range plotted is 0.0842, at G = 0.28607, the maximum is

1.44479, at G = 17.059, and the slope at half saturation is 1.0847, at G = 6.5808.

The next graph shows how the Hill plot slope varies with the maximum and minimum slopes indicated along

with the point where the positive zero of the Hessian occurs.
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The following graph shows the sort of complicated Hill plots that can be obtained when there are more than

two cooperatively linked sites. The asymptotes are for the equation

H =
:G

1 + :G

with : =  1/= as G → 0 and : = = =/ =−1 as G → ∞.
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8.5.4 Fitting deviations from Michaelis-Menten kinetics

When accurate initial rate data are obtained over an extended range of substrate concentration then deviations

from Michaelis-Menten kinetics such as substrate inhibition, substrate activation, sigmoidicity, and other

types of cooperativity are often encountered. If artifacts such as aggregation, failing to correct for pH or ionic

strength, etc. are not responsible, then the appropriate model would be positive rational function. The most

important thing is to determine the degree of such a rational function, because this can be used to select a

possible kinetic scheme and rate equation.

From the main SimFIT menu select [A/Z], then open program rffit and study the default test file rffit.tf6

which has the following data set.

( E(() B4(E)
0.01000 0.02100 0.00157

0.01624 0.03409 0.00256

0.02637 0.05533 0.00415

0.04281 0.08975 0.00673

0.06952 0.14532 0.01090

0.11288 0.23421 0.01757

0.18330 0.37301 0.02798

0.29764 0.57659 0.04324

0.48329 0.83187 0.06239

0.78476 1.04968 0.07873

1.27427 1.09824 0.08237

2.06914 0.98829 0.07412

3.35982 0.87359 0.06552

5.45559 0.86246 0.06468

8.85867 0.96350 0.07226

14.38450 1.08641 0.08148

23.35721 1.07355 0.08052

37.92690 0.87789 0.06584

61.58482 0.62001 0.04650

100.00000 0.40461 0.03035

The columns contain data in the following format.

1. Column 1: the non–negative substrate concentration ( which must be in non-decreasing order.

2. Column 2: the non–negative initial rate E(() presumed to be dependent on substrate in column 1.

3. Column 3: the positive sample standard deviation of the replicate rate measurements.

This column can be omitted or set to 1 if unweighted regression is required.

SimFIT program rffit fits positive rational functions of the following form

E(() = U0 + U1( + U2(
2 + · · · + U=(=

V0 + V1( + V2(2 + · · · + V=(=

which will be referred to as a =:= function. This has 2=+1 independent nonnegative parametersU8 ≥ 0, V8 ≥ 0

so we define V0 = 1. In addition, it is is usually the case that U0 = 0 so that E(0) = 0 and, if dead-end enzyme-

substrate complexes are assumed, it will also be convenient to set U= = 0 to model the case where E(∞) = 0.
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Some observations on curve fitting =:= functions

Program rffit scales the data provided into internal coordinates and, by default, sets all parameters to one

or to user-supplied values. For very difficult problems with widely spaced parameters, the program can

estimate approximate starting parameters from the extremes of the data set, undertake a random search

in an attempt to improve these, then perform a preliminary fit in the constrained !1 to refine the starting

estimates. It scales the model fitted so that the internal parameters will be of order unity at the start of

the optimization, then performs weighted nonlinear regression by the quasi-Newton method with parameters

constrained to be nonnegative. Even so, it must be realized that distinguishing order 2 from order 1 will

usually be straightforward, distinguishing order 3 from order 2 will demand very accurate data over a wide

range, and distinguishing order 4 from order 3 will usually only succeed if the data have special features.

The test files

Many of the test files distributed with the SimFIT package contain exact data. There are two reasons for this.

1. Exact data sets generated by program makdat have known parameters so, by fitting these it is possible

to observe how accurately SimFIT can estimate the known parameters.

2. Such exact data sets can be corrupted by adding random error using program adderr to simulate

experimental data.

The recommended procedure for analyzing your own data is to simulate using the suspected model and

anticipated error, then fit to see how likely it will be for the fitting program to support your working hypothesis.

Example 1

In particular rffit.tf6 contains exact data for a 4:4 rational function, and fitting 3:3 then 4:4 yields these

parameter estimates.

Number Parameter Value Std. Error Lower95%cl Upper95%cl ?

1 U0 1.0982E-05 6.0976E-06 -2.4385E-06 2.4403E-05 0.0991 *

2 U1 2.0997E+00 3.8507E-04 2.0988E+00 2.1005E+00 0.0000

3 U2 2.4562E-04 1.4423E-03 -2.9289E-03 3.4201E-03 0.8679 *

4 U3 1.0493E-01 7.4973E-05 1.0476E-01 1.0509E-01 0.0000

5 U4 1.0982E-13 9.3838E-08 -2.0654E-07 2.0654E-07 1.0000 *

6 V1 4.0251E-04 7.3125E-04 -1.2070E-03 2.0120E-03 0.5930 *

7 V2 1.0022E+00 1.5814E-03 9.9868E-01 1.0056E+00 0.0000

8 V3 1.0000E-11 1.2096E-05 -2.6623E-05 2.6623E-05 1.0000 *

9 V4 2.4982E-03 1.9153E-06 2.4940E-03 2.5024E-03 0.0000

Now this test data was generated as the sum of two dead-end substrate inhibition models namely

E(() = 2(

1 + (2
+ 0.1(

1 + 0.0025(2

=
2.1( + 0.105(3

1 + 1.0025(2 + 0.0025(4

so, pointing out that numbers less than about 10−4 of the largest parameter estimate are effectively zero, the

estimates are almost identical to the values used to generate the data, which supports the fact that program

rffit is capable of determining the parameters of a 4:4 function given highly accurate and extensive data. The

next table illustrates the strong support for the extra parameters in the 4:4 fit compared to the 3:3 fit, while the

graph illustrates the reason: a positive rational function of order =:= can have at most = − 1 positive turning

points so the 3:3 function can never model the three positive turning points of the 4:4 function.
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,((&-previous 7.8928E+01

,((&-current 7.2902E-05

Number of parameters-previous 7

Number of parameters-current 9

Number of (-values 20

Akaike ���-previous 4.1456E+01

Akaike ���-current -2.3244E+02 �' = 2.9947E+59

Schwarz (�-previous 4.8426E+01

Schwarz (�-current -2.2348E+02

Mallows �? 1.1909E+07 �?/"1 = 1.7013E+06

Numerator degrees of freedom 2

Denominator degrees of freedom 11

� test statistic (�() 5.9546E+06

%(� ≥ �() 0.0000

%(� ≤ �() 1.0000

5% upper tail point 3.9823E+00

1% upper tail point 7.2057E+00

Conclusion based on � test

Reject previous model at 1% significance level

There is strong support for the extra parameters

Tentatively accept the current best fit model
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Note that the data are in a geometrical progression, that is, for : points G8 distributed equally on a log scale

between end points � and � we would have G1 = �, G2 = _G1, G3 = _G2, . . . , G: = _G:−1 = _:−1G1 = �
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where _ = (�/�)1/(:−1) . When fitting models like saturation functions, exponentials, or rational functions, a

logarithmic scale is optimal for model discrimination and parameter determination [1].

Example 2

Test file rffit.tf7 was obtained from rffit.tf6 using adderr to generate triplicates with 7.5% relative

error and standard errors calculated from replicates. Using starting estimates equal equal to one, but with U0

and U= suppressed gives reasonable parameter estimates as shown by the next table and graph.

Number Parameter Value Std. Error Lower95%cl Upper95%cl ?

2 U1 2.1330E+00 2.7697E-02 2.0775E+00 2.1886E+00 0.0000

3 U2 2.1863E-01 3.1074E-01 -4.0464E-01 8.4189E-01 0.4848 *

4 U3 1.0866E-01 2.0534E-02 6.7470E-02 1.4984E-01 0.0000

6 V1 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 1.0000 f

7 V2 1.2320E+00 3.3648E-01 5.5711E-01 1.9069E+00 0.0006

8 V3 1.1784E-03 1.2893E-02 -2.4682E-02 2.7039E-02 0.9275 *

9 V4 2.5835E-03 3.5474E-04 1.8719E-03 3.2950E-03 0.0000
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In general for =:= functions with = > 2 the following conclusions should be noted.

1. The data must be very accurate and span a large range of substrate concentration.

2. Data should be collected using a geometric progression between end points.

3. Program rffit must be run many times to compare the fit with random starting estimates with the fit

from user-supplied starting estimates, or with all equal to one as with this example fitting rffit.tf7.

4. Model discrimination may work for = ≤ 3 but parameter estimates may be poor for = ≥ 3.
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Theory

All kinetic schemes that can be devised for non-aggregating enzymes that have zero rate at zero substrate

concentration lead to the following quasi steady state rate equation

E(() = U1( + U2(
2 + · · · + U=(=

V0 + V1( + V2(2 + · · · + V=(=

where U8 ≥ 0 and V8 ≥ 0, and the only difference between models is the way that the coefficients U8 , V8 are

expressed as functions of the rate constants. Some simple facts about this function are as follows.

• The order = can be as large as the subscript : in any enzyme substrate complexes �(: .

• Given any order = with any nonnegative values for U8 , V8 it is possible to define a possible enzyme

scheme with these values [2].

• The E(() curve is only sigmoidal if U2V0 > U1V1 [3].

• A order = positive rational function can have at most = − 1 turning points and 2= − 2 points of inflexion

in the first quadrant [4].

• If U= = 0 the E(() curve descends asymptotically to zero from a final turning point.

• If U= > 0 the E(() curve approaches a horizontal asymptote E(∞) = U=/V=.

• If U= > 0 the E(() curve descends from a final turning point if U=V=−1 < U=−1V=.

As the main idea in fitting such a rational function to experimental data is to fix a minimum order = to suggest

a possible enzyme mechanism, some facts about parameter estimation and discrimination should be noted.

• Any attempt to fit higher order models requires accurate data over a large range.

• Experimental points should have the ( values in a geometric progression.

• Statistical techniques for model discrimination perform very well when distinguishing the case = = 2

from = = 1 but rapidly deteriorate for = > 2 [5],[6],[7].

• Fitting cases with = > 2 should be investigated by comparing the results with all starting estimates

equal to one with those from several random searches.

• When the order = has been decided and good starting estimates have been located it is time to use the

more advanced program qnfit.

Limiting cases

Before nonlinear regression became accepted as the only meaningful way to fit enzyme kinetic data, much use

was made of fitting straight lines to extreme substrate concentrations in order to estimate parameter values.

This has given rise to much confusion.

It might be thought that a satisfactory approximation to a =:= function at low substrate concentration would

be the 1:1 Michaelis-Menten function

E(() = U1(

V0 + V1(
.

However this cannot be sigmoidal and E(() curves can be sigmoidal, so the best 1:1 function to approximate

low substrate values is

E(() =
U2

1

U1V0 + (U1V1 − U2V0)(
,

as this is the equation of the asymptotes approached at low substrate concentration in all the transformed plots

such as double-reciprocal, Scatchard, etc. used in enzyme kinetics [8].
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Irrespective of which technique is used to fit the data for low ( the only parameters that can be estimated are

the apparent kinetic constants

+<0G = U
2
1/(U1V1 − U2V0), and  < = U1V0/(U1V1 − U2V0) .

Again, it might be thought that a satisfactory approximation to a =:= function at high substrate concentration

would be the n:n Hill equation

E(() = U=(
=

V0 + V=(=
.

However E(() curves can have turning points and the Hill equation is monotonic, so the best 1:1 function to

approximate high substrate values is

E(() = U2
=

(U=V=−1 − U=−1V=) + U=V=(
,

as this is the equation of the asymptotes approached at high substrate concentration in all the transformed

plots such as double-reciprocal, Scatchard, etc. used in enzyme kinetics [8].

Irrespective of which technique is used to fit the data for high ( the only parameters that can be estimated are

the apparent kinetic constants

+<0G = U=/V=, and  < = (U=V=−1 − U=−1V=)/(U=V=) .

Another issue concerns reduction in degree by cancelation of common factors between numerator and de-

nominator which can occur with some enzyme mechanisms containing cycles which, after using the principle

of microscopic reversibility, lead to zero values for one or more of the Sylvester eliminants [9]. In the extreme

case of factorization down to order 1:1, one possible expression for the reduced equation would be

E(() = U1U=

U=V0 + U1V=(
.

To the extent that fitting a Michaelis-Menten equation to a =:= function is justified because statistical evidence

does not support = > 1 , the two parameters that can be estimated are the apparent kinetic constants

+<0G = U=/V=, and  < = U=V0/(U1V1) .

Sigmoidicity

A positive rational function will be sigmoid if

U2V
2
0 − U1V0V1 − U0V0V2 + U0V

2
1 > 0,

but in the usual case U0 = 0 it is possible to define satisfactory measures of sigmoidicity, which can be

explained by reference to the next figure [10].
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The point labeled � is the first positive root of

((3E/3() − E = 0

and the point labeled ) = E(�) is the E coordinate where the tangent from the origin touches the curve.

Consider then the expressions

Δ1 =
)

max(E), for ( ≥ 0

Δ2 =
�A40(���)∫ �

0
E(() 3(

where Δ1 and Δ2 both increase as sigmoidicity increases. It can be shown that, for fractional saturation

functions of order =, the following inequality applies

) ≤ = − 1

=
,

while, at least for the cases = = 2, 3, and = = 4 with some qualification, the positive rational function curve of

maximum sigmoidicity is the equation

E =
(=

1 + (=

shown in the next graph for the normalized functions G2/(1 + G2), (3/2)G3/(1 + 2G3), and 2G4/(1 + 3G4).



436 Curve and surface fitting

0.00

0.20

0.40

0.60

0.80

0.0 0.5 1.0 1.5 2.0

v(S) Curves with Maximum Sigoidicity

S

v(
S

)

2:2

4:4

3:3

Substrate inhibition

Characterization of the shapes of rational functions in the first quadrant has been achieved for = ≤ 3, and the

most distinctive feature is the number of turning points [11]. All that can be said is that analysis depends on

the signs and magnitudes of determinants such as

�8 =

����U8 U8−1

V8 V8−1

����
leading to the necessary and sufficient condition �= < 0 for a final turning point, but only the necessary but

not sufficient condition �8�8−1 < 0 for the maximum number.

It is possible to establish a criterion for the maximum steepness of descent from a final maximum, which is

the most commonly encountered type of substrate inhibition, and to present maximal examples for low degree

cases. Unfortunately this is, like sigmoidicity, only possible for = < 4 and, with some reservations for = = 4.

That is because, for = > 4 the number of possible curve shapes due to multiple turning points creates an

intractable situation.

At least for the cases = = 2, 3 and = = 4 with some qualification, the positive rational function curve showing

maximum substrate inhibition is the equation

E =
(

1 + (=

shown in the next graph for the normalized functions 150G/(1 + G2), 225G/(2 + G3), and 300G/(3 + G4) [12].
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8.5.5 Fitting exponential functions

Exponential functions have wide applications in data analysis and the SimFIT package has a dedicated utility

to fit six main categories of multi-exponential functions as illustrated below.

Simple exponential decline to zero (Type 1) or to a baseline (Type 2).
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Monomolecular rise to a horizontal asymptote from zero (Type 3) or a baseline (Type 4).
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Up-down (Type 5) or Down-up (Type 6) with at least two exponential terms.
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In fact all of the exponential types are special cases of the following model

5 (C) = �1 exp(−:1C) + �2 exp(−:2C) + · · · + �= exp(−:=C) + �

where the decisions facing the user are to define the category, i.e. the Type, and the number = of exponentials

required.

There are three distinct SimFIT programs provided for fitting exponentials to data.

1. exfit

This is a simple user-friendly interface to automatically scale the data, locate sensible starting estimates,

and perform unconstrained weighted least squares fitting with goodness of fit analysis and model

discrimination. It requires the data to be nonnegative, i.e. 5 (C) ≥ 0 for C ≥ 0, and also the time to start

must be zero, i.e. C = 0, and C must be in nondecreasing order, as this is assumed when scaling and

finding starting estimates. Additional parameters like the area under the curve (AUC) are calculated.

Normally you should fit one then two exponentials, but in the case of Type 5 and Type 6 the lowest order

to fit is two exponentials. After fitting Type 5 or Type 6 it is recommended to do a further relaxation fit

to allow for variations in the starting and asymptotic values in order to fit data such as pharmacokinetics

after a bolus ingestion. It is possible to fit models with more than two exponentials but this may require

several random starts or user-defined starting values for success. In any case, model discrimination

with more than two exponentials is somewhat unpredictable as explained in the following publication.

The F test for model discrimination with exponential functions.

Bardsley,W.G., McGinlay,P.B. & Wright,A.J. (1986) Biometrika 73, 501-508

2. qnfit

This is a quasi-Newton constrained nonlinear regression program for more experienced analysts which

requires user-defined starting estimates and parameter limits. It has the advantage that fitting does not

necessarily require 5 (C) ≥ 0, C ≥ 0 or C in nondecreasing order and provides many options for setting

starting estimates and parameter limits as well as numerous fine tuning possibilities.

3. deqsol

This simulates and fits systems of nonlinear differential equations.

Example 1: Simple exponential decay (Type 1)

This will illustrate fitting the most frequently used exponential model, namely exponential decay from a

positive value at C = 0 to a final zero asymptote as C → ∞.

From the main SimFIT menu choose [A/Z] then open program exfit and read the default test file provided

which is exfit.tf4. If you choose to start with a model with one exponential the program will first fit the

equation

51 (C) = �1 exp(−:1C)
giving goodness of fit criteria, and if you select to fit up to order 2 the program will then fit the model

52 (C) = �1 exp(−:1C) + �2 exp(−:2C)

giving information to compare these two fits, followed by the option for graphical deconvolution of 52(C) to

illustrate the relative contribution of the two exponential terms.

The data, results tables, and graphs follow but note that the subscripts in equation 52(C) are arbitrary so,

to preserve uniformity, parameters are rearranged if necessary after fitting so that the amplitudes �8 are in

nondecreasing order.
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C 5 (C) B4

0.035983 1.7440 0.048730

0.035983 1.8367 0.048730

0.035983 1.8164 0.048730

0.054896 1.7028 0.033089

0.054896 1.6480 0.033089

0.054896 1.7075 0.033089

0.083750 1.6290 0.060314

0.083750 1.5359 0.060314

0.083750 1.6490 0.060314

0.12777 1.3919 0.013361

0.12777 1.3676 0.013361

0.12777 1.3702 0.013361

0.19493 1.1454 0.089321

0.19493 1.2240 0.089321

0.19493 1.3237 0.089321

0.29739 0.99897 0.043211

0.29739 0.94038 0.043211

0.29739 0.91466 0.043211

0.45370 0.80103 0.047423

0.45370 0.70902 0.047423

0.45370 0.73507 0.047423

0.69217 0.53660 0.041121

0.69217 0.50323 0.041121

0.69217 0.58501 0.041121

1.0560 3.8157 0.023248

1.0560 3.4769 0.023248

1.0560 3.9221 0.023248

1.6110 1.8573 0.011054

1.6110 1.9103 0.011054

1.6110 2.0697 0.011054

The columns contain data in the following format.

1. Column 1: the non–negative time C which must be in non-decreasing order.

2. Column 2: the non–negative response 5 (C) presumed to be dependent on time in column 1.

3. Column 3: the positive sample standard deviation of the replicate response measurements.

Note that column 3 can be omitted or set to 1 if unweighted regression is required.

The results from fitting two exponentials are as follows.

Parameter Value Std. error Lower95%cl Upper95%cl ?

�1 0.85255 0.067715 0.71336 0.99174 0.0000

�2 1.1764 0.074759 1.0228 1.3301 0.0000

:1 6.7934 0.85439 5.0372 8.5496 0.0000

:2 1.1121 0.051102 1.0070 1.2171 0.0000

�*� 1.1834 0.014710 1.1532 1.2136 0.0000

�*� is the area under the curve from C = 0 to C = ∞
Initial time point (�) = 0.035983

Final time point (�) = 1.6110

Area (from C = � to C = �) = 0.93832

Average over range (�, �) = 0.59575
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Parameter correlation matrix

1

-0.8757 1

-0.5963 0.8996 1

-0.8479 0.9485 0.8199 1

Analysis of residuals: ,((& 24.397

%(j2 ≥ ,((&) 0.5533

'2, 22(theory,data)2 0.9934

Largest absolute relative residual 11.99%

Smallest absolute relative residual 0.52%

Average absolute relative residual 3.87%

Absolute relative residuals in range 0.1–0.2 3.33%

Absolute relative residuals in range 0.2–0.4 0.00%

Absolute relative residuals in range 0.4–0.8 0.00%

Absolute relative residuals > 0.8 0.00%

Number of negative residuals (=1) 15

Number of positive residuals (=2) 15

Number of runs observed (A) 16

%(runs ≤ A: given =1 and =2) 0.5759

5% lower tail point 11

1% lower tail point 9

%(runs ≤ A : given =1 plus =2) 0.6445

%(signs ≤ least number observed) 1.000

Durbin-Watson test statistic 1.8061

Shapiro-Wilks, statistic 0.9387

Significance level of , 0.0841

Akaike AIC (Schwarz SC) statistics 1.7979 (7.4027)

Verdict on goodness of fit: incredible

,((&-previous 224.9

,((&-current 24.4

Number of parameters-previous 2

Number of parameters-current 4

Number of G-values 30

Akaike ���-previous 64.44

Akaike ���-current 1.798, �' = 3.998� + 13

Schwarz (�-previous 67.24

Schwarz (�-current 7.403

Mallows �? 213.7, �?/<1 = 106.9

Numerator degrees of freedom 2

Denominator degrees of freedom 26

� test statistic (�() 106.9

%(� ≥ �() 0.0000

%(� ≤ �() 1.0000

5% upper tail point 3.369

1% upper tail point 5.526

Conclusion based on the � test

Reject the previous model at 1% significance level

There is strong support for the extra parameters

Tentatively accept the current best fit model
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The fit with two exponentials is clearly better than the fit with one exponential as show in the next graph.
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From the next plot it is evident that both components make a significant contribution to the best fit double

exponential curve.
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Example 2: sequential kinetics (Type 5)

Another scheme that is frequently encountered is with an irreversible chemical reaction such as

-
:1→ .

:2→ /

with rate constants :1 and :2 and initial conditions - (0) = -0, . (0) = .0, / (0) = /0 leading to

- (C) = -0 exp(−:1C)

. (C) = -0:1

:2 − :1

exp(−:1C) +
[
.0 −

-0:1

:2 − :1

]
exp(−:2C)

/ (C) = -0 + .0 + /0 −
-0:2

:2 − :1

exp(−:1C) −
[
.0 −

-0:1

:2 − :1

]
exp(−:2C) .

In the special case -0 > 0, .0 = 0, /0 = 0 the expression for . (C) reduces to

. (C) = -0:1

:2 − :1
[exp(−:1C) − exp(:2C)]

= -0:C exp(−:C) if : = :1 = :2.

A similar expression is often encountered in pharmacokinetics, for instance if . (C) is the concentration of a

substance in the blood after it ingested at C = 0, then absorbed from the stomach with rate constant :1 but

eliminated from the system with rate constant :2. However several complications of this simple scheme are

often encountered.

1. There may be insufficient data to characterize the early data points.

2. There may be insufficient time to record the final data points.

3. Data may arise from a repeated experiment with insufficient time for complete washout.

4. . (0) and/or / (0) may not be zero.

5. There may be additional steps requiring additional exponential terms.

6. Instead of rising then falling as in Type 5 the observed response may be a decrease followed by an

increase as with Type 6.

Program exfit can attempt to deal with such issues by allowing additional exponential terms to be added and

by allowing a relaxation phase to follow an initial fitting phase. For instance, this simplified three parameter

model 6(C) can be fitted first

6(C) = �[exp(−:1C) − exp(:2C)]

followed by using the parameter estimates from this fit as starting estimates to fit the richer four parameter

model ℎ(C)
ℎ(C) = �1 exp(−:1C) + �2 exp(−:2C)

which will attempt to retain the up-down character supposed in the data. This relaxation method should be

used when fitting Type 5 and Type 6 exponential models. However, in order to deal with models such as these

it is best to use the greater versatility of program qnfit.

To illustrate fitting such a model the exact data in test file exfit.tf5 was input into SimFIT program adderr

and five replicates per point were generated with 7.5% relative error with weights calculated from the sets of

five replicates at each time point.
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The simulated data and best-fit Type 5 curve from program exfit was as follows.
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The graphical deconvolution of the best fit Type 5 model is shown next.
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Theory

SimFIT program exfit will attempt to fit the multi-exponential model

5 (C) =
=∑
8=1

�8 exp(−:8 C) + �

by scaling the data, calculating starting estimates, then performing unconstrained nonlinear regression. It

will only succeed if the data are extensive and accurate over a wide time range, the absolute values of the

amplitudes �8 are similar, the rate constants :8 are sufficiently distinct, and the value of = modest, say = ≤ 3.

For more extreme conditions it may be necessary to input starting estimates interactively, or preferably use

the advanced programs qnfit or deqsol.

The reason why users have to choose which of the six exponential types to fit is that the scaling, calculation of

starting estimates, and parameterizationof the model has considerable influence on the success of optimization

and model discrimination. To appreciate this, consider a system where several irreversible first order processes

are taking place as in this scheme.

-1
:1→ .1

-2
:2→ .2

. . .

-=
:=→ .=.

For each independent component we would have the solutions

-8 = -80 exp(−:8 C)
.8 = .80 + -80(1 − 4G?(−:C))

so that fitting a model to
∑=
8=1 -8 (C) would require a Type 1 model, while fitting

∑=
8=1 .8 (C) would require a

Type 4 model or a Type 3 model if .80 = 0.

As explained in Example 2, a consecutive scheme like

-1

:1→ -2

:2→ -3 . . .
:=→ -=

would also lead to a different type of solution with = exponentials of Type 5 or Type 6.

The actual experimental situation could be further complicated for these reasons.

• Most processes fitted by exponential models are not irreversible but also involve backward flux.

• Reversible consecutive processes require = ≥ 2 but here the exponential terms are not simple but involve

calculating the eigenvalues for the system at each iteration.

• Cyclical consecutive processes can also lead to complex eigenvalues and oscillating solutions.

In such situations it is far better to model the situation as a set of differential equations and simulate then fit

these using SimFIT program deqsol.
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8.5.6 Fitting growth, decay, or survival models

Nonlinear growth, decay, and survival models are fitted to data in order to estimate parameters that can be

used to compare the effects of treatments and/or different groups. The parameters that are usually estimated

are the initial and final sizes and rates of change and meaningful numbers such as the half life and maximum

rates of change.

Example 1: Growth data

From the main SimFIT menu choose [A/Z], open program gcfit, select the option to fit growth curves then

browse the default test file gcfit.tf2 containing the following data.

Time Size Standard Error

0.0000 0.090501 0.0057406

0.0000 0.085148 0.0057406

0.0000 0.096621 0.0057406

1.0000 0.20400 0.0069302

1.0000 0.21300 0.0069302

1.0000 0.21763 0.0069302

2.0000 0.42858 0.017410

2.0000 0.45530 0.017410

2.0000 0.42261 0.017410

3.0000 0.71832 0.039573

3.0000 0.64283 0.039573

3.0000 0.70118 0.039573

4.0000 0.84408 0.041097

4.0000 0.76262 0.041097

4.0000 0.79382 0.041097

5.0000 0.91559 0.027506

5.0000 0.86060 0.027506

5.0000 0.88937 0.027506

6.0000 0.98545 0.016132

6.0000 o.95853 0.016132

6.0000 0.98738 0.016132

7.0000 1.0552 0.063158

7.0000 0.94115 0.063158

7.0000 1.0452 0.063158

8.0000 1.0433 0.040631

8.0000 0.96285 0.040631

8.0000 1.0130 0.040631

9.0000 0.99185 0.047010

9.0000 1.0452 0.047010

9.0000 1.0856 0.047010

10.000 1.0226 0.018664

10.000 0.98858 0.018664

10.000 0.99220 0.018664

Column 1 contains the time values C which must be nonnegative and in nondecreasing order.

Column 2 contains the size estimates ((C) which must be nonnegative.

Column 3 contains the sample standard deviations for the triplicates to use for weighting, but this column can

be set to one or omitted if weighting is not required.
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Program gcfit can fit sequences of nonlinear growth, decay, or survival models giving statistics for goodness

of fit and model discrimination but, before proceeding further, the definition of ((C) must be explained.

If the data are for longitudinal measurements on the same individual or subjects they will be correlated so that

fitting nonlinear models by weighted least squares will generate biased fits instead of maximum likelihood

fits. One way to circumvent this is to fit flexible models such as polynomials or splines by techniques that

attempt to estimate the autocorrelation. However it is only possible to estimate approximate correlations and

polynomials cannot capture the shape of actual growth data or be used to estimate meaningful parameters to

characterize growth profiles.

Ideally, gcfit should be used where observed ((C) values are obtained in such a way as to make successive

observations independent, e.g. sampling without replacement to estimate growth of bacterial colonies. Users

will have to balance the usefulness of growth curve models with possible bias induced by fitting a deterministic

model against the model-free data smoothing approach.

First of all note that most simple growth curve models are special cases of differential equations such as the

Von Bertalannfy allometric equation

3(/3C = �(U − �(V

which can be simulated and fitted using program deqsol, and it usual to explore the type of model required

by fitting the first three models provided by program gcfit in a preliminary investigation. When a model has

been selected there will be no further need to fit sequences of models.

Three typical growth curve shapes are shown in the next figure.

Model 1: Unlimited Exponential Growth
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• Model 1

This is exponential growth (1(C) which is only encountered in the early phase of development.

(1(C) = �1 exp(:1C)

• Model 2

This is limited exponential growth (2(C), concave down to an asymptote fitted by the monomolecular

model

(2(C) = �2 [1 − exp(−:2C)]

• Model 3

This is the logistic equation (3(C) which can fit sigmoidal profiles.

(3(C) =
�3

1 + � exp(−:3C)

Proceeding to fit these three models sequentially leads to the following conclusions and results table for model

three, then a plot of data and all three best fit curves.
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Model ,((&/#�$� %(j2 ≥ ,) %(' ≤ A) # > 10% # > 40% �E.A% Verdict

1 152 0.000 0.000 29 17 40.03 Very bad

2 18.1 0.000 0.075 20 0 12.05 Very poor

3 1.32 0.113 0.500 0 0 3.83 Incredible

In this table ,((&/#�$� is the weighted sum of squares divided by degrees of freedom and %(j2 ≥ ,)
is the significance level for this parameter in a chi-square test. %(' ≤ A) is the probability of runs less than

or equal to the number observed given the number of positive and negative residuals, while # > 10% and

# > 40% are the number of absolute residuals exceeding the stated percentage, and �E.A% is the average

absolute residual. The conclusions in the last column are based on these results along with several other

goodness of fit measures, and clearly model 3 is the preferred model with the estimated parameters shown

next.

Results for model 3

Parameter Value Std.error Lower95%cl Upper95%cl ?

� 0.99891 0.0078551 0.9828 7 1.0150 0.0000

� 9.8901 0.33300 9.2100 10.570 0.0000

: 0.98814 0.026785 0.93344 1.0428 0.0000

C1/2 2.3190 0.045070 2.2270 2.4111 0.0000

Parameter correlation matrix

1

-0.0167 1

-0.4388 0.7192 1
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Example 2: Decay data

It is often useful to fit growth models to data that are decreasing as a function of time instead of increasing.

For instance, the Gompertz model growth data in the next table are contained in test file gcfit.tf5 while the

same data are arranged into decay form in test file gcfit.tf6.

Growth data Decay data

C ((C) C ((C)
0.0000 0.0048 0.0000 97.3685

1.1110 0.3044 1.1110 96.4062

2.2220 3.4696 2.2220 82.1162

3.3330 14.5225 3.3330 74.1991

4.4440 40.8277 4.4440 52.6928

5.5560 52.6928 5.5560 40.8277

6.6670 74.1991 6.6670 14.5225

7.7780 82.1162 7.7780 3.4696

8.8890 96.4062 8.8890 0.3044

10.0000 97.3685 10.0000 0.0048

What happens in program gcfit when data in gcfit.tf6 are analyzed is that the data are rearranged into the

order of gcfit.tf5 and then fitted by growth models as normal, except that some of the results and graphs

are displayed in the original decay order with the original time scale.

First consider the parameters estimated for data in test file gcfit.tf5.

Parameter Value Std.error Lower95%cl Upper95%cl ?

� 105.87 4.6415 94.898 116.85 0.0000

� 9.1665 1.9138 4.6412 13.692 0.0020

: 0.48054 0.052253 0.35698 0.60410 0.0000

C1/2 5.3733 0.20578 4.8867 5.8599 0.0000

Now consider the parameters estimated for data in test file gcfit.tf6 and the best fit curves.

Parameter Value Std.error Lower95%cl Upper95%cl ?

� 105.87 4.6415 94.898 116.85 0.0000

� 9.1665 1.9138 4.6412 13.692 0.0020

: 0.48054 0.052253 0.35698 0.60410 0.0000

C1/2 4.6267 0.20578 4.1401 5.1133 0.0000
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What has happened is that the following model was fitted to both of these data sets

((C) = � exp[−� exp(−:C)]

but the only difference in the parameter estimates and graphs is that the data are presented in the original time

scale for C1/2 for the decay data and not using the transformed time ) = C<0G + C<8= − C.
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A similar situation is encountered when comparing the maximum and minimum slopes evaluated at the data

points with the maximum and minimum values evaluated along the coordinates of the best fit curves. This is

illustrated by the results displayed for extreme gradients in the extracts from the results log files and further

clarified by the gradient plots.

Results for growth data

Maximum observed growth rate 18.655 Best fit curve maximum 18.716

Time when max. rate observed 4.4440 Best fit curve time 4.6107

Minimum observed growth rate 0.048725 Best fit curve minimum 0.048725

Time when min. rate observed 0.0000 Best fit curve time 0.0000

Results for decay data

Minimum observed growth rate -18.655 Best fit curve minimum -18.716

Time when min. rate observed 5.5560 Best fit curve time 5.3893

Maximum observed growth rate -0.048725 Best fit curve maximum -0.048725

Time when max. rate observed 10.000 Best fit curve time 10.000
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The conclusion is simply that, if SimFIT program gcfit is supplied with decay data, the data will be reversed

and fitted by the growth models, but the output tables and graphs will use the original decay coordinates.

Example 3: Nonlinear survival curves

In mode 2, gcfit fits a sequence of survival curves for data smoothing where it is assumed that the data are

uncorrelated estimates of fractions surviving 0 ≤ ((C) ≤ 1 as a function of time C ≥ 0, e.g. such as would

result from using independent samples for each time point. However, as normalizing data to ((0) = 1 can

introduce bias, mode 2 allows an amplitude factor to be estimated.

It is important to realize that, if any censoring has taken place, the estimated fraction should be corrected for

this. In other words, you start with a population of known size and, as time elapses, you estimate the fraction

surviving by any sampling technique that gives estimates corrected to the original population at time zero.

The test files weibull.tf1 and gompertz.tf1 contain some exact data, which you can fit to see how mode

2 works. Then you can add error to simulate reality using program adderr. Note that you prepare your own

data files for mode 2 using the same format as for program makfil, making sure that the fractions are between

zero and one, and that only nonnegative times are allowed. It is probably best to do unweighted regression

with this sort of data unless the variance of the sampling technique has been investigated independently.

In survival mode the time to half maximum response is estimated with 95% confidence limits and this can

used to estimate !�50. The survivor function is ((C) = 1 − � (C), the pdf is 5 (C), i.e. 5 (C) = −3(/3C, the

hazard function is ℎ(C) = 5 (C)/((C), and the cumulative hazard is � (C) = − log(((C)). Plots are provided for

((C), 5 (C), ℎ(C), log[ℎ(C)] and, as in mode 1, a summary is given to help choose the best fit model from the

models provided, all of which decrease monotonically from ((0) = 1 to ((∞) = 0 with increasing time.
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The test file weibull.tf1 has the following data

Time Fraction s.e.

0.000 1.000 1

1.000 0.9048 1

2.000 0.6703 1

3.000 0.4066 1

4.000 0.2019 1

5.000 0.08208 1

simulated by program makdat using the Weibull model

((C) = ?1 exp[−?2C
?3 ]

= (0 exp[−(�C)�]

for ?1 = 1, ?2 = 0.1, ?3 = 2.0 which, in the nomenclature used by gcfit is (0 = 1.0, � = 0.362, � = 2.0. Then

7.5% relative error was added for five replicates using program adderr to generate test file weibull.tf2

which was analyzed using the option to estimate (0 giving the following table of parameter estimates and the

best fit curve plot. Of course, if the starting fraction were known exactly, as in actual survival data, there

would be no values for C = 0 since it would be assumed that (0 = 1. However, allowing the C = 0 value to be

estimated should perhaps always be used for data smoothing to avoid bias.

Parameter Value Std.error Lower95%cl Upper95%cl ?

� 0.30648 0.0056521 0.29489 0.31808 0.0000

� 2.0879 0.11926 1.8432 2.3326 0.0000

(0 0.95465 0.015961 0.92190 0.98740 0.0000

C1/2 2.7375 0.063837 2.6065 2.8685 0.0000
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Growth and Survival Models available in program gcfit

1. Exponential model 3(/3C = :(
((C) = � exp(:C), where � = (0

2. Monomolecular model 3(/3C = : (� − ()
((C) = �[1 − � exp(−:C)], where � = 1 − (0/�

3. Logistic model 3(/3C = :((� − ()/�
((C) = �/[1 + � exp(−:C)], where B = �/(0 − 1

4. Gompertz model 3(/3C = :( [log(�) − log(()]
((C) = � exp[−� exp(−:C)], where � = ;>6(�/(0)

5. Von Bertalanffy 2/3 model 3(/3C = [(2/3 − ^(
((C) = [�1/3 − � exp(−:C)]3

where �1/3
= [/^, � = [/^ − (1/3

0
, : = ^/3

6. Model 3 with constant 5 (C) = ((C) − �
35 /3C = 3(/3C = : 5 (C) (� − 5 (C))/�
((C) = �/[1 + � exp(−:C)] + �

7. Model 4 with constant 5 (C) = ((C) − �
35 /3C = 3(/3C = : 5 (C) [log(�) − log( 5 (C))]
((C) = � exp[−� exp(−:C)] + �

8. Model 5 with constant 5 (C) = ((C) − �
35 /3C = 3(/3C = [ 5 (C)2/3 − ^ 5 (C)
((C) = [�1/3 − � exp(−:C)]3 + �

9. Richards model 3(/3C = [(< − ^(
((C) = [�1−< − � exp(−:C)] [1/(1−<) ]

where �1−<
= [/^, � = [/^ − (1−<

0 , : = ^(1 − <)
if < < 1 then [, ^, � and � are > 0

if < > 1 then � > 0 but [, ^ and � are < 0

10. Preece and Baines model 5 (C) = exp[:0 (C − \)] + exp[:1 (C − \)]
((C) = ℎ1 − 2(ℎ1 − ℎ\ )/ 5 (C)

1. Exponential survival model ((C) = exp(−�C)
5 (C) = �((C)
ℎ(C) = �

2. Weibull survival model ((C) = exp[−(�C)�]
5 (C) = ��[(�C)�−1]((C)
ℎ(C) = ��(�C)�−1

3. Gompertz survival model ((C) = exp[−(�/�){exp(�C) − 1}]
5 (C) = � exp(�C)((C)
ℎ(C) = � exp(�C)

4. Log-logistic survival model ((C) = 1/[1 + (�C)�]
5 (C) = ��(�C)�−1/[1 + (�C)�]2

ℎ(C) = ��(�C)�−1/[1 + (�C)�]
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8.5.7 Fitting initial rates, half times, lag times and asymptotes

It frequently happens that measurements of a response as a function of time say, or concentration, etc., are

made in order to measure an initial rate, a lag time, an asymptotic steady state rate, a half saturation point, or

a horizontal asymptote. Examples could be the initial rate of an enzyme catalyzed reaction, the transport of

labeled solute out of loaded erythrocytes, or extent of muscle contraction in response to an agonist.

The models required to perform these operations are available from the main SimFIT menu after first choosing

[A/Z] then opening program inrate.

Theory

Stated in equations we have the responses given by a deterministic component plus a random error

H8 = 5 (C8) + n8 , 8 = 1, 2, . . . , <

and it is wished to measure the limiting values

the initial rate =
35

3C
at C = 0

the asymptotic slope =
35

3C
as C → ∞

the half saturation point = C1/2 where 5 (C1/2) = 5 (0)/2
the final asymptote = 5 as C → ∞.

There are numerous ways to make such estimates in SimFIT and the method adopted depends critically on

the type of experiment. Choosing the wrong technique can lead to biased estimates, so you should be quite

clear which is the correct method for your particular requirements. In particular, is 5 (0) = � = 0 required ?

The models used by program inrate are

51 = �C + �
52 = �C2 + �C + �
53 = U[1 − exp(−VC)] + �

54 =
+<0GC

=

 =< + C= + �

55 = %C +& [1 − exp(−'C)] + �

and there are test files to illustrate each of these that can be selected from the SimFIT file selection control

after using the [Demo] button. It is usual to assume that 5 (C) is an increasing function of C with 5 (0) = 0,

which is easily arranged by suitably transforming any initial rate data. For instance, if you have measured

efflux of an isotope from vesicles you would analyze the rate of appearance in the external solute, that is,

express your results as

5 (C) = initial counts - counts at time C

so that 5 (C) increase from zero at time C = 0. All you need to remember is that, for any constant  ,

3

3C
{ − 5 (C)} = −35

3C
.

However it is sometimes difficult to know exactly when C = 0, e.g., if the experiment involves quenching, so

there exists an option to force the best fit curve to pass through the origin with some of the models if this is

essential. The models available will now be summarized.
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1. 51: This is used when the data are very close to a straight line and it can only measure initial rates.

2. 52: This adds a quadratic correction and is used when the data suggest only a slight curvature. Like the

previous model it can only estimate initial rates.

3. 53: This model is used when the data rapidly bend to a horizontal asymptote in an exponential manner.

It can be used to estimate initial rates, half-times (log(2)/V), and final horizontal asymptotes.

4. 54: This model can be used with = fixed (e.g., = = 1) for the Michaelis-Menten equation, or with =

varied (the Hill equation). It is not used for initial rates but is sometimes better for estimating half

saturation points ( <), or final horizontal asymptotes than the previous model.

5. 55: This is the progress curve equation used in transient enzyme kinetics. It is used when the data have

an initial lag phase followed by an asymptotic final steady state. It is not used to estimate initial rates,

final horizontal asymptotes, or AUC. However, it is very useful for experiments with cells or vesicles

which require a certain time before attaining a steady state, and where it is wished to estimate both the

length of lag phase and the final steady state rate.

To understand these issues, see what happens the test files. These are, models 51 and 52 with inrate.tf1,

model 53 with inrate.tf2, model 54 with inrate.tf3 and model 55 using inrate.tf4.

Example 1: Using 52(C) to estimate initial rates

A useful method to estimate initial rates when the true deterministic equation is unknown is to fit the quadratic

52 (C) = �C2 +�C +�, in order to avoid the bias that would inevitably result from fitting a line to nonlinear data.

Use inrate to fit the test file inrate.tf1, and note that, when the model has been fitted, it also estimates the

slope at the origin. The reason for displaying the tangent in this way, as in the figure, is to give you some idea

of what is involved in extrapolating the best fit curve to the origin, so that you will not accept the estimated

initial rate uncritically.
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Example 2: Using 53(C) to estimate half times, initial rates, and horizontal asymptotes

This model,

53 (C) = U[1 − exp(−VC)] + �,

sometimes referred to as the monomolecular model, is useful for characterizing time-dependent processes

that approach a horizontal asymptote.

For instance, program adderr was used to generate 5 replicates with 7.5% relative error added to the exact

data in test file inrate.tf2 to simulate experimental error with standard errors estimated from the replicates,

and the monomolecular equation was fitted to yield the following results.

Parameter Value Std. error Lower95%cl Upper95%cl ?

U 9.0018 0.39481 8.2075 9.7960 0.0000

V 0.14346 0.023000 0.097186 0.18973 0.0000

� 3.5251 0.48988 2.5396 4.5106 0.0000

Estimated initial value i.e. 5 (C = 0) = 3.5251

Estimated initial rate 35 /3C(C = 0) = 1.2914

At C = -2.3035, 5 = 0 and 35 /3C = 1.7971 ... extrapolated value

Estimated final asymptote 5 (∞) = 12.527

Estimated half time (i.e. log(2)/V) = 4.8318
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Note that the estimate referred to as the half time is defined by

Ĉ1/2 = log(2)/V̂

which will only be the time to reach half the maximal value (Û + �̂) when the model is fitted using the option

to set � = 0. Often it will be sensible to use the option 5 (0) = 0, i.e. fixing � = 0 when using inrate.
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Example 3: Using 54(C) to estimate half saturation points and horizontal asymptotes

The Hill equation given by

54 (C) =
+<0GC

=

 =< + C= + �

only models a meaningful process when = = 1, as the cases with = < 1 and = non-integer have no sensible

interpretation, while those with integer = > 1 are only coarse approximations to receptor saturation. Never-

theless, this equation is widely used as an empirical model to fit data in order to estimate the origin �, half

saturation point  <, and horizontal asymptote +<0G + �. Note that program inrate allows the exponent = to

be fixed. which is preferred, or varied as a parameter, which is not usually recommended as it can lead to an

ill-defined best-fit model.

For instance, program adderr was used to generate 5 replicates with 7.5% relative error added to the exact

data in test file inrate.tf3 to simulate experimental error with standard errors estimated from the replicates,

and the Hill equation with = = 4 was fitted to yield the following results.

Parameter Value Std. error Lower95%cl Upper95%cl ?

+<0G 9.6039 0.21213 9.1758 10.032 0.0000

 < 1.0090 0.034222 0.93999 1.0781 0.0000

� 2.1875 0.16332 1.8579 2.5171 0.0000

= 4.0000 0.0000 4.0000 4.0000 Fixed

Estimated initial value i.e. 5 (C = 0) = 2.1875

Estimated initial rate 35 /3C(C = 0) = 0.0000

Estimated final asymptote 5 (∞) = 11.91

The exponent was fixed at the value = = 4
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Example 4: Using 55(C) to estimate lag times and asymptotic steady states

Use inrate to fit 55 (C) = %C + & [1 − exp (−'C)] + � to data in test file inrate.tf4, and observe that the

asymptotic line is displayed in addition to the tangent at the origin, as in the next figure.

0

2

4

6

8

10

0 2 4 6 8 10

Using INRATE to Fit Lag Kinetics

x

y

Data
Best Fit
Asymptote
Tangent at x = 0

However, sometimes a burst phase is appropriate, rather than lag phase, as shown next.
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8.6 Nonlinear regression: advanced

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

8.6.1 Introduction to constrained nonlinear regression

This involves minimizing an objective function such as a scaled weighted sum of squares

,((&

#�$�
=

1

= − <

=∑
8=1

F8 (H8 − 5 (G8 ,Θ))2

with respect to a < dimensional parameter vector Θ, where there are = observations H8 , and a model 5 (G,Θ),
along with parameter starting estimates and limits, and specified weights F8 . The aim is to use the parameter

estimates and confidence limits to asses the value of model parameters that have a physical interpretation,

such as diffusion constants, chemical reaction rate constants, or growth rates, etc. Of course the observations

H, independent variables G, functions 5 , and weights F would often be vector quantities. The main SimFIT

programs to perform this type of optimization are qnfit providing quasi-Newton and other methods, and

deqsol for systems of differential equations, and numerous considerations must be understood and several

conditions must be satisfied before these iterative techniques can obtain sensible solution points. Some of

these these are now summarized.

1. The model

The model can be used from a default library of models, but it is normally anticipated that users would

define their own specialized model, and create a model file using program usermod. It will be obvious

that the model should be parsimonious, using only the minimum number of parameters, and where

every parameter has a scientific interpretation. Often data can be normalized by users before curve-

fitting if this reduces the number of parameters that need to be estimated. For instance, normalizing

observations so that 5 (0) = 0, or 5 (∞) = 1, or, especially in the case of differential equations, so that

initial conditions do not need to be estimated.

2. The data

The data must be extensive in the sense that = >> <, and with a high signal to noise ratio, but

they should also cover a range where the effect of all parameters can be assessed. For instance, with

exponential decay the range should extend beyond the longest half-life, and, where growth data or ligand

binding data approach a horizontal asymptote, the experimental data should clearly be starting to look

asymptotic.

3. The weights

The variance of experimental observations almost always increases as the absolute value of the observa-

tions increase, and even though the expectation will often be zero, the distribution will have longer tails,

more like a Cauchy than a Gaussian distribution. Now the theory required for the analysis of goodness

of fit and calculation of statistics to estimate parameter reliability and perform model discrimination

depends on the principle of maximum likelihood, which assumes a linear model with uncorrelated

normally distributed error. This means that either F8 = 1 if the variance is constant, or F8 = 1/B28
otherwise where the standard deviations B8 are known exactly. So several approaches are possible.

• Assume constant variance and set all B8 = 1. This leads to fitting being dominated by large

observations, and hence the parameters contributing to the large values will be estimated more

accurately than those only contributing to small values.
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• Assume constant relative error and assume that standard deviation is proportional to the absolute

value of the observation. This can lead to the opposite effect to assuming constant variance, i.e.

biasing the fit towards small values.

• Assume that B8 is a defined function of the observations or the best-fit function values. This

requires an assumption about the functional dependency of variance and, if the best-fit model is

used rather than observations, then weighting changes as iterations proceed.

• Estimate the error variance independently. This is undoubtedly the best method as long as at least

five replicates are determined at each independent variable setting and, if possible, a smoothing

technique is used to determine a reliable model for the change in variance as a function of the

value of observations.

4. The starting estimates and limits

Constrained nonlinear optimization is an iterative technique that attempts to find a local minimum given

parameter starting estimates and parameter limits. So naturally it is important that the starting estimates

are close to the true values and the limits are not so wide that parameters can stray into unlikely regions

of parameter space. SimFIT programs qnfit and deqsol also use the starting estimates to normalize the

internal parameters to order unity, as calculation of maxim descent vectors and augmented Lagrangians

will be most accurate if all internal parameters are of order unity.

Success and Failure

If all the above criteria are met then convergence to a minimum should be achieved so that ,((& will be

approximately chi-squared distributed with #�$� = = − <. Then the objective function should be of order

unity with reasonable parameter estimates and satisfactory goodness of fit analysis.

On the other hand, if the conditions are not met then failure will occur with appropriate error messages. In

such dubious cases you should switch on the options to evaluate the parameter covariance matrix, the condition

number of the Hessian, and study tables of residuals and residuals plots. Note that, if the objective functions

is too small or too large on entry due to an inappropriate model, poor quality data, incorrect weighting, or

unrealistic starting estimates, then the routine will not be able to estimate the gradient vector and exit will

occur without fitting.

In order to become familiar with program qnfit some very simple examples will be given next to illustrate the

standard way to proceed. That is:

1. select the model type required, e.g. one function of one variable;

2. input a data set composed in the EXPERT mode with starting estimates and limits appended;

3. read in the model file, e.g. created using program usermod; then

4. proceed to fitting.

In the next fairly trivial examples note that the test data files and model files can be easily located using the

[Demo] button on the file-open dialogue box.

Example 1: One function of one variable

Open SimFIT program qnfit then follow the next steps.

1. Choose to fit one function of one variable

2. From the file-open dialogue press [Demo] then view and open the test file

qnfit_data.tf1
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3. Choose to open an ASCII text model file then from the file-open dialogue press [Demo] then view and

open the test file

qnfit_model.tf1

4. Choose the EXPERT mode for starting estimates then fit

Note that this is simulated data for a quadratic and the EXPERT mode appended section is as follows.

begin{limits}

­10 1 10

­10 1 10

­10 1 10

end{limits}

The model file defines a quadratic 5 (G) = ?1G + ?2G
2 + ?3 as follows.

%

Model for a polynomial of degree 2

f(x) = p(1)x + p(2)x^2 + p(3)

%

1 equation

1 variable

3 parameters

%

begin{expression}

f(1) = p(1)x + p(2)x^2 + p(3)

end{expression}

%

Now, to obtain a permanent copy of the outcome after fitting, extract the table of best-fit parameters using the

[Results] then [Extract tables] options from the main SimFIT menu to import the following table into your

document.

Best-fit parameters for curve-fit 1 using LBFGSB

Number Low-Limit High-Limit Value Std.Error Lower95%cl Upper95%cl ?

1 -10.0 10.0 2.12035 0.0197309 2.07829 2.1624 0.0000

2 -10.0 10.0 -0.11565 0.0035714 -0.12326 -0.1080 0.0000

3 -10.0 10.0 0.10347 0.0032091 0.09663 0.1103 0.0000

For 50,90,95,99% confidence limits using [parameter value +/- C(U/2)*std.err.]

C(0.25) = 0.691, C(0.05) = 1.753, C(0.025) = 2.131, C(0.005) = 2.947

Note that the Ca (.) values are provided in case you want to calculate parameter confidence limits in addition

to the default 95% values.

Example 2: One function of two variables

Proceeding exactly as for example one except that one function of two variables is chosen, the data file is

qnfit_data.tf2 and the model file is qnfit_model.tf2 observe that now the data file has four columns

(G, H, 6(G, H), B) for observations 6(G, H).

The appended EXPERT mode section defining the lower-limits, starting values, and upper limits for the three

parameters follows
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begin{limits}

­10 ­2 10

­10 2 10

­10 4 10

end{limits

while the model has the next definition followed by the results from fitting.

%

Linear model with two variables

g(x,y) = p(1)x + p(2)y + p(3)

%

1 equation

2 variables

3 parameters

%

begin{expression}

f(1) = p(1)x + p(2)y + p(3)

end{expression}

%

Best-fit parameters for curve-fit 2 using LBFGSB

Number Low-Limit High-Limit Value Std.Error Lower95%cl Upper95%cl ?

1 -10.0 10.0 0.96311 0.0334131 0.895683 1.03054 0.0000

2 -10.0 10.0 0.95436 0.0323055 0.889165 1.01955 0.0000

3 -10.0 10.0 1.05694 0.0359344 0.984422 1.12946 0.0000

For 50,90,95,99% confidence limits using [parameter value +/- C(U/2)*std.err.]

C(0.25) = 0.680, C(0.05) = 1.682, C(0.025) = 2.018, C(0.005) = 2.698

Example 3: One function of three variables

This time the data file is qnfit_data.tf3, while the model file is qnfit_model.tf3 defining a function of

three variables displayed next, followed by the results from curve fitting.

%

Linear model with three variables

h(x,y,z) = p(1)x + p(2)y + p(3)z + p(4)

%

1 equation

3 variables

4 parameters

%

begin{expression}

f(1) = p(1)x + p(2)y + p(3)z + p(4)

end{expression}

%

Best-fit parameters for curve-fit 3 using LBFGSB

Number Low-Limit High-Limit Value Std.Error Lower95%cl Upper95%cl ?

1 -10.0 10.0 1.00348 0.015231 0.97335 1.03361 0.0000

2 -10.0 10.0 0.99476 0.017071 0.96098 1.02853 0.0000

3 -10.0 10.0 0.98594 0.017159 0.95199 1.01988 0.0000

4 -10.0 10.0 -2.94533 0.055805 -3.05572 -2.83493 0.0000

For 50,90,95,99% confidence limits using [parameter value +/- C(U/2)*std.err.]

C(0.25) = 0.676, C(0.05) = 1.657, C(0.025) = 1.978, C(0.005) = 2.614
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8.6.2 Choosing parameter starting values and limits

Once a correct model has been chosen and accurate data consistent with this model and extending over a wide

range have been obtained, the next most important item is to select parameter starting estimates close to the

expected values, and also to provide sensible upper and lower parameter limits.

The simple SimFIT curve-fitting programs, such as mmfit, obtain starting estimates and limits as follows.

1. Scale the data to order unity.

2. Obtain slopes and/or horizontal asymptotes by linear regression to the early and late data.

3. Because data for simple curve-fitting programs must be in non-decreasing order, fits to extreme data

points can usually be used to estimate parameters that become important at the extreme data regions.

4. As each of the simple curve-fitting programs is designed for a particular model, then starting estimates

and limits can usually be guessed.

5. In addition, random searches around these estimates, but constrained by the parameter limits, can be

used to refine such values.

However, as qnfit and deqsol are for expert users they must perform such tasks themselves. There is nothing

to stop expert users from scaling the data before input to qnfit and submitting data in random order, etc., but

the following facts cannot be avoided.

• The starting estimates must be reasonably close to the probable parameters.

• If this condition is not met then a meaningful solution is unlikely to be found as nonlinear regression

only seeks to find a local minimum.

• The upper and lower limits must not be too wide or too narrow.

• If these conditions are not met then parameters will either not be able to move sufficiently freely to

allow the gradient vector and Hessian to be estimated, or they will simply stick at boundaries.

Such effects will be immediately obvious by the following situations.

• Warnings about convergence problems and bad fitting will be displayed.

• Parameter standard errors will be large.

• The fit to data will be unsatisfactory.

The obvious action is to try new starting estimates and limits, possibly with a random search, until a good fit

results. Then subsequent data files can have such values appended.

Some typical examples will be given under the assumption that users will supply their models as ASCII text

files prepared using usermod, and will always append starting parameters and limits to the data files and use

the EXPERT mode of running qnfit.

Example 4: Fitting the two-site Michaelis-Menten model

The initial steady-state for a mixture of two one-site enzymes or for two independent sites on one enzyme can

be modeled by this expression

E(B) = +<0G1(

 <1 + (
+ +<0G2(

 <2 + (
where ( is the (constant) substrate concentration. First of all use simplot to plot the tests data file

qnfit_data.tf4 to obtain the following graph.
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From this graph we can see from the asymptotic behavior as ( → ∞ that +<0G1 + +<0G2 ≈ 2, while from

the half-saturation point  <1 and  <2 are between 1 and 10. It should also be observed that, because of

symmetry in the model, the pairs (+<0G1,  <1) and (+<0G2,  <2) are arbitrary and can be interchanged.

To emphasize: the usual and recommended way to use qnfit is to read in the data as a SimFIT data file with

starting estimates and limits appended, and then to supply the model required as a ASCII text file prepared

using usermod. So, to demonstrate this procedure, the next sequence should be used.

• Open qnfit from the [A/Z] button on the main SimFIT menu, choose to input data for one function

of one variable, and then, from the [Demo] button, select qnfit_data.tf4 which has the following

starting estimates and limits appended.

begin{limits}

0.1 0.8 5.0

0.1 1.2 5.0

0.1 1.0 15.0

0.1 8.0 15.0

end{limits}

• Then choose to input the corresponding ASCII text model file qnfit_model.tf4 which defines the

model in the following way, where using 5 (1) = � + � shows how the model could easily be extended

to three or more isoenzymes.
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%

Sum of two independent Michaelis­Menten active sites

v(S) = Vmax_1*S/(Km_1 + S) + Vmax_2*S/(Km_2 + S) where

p(1) = Vmax_1, p(2) = Vmax_2 p(3) = Km_1, p(4) = Km_2

%

1 equation

1 variable

4 parameters

%

begin{expression}

A = p(1)x/[p(3) + x]

B = p(2)x/[p(4) + x]

f(1) = A + B

end{expression}

%

The parameter estimates and confidence limits from fitting are displayed in the next table followed by a plot

of data, best-fit curve and sub-models contributing to the overall fit.

Number Low-Limit High-Limit Value Standard Error Lower95%cl Upper95%cl ?

1 0.1 5.0 1.02901 0.13352 0.7546 1.30346 0.0000

2 0.1 5.0 1.02542 0.10378 0.8121 1.23873 0.0000

3 0.1 15.0 1.04328 0.11698 0.8028 1.28372 0.0000

4 0.1 15.0 9.74605 2.86518 3.8566 15.6355 0.0022

0.0

0.5

1.0
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2.0

0.0 10.0 20.0 30.0 40.0 50.0

Data, Best-Fit Curve, and Components for qnfit_data.tf4

S

v(
S

) 
=

 d
P

/d
t

v1 = Vmax1S/(Km1 + S)

v2 = Vmax2S/(Km2 + S)

(v1 + v2)

The plot was constructed by re-fitting using the corresponding built-in qnfit library model which is recognized

as a linear combination of sub-models, but this does not happen with user-defined model files so the separate

components have to be plotted independently then overlayed upon the usual best-fit display.
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Example 5: Fitting a double exponential model

This example involves fitting a model for � in the irreversible chemical kinetic scheme �
:1→ �

:2→ � which,

with various additional definitions, is used extensively elsewhere, for instance for absorption from the stomach

and elimination from the blood in pharmacokinetics.

5 (C) = :1�0

:2 − :1

[exp(−:1C) − exp(−:2C)] , :1 ≠ :2

The test file is qnfit_data.tf5 and, from viewing the data in simplot clearly :1 is around unity, while

:2 > :1, and 2 < �0 < 30 is less easy to guess, so the following starting estimates and limits are appended.

begin{limits}

0.0 0.5 10.0

0.0 6.0 10.0

0.0 12.0 30.0

end{limits}

The model file in qnfit_model.tf5 is shown next, followed by the table of results and the plot.

A = p(1)p(3)/[p(2) ­ p(1)]

B = exp[­p(1)x] ­ exp[­p(2)x]

f(1) = A*B

Number Low-Limit High-Limit Value Standard Error Lower95%cl Upper95%cl ?

1 0.0 10.0 1.00458 0.015634 0.97313 1.03604 0.0000

2 0.0 10.0 4.85240 0.146363 4.55795 5.14684 0.0000

3 0.0 30.0 9.83258 0.224251 9.38144 10.2837 0.0000
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Data and Best-Fit Curve for Test File qnfit_data.tf5

t

f(
t)

 f(t) = k1A0[exp(-k1t) - exp(-k2t)]/[k2 - k1]
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8.6.3 Calculating with the best fit curve

When a theoretical model has been fitted to a data set it is sometimes required to employ the model evaluated

using the < best-fit parameters \8 for calculations. The SimFIT program qnfit provides the following options

for doing this using the best-fit model

5̂ (G) = 5 (G, Θ̂), where Θ̂ = (\̂1, \̂2, . . . , \̂<)

after displaying the goodness of fit.

1. Plotting the best fit curve together with the data.

2. Plotting residuals in several ways.

3. Extrapolating the best-fit curve beyond the data range.

4. Displaying the contribution of individual components to the overall fit with those models that are sums

of sub-models. This type of graphical deconvolution requires the use of those models in the SimFIT

library that are defined in this way. Actually the user-friendly curve-fitting programs also provide this

feature where it is appropriate, e.g. exfit for sums of exponentials.

5. Evaluating the best-fit model at specific values of the independent variable.

6. Calculating the area under the best-fit curve between defined end points, i.e. the AUC.

7. Plotting the derivative of the best-fit curve over a data range in order to estimate the maximum and

minimum slopes.

8. Evaluating the derivative at selected points.

9. Using the best-fit curve for inverse prediction, i.e. calibration.

Numerical techniques

Some explanation is required for those options in this list that require numerical techniques.

• Calculating the AUC

This can only be done within qnfit using Simpson’s rule. However the option is provided to vary the

number of divisions so that this number can be increased if required until a stable result is obtained.

Perhaps the most common reason for using this technique is to calculate the area under a curve where

the range can be specified, e.g. in pharmacokinetics to estimate bioavailability such as drug plasma

levels.

• Calculating derivatives

Here the derivative is estimated at a specific point G using the parameter ℎ in the approximation

3H

3G
≈ 5̂ (G + ℎ) − 5̂ (G)

ℎ

and the option is provided to alter ℎ until a stable result is obtained.

A very common use for this technique is to estimate the points where the maximum and minimum

gradients occur in growth curve studies.
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• Calibration

For this procedure to reverse-predict G given it is necessary to solve the nonlinear equation

H − 5̂ (G) = 0

for a specified H and the unknown G using an iterative technique. If the default starting values do not

lead to a satisfactory solution the option is provided to choose new starting estimates � and � where

(H − 5̂ (�)) (H − 5̂ (�)) < 0.

This functionality means that qnfit can be used as a general purpose calibration curve program in those

instances where a non-typical calibration curve has to be constructed using a specific model rather than

using the SimFIT polynomial, GLM, or spline smoothing calibration curve programs.

As a very simple example to illustrative these calculations take the data file qnfit_data.tf1 together with

the model file qnfit_model.tf1 and first fit the model to the data to obtain a best-fit curve. Then continue

through the display of goodness of fit until the main qnfit menu is reached. The calculation options will then

be seen.

This data-model pair is very convenient because the data are very accurate and the model is linear in parameters

and very simple, being the quadratic

5 (G) = \1G + \2G
2 + \3,

using the usual SimFIT scheme that constants in theoretical models come last. So, for this extreme case,

we can perform the calculations analytically both for the best-fit parameters (2.12035, -0.115647, 0.103471)

and the exact parameters (2, -0.1, 0.1) before random error was added using adderr, leading to the following

results.

Procedure QNFIT using Θ̂ Calculated using Θ̂ Exact using Θ

Area from 0 to 10 68.5031 68.5032 67.6667

Derivative for G = 1 1.88905 1.88906 1.8

Derivative for G = 2 1.65776 1.65776 1.6

Derivative for G = 3 1.42647 1.42647 1.4

G given H = 1 0.43305 0.43305 0.46068

G given H = 2 0.94294 0.94294 1.0

G given H = 3 1.48658 1.48660 1.57385

Function value for x = 1 2.10817 2.10817 2.0

Function value for x = 1 3.88158 3.88158 3.7

Function value for x = 1 5.42369 5.42370 5.2

Of course this is a ridiculously simple example which is just given to demonstrate how these numerical

techniques could be used in more typical situations.
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8.6.4 Fitting a mixture of two normal distributions

Often samples consist of a mixture of distributions. For instance a sample of heights of subjects drawn from

a homogeneous population, i.e. of the same age and medical condition, could appear to be be approximately

normally distributed but would actually consist of two sub-populations, male and female. In reality, special

techniques exist for analyzing certain cases where populations cannot be physically separated into sub-groups

but can be resolved into supposed sub-populations using the method of maximum likelihood. However, the

curve fitting approach will be discussed in this tutorial because, in principle, it can be used for arbitrary

mixtures of any any distributions, not just normal distributions.

For instance, to explain how to use SimFIT program qnfit for this purpose, consider the simplest case of a

sample arising from a mixture of two normally distributed sub populations, so that a sample partitioned into

histogram bins could be approximately modeled by the expression

5 (G) = C

f1

√
2c

exp

(
−1

2

{
G − `1

f1

}2
)
+ 1 − C
f2

√
2c

exp

(
−1

2

{
G − `2

f2

}2
)

where 0 ≤ C ≤ 1 and the parameters C, `1, `2, f1, f2 must be estimated by fitting to the histogram bins. The

serious problem with this approach is that the shape of the histogram, and therefore the best-fit parameters,

will depend on the number of bins chosen. It should therefore be obvious that a very large sample will be

necessary, and meaningful parameter estimates can only be expected when `1 and `2 are widely separate, f1

and f2 are similar and less than the difference between `1 and `2, and the partitioning parameter C must obey

C ≈ 0.5. Of course the constraints f1 > 0, f2 > 0 also must be imposed.

Example 6: Fitting histogram data

The data file qnfit_data.tf6 can be selected from qnfit by clicking on the [Demo] button, and it is listed

below after extracting as a table using the [Results] button on the main SimFIT menu.

Data file qnfit_data.tf4

10 3

-3.6 0.0375 1.0

-2.8 0.0625 1.0

-2.0 0.2000 1.0

-1.2 0.2000 1.0

-0.4 0.1000 1.0

0.4 0.1250 1.0

1.2 0.1250 1.0

2.0 0.2500 1.0

2.8 0.1250 1.0

3.6 0.0250 1.0

begin{limits}

-5.0 -1.0 0.0

0.1 0.8 5.0

0.1 0.4 0.9

0.0 1.0 5.0

0.1 1.2 5.0

end{limits}

This file was created by reading a mixed sample of 50 # (−1.5, 1) numbers and 50 # (1.5, 1) numbers from

program rannum into the exhaustive analysis of a vector routine available under [Data exploration] from the

[Statistics] option on the main SimFIT menu. This indicates that the mixed sample is not consistent with a

single normal distribution and this step should be taken before fitting any data set because, if the sample is

consistent with a single normal distribution, there is little point in trying to fit a sum of two non–identical

distributions. This procedure also gives the option of plotting a histogram and then, having chosen the number
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of bins required, it can create a curve fitting file either unweighted or weighted by the square root of the bin

size. Unless a very large sample is under investigation and there are no empty bins an unweighted file should

be created. Note in particular that, as the best-fit curve integrates to unity over the data range (−∞,∞), the

option to normalize the histogram to area 1 must also be chosen.

After reading in the data file qnfit_data.tf6 the model file qnfit_model.tf6 should be selected, and this

contains the following definition for a sum of two normal distributions.

%

Sum of two normal pdfs

A = ­(1/2)[(x ­ p(1))/p(2)]^2

B = ­(1/2)[(x ­ p(4))/p(5)]^2

f(x) = {[1 ­ p(3)]exp(A)/p(2) + p(3)exp(B)/p(5)}/sqrt{2*pi)

%

1 equation

1 variable

5 parameters

%

begin{expression}

A = ­0.5*[(x ­ p(1))/p(2)]^2

B = ­0.5*[(x ­ p(4))/p(5)]^2

C = [1.0 ­ p(3)]*exp(a)/p(2) + p(3)*exp(b)/p(5)

f(1) = C/root2pi

end{expression}

%

The best fit results table follows.

Number Low-Limit High-Limit Value Std.Error Lower95%cl Upper95%cl ?

1 -5.0 0.0 -1.44100 0.172367 -1.88408 -0.99792 0.0004

2 0.1 5.0 1.05066 0.181518 0.58405 1.51726 0.0022

3 0.1 0.9 0.45929 0.061382 0.30150 0.61707 0.0007

4 0.0 5.0 1.96743 0.133634 1.62392 2.31095 0.0000

5 0.1 5.0 0.78877 0.135524 0.44039 1.13714 0.0021

It might be required to plot the best-fit curve superimposed on the sample histogram and the following steps

are required to do this.

1. Request a plot in the usual way then choose [Advanced] and transfer to advanced editing.

2. The plot displayed will have symbols for the mid–points of the histogram which need to be changed.

3. From the [Data] options choose to plot bars instead of symbols.

4. The bar type, fill–style, color, and width can be altered if required.

A typical plot resulting from this editing is shown next and clearly shows that, with such dense and well–

separated accurate data, a reasonable fit has been achieved. The profile of the two contributing sub–groups

was obtained by using the SimFIT library built–in equation instead of the model file and finally requesting

graphical deconvolution
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Example 7: Fitting a cumulative frequency

Often data are only available in partitioned form. For instance, counts from channels in flow cytometry are

effectively in the form of histogram bins, so the analysis by fitting pdfs is all that is possible despite the fact

that the results will depend on the number of bins. However, when a sample is available it is possible to fit a

sum of two normal cdfs as discussed next, and this does not depend on partitioning into bins.

Read test file normal.tf3 into the exhaustive analysis of a vector procedure exactly as with Example 6 but

this time choose to export a cdf type curve fitting file. This test file is called qnfit_data.tf7 and the model

file qnfit_model.tf7 created using SimFIT usermod is as below.

%

Sum of two normal distributions

p(3)Phi((x ­ p(1))/p(2)) + (1 ­ p(3))Phi((x ­ p(4))/p(5))

%

1 equation

1 variable

5 parameters

%

begin{expression}

A = p(3)normalcdf((x ­ p(1))/p(2))

B = (1.0 ­ p(3))normalcdf((x ­ p(4))/p(5))

f(1) = A + B

end{expression}

%
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The table of parameter estimates is displayed next followed by a plot of the data with best–fit curve.

Number Low-Limit High-Limit Value Std.Error Lower95%cl Upper95%cl ?

1 -5.0 0.0 -1.49012 0.034982 -1.55957 -1.42067 0.0000

2 0.1 5.0 1.08482 0.036551 1.01226 1.15738 0.0000

3 0.1 0.9 0.52956 0.010863 0.50799 0.55112 0.0000

4 0.0 5.0 1.85840 0.028793 1.80124 1.91556 0.0000

5 0.1 5.0 0.81238 0.030455 0.75192 0.87284 0.0000
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To compare the results from fitting the pdfs and cdfs we can define the sums of squares ((& between the

parameter estimates ?̂8 and the population parameters ?8 as

((& =

5∑
8=1

( ?̂8 − ?8)2

and note that

for the pdfs: ((& = 0.271, and
√
((& = 0.520, while

for the cdfs: ((& = 0.171, and
√
((& = 0.414

a slightly better result from fitting the cdfs.

In order to succeed in estimating convincing parameter estimates there must be a very large sample with

well–separated means, similar variances that do not cause too much overlap, and approximately equally sized

sub–groups. Then fitting a cdf will give a unique set of parameter estimates as opposed to the way that fitting

pdfs is dependent on the number of bins, but a visual display of the contribution by sub–groups is perhaps

easier judged by superimposing a best fit curve on a histogram.
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8.6.5 Fitting a beta distribution to a sample of observations

A random variable - (0 ≤ G ≤ 1) with the following pdf 5- (G : U, V) and cdf �- (G : U, V)

5- (G : U, V) = Γ(U + V)
Γ(U)Γ(V)G

U−1(1 − G)V−1

�- (G : U, V) =
∫ G

0

5- (C : U, V) 3C

= �G (U, V)

with parameters U > 0 and V > 0, where �G (U, V) is the regularized incomplete beta distribution, is referred

to as a beta random variable. The widespread use of this distribution in data analysis arises not because

many experimental observations do actually arise from a beta distribution, but because it is often a convenient

unimodal distribution that serves well as an approximation in many situations, such as those involving the

estimation of proportions. Some idea of the variation in the profile of a beta distribution as a function of the

shape parameters U and V will be clear for the next figure.
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The wide variation in shape that is possible is what makes this a valuable empirical model for fitting arbitrary

data that can be projected into the interval (0,1) in order to estimate and visualize skew and kurtosis. In

addition the inversion of shape leading to poles at the extremes is often useful in some situations. This

document explains how to use SimFIT to simulate pseudo–random beta variables and fit a beta distribution to

observations using constrained weighted least squares in order to estimate goodness of fit.

Generating random samples

When fitting a specified probability distribution to a sample of observations it is valuable first to simulate

random samples for the distribution, then observe how the values for random observations change as the
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parameters vary. Random samples can then be plotted as histograms or cumulative distributions to get a feel

as to how well your data can be modeled by the distribution and what are likely to be reasonable parameters.

From the main SimFIT menu choose [Simulate] then [Generate random numbers and walks] which opens up

program rannum, and then select to generate sequences of random numbers for the stated distribution and

parameters. As an example, consider the following six samples with 100 observations using a beta distribution

with U = 3 and V = 2 which demonstrates some rather surprising issues.
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It will be seen that, even with a fairly large sample, it is possible to get seemingly large systematic deviations

(from a Kolomogorov–Smirnov perspective) between the sample cumulative distribution (solid step curve)

and the theoretical distribution (dotted curves) due to the unavoidable pseudo serial correlation in the sample

cumulative. This must be kept in mind when assessing the goodness of fit by subjective graphical inspection

of this type.

Of course things are no better with displaying the theoretical PDF overlayed on a histograms, as histogram

shape depends on the number of bins chosen. At this point it should be noted that the data exploration option
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in program simstat allows users to examine such PDF and CDF overlays for chosen distributions using any

sample of observations.

Parameter estimation for statistical distributions

Before describing methods to estimate parameters for selected statistical distributions, such as the beta

distribution from samples of observations, three points should be considered.

1. Experimental observations do not often follow statistical distributions exactly, rather distributions are

assumed for convenience. For instance, the distribution of biological variables such as height, weight,

blood pressure, etc., in populations are often analyzed as if the data followed a Gaussian distribution,

which may appear reasonable in practise but is impossible mathematically, because the Gaussian

distribution assumes −∞ ≤ - ≤ ∞.

2. Mathematical statistics is based on such precisely defined variables but everything that is measured

experimentally has unavoidable observational error in addition to natural variation.

3. Many methods for parameter estimation depend on sample moments and it is well know that, apart

from perhaps the first moment in some situations, higher moments are themselves parameter estimates

with large variances, that is, are very innacurate.

For such reasons there is something to be said for estimating parameters by constrained nonlinear regression

which offers the possibility of calculating parameter confidence limits and assessing goodness of fit by

residuals analysis. That is, arranging a single sample of observations into a form suitable for fitting a

statistical distribution as if it were a model for constrained weighted least squares fitting. Usually this means

fitting a PDF to a histogram, or a CDF to a sample cumulative. If a very large sample is available, or

observations are only available as already partitioned into bins, then fitting a histogram could be considered,

as long as it is realized that the result will depend on the number of bins chosen.

Preparing samples of observations for curve fitting

Data must be available as vector, that is, a single column of values with no labels or missing values, and then

this is input into the SimFIT program for exhaustive analysis of a sample. This can be opened from the main

SimFIT menu by choosing [Data exploration]. There are then two options that will prove useful, and both are

available using program rannum.

1. Exhaustive analysis of an arbitrary vector

This allows you to create a PDF file for fitting by choosing the number of bins required then creating

a PDF curve fitting file where the histogram area is scaled to one. Alternatively you can create a CDF

curve fitting file. From this procedure you can also calculate the sample moments if these are needed

to estimate starting estimates.

2. Comparing data with a known distribution

A distribution is chosen then the parameters are varied until a reasonable fit is apparent when the data

are displayed as a PDF–histogram or CDF–cumulative plot. The values chosen can then be used as

starting estimates.

Another issue that is often considered is the minimum sample size that is required to begin to justify concluding

that a specified distribution with the estimate parameters does reasonably represent the data. Rules of thumb

such as . . . at least ten times the number of parameters . . . or similar are often suggested which would mean

20 for the beta distribution, but experience indicates a minimum sample size of about 100. So we now turn to

a worked example using a beta distribution with a sample size of 100 and U = 3 and V = 2, where the mode

is shifted slightly to the right.
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Example 1: Fitting a beta pdf

A randomsample contained in the file beta32_data.tf1 was generatedby program rannum then transformed

into a pdf–fitting histogram file with area one by the option to perform exhaustive analysis of a vector, leading

to the curve–fitting data file beta32_pdf.tf1 shown below.

beta pdf fitting file generated by RANNUM: A = 3, B = 2

10 3

1.8144613E-01 6.0634121E-01 1

2.6390795E-01 8.4887769E-01 1

3.4636977E-01 7.2760945E-01 1

4.2883159E-01 1.8190236E+00 1

5.1129342E-01 1.8190236E+00 1

5.9375524E-01 1.2126824E+00 1

6.7621706E-01 1.3339507E+00 1

7.5867888E-01 1.3339507E+00 1

8.4114070E-01 1.6977554E+00 1

9.2360252E-01 7.2760945E-01 1

begin{limits}

1 1 5

1 1 5

end{limits}

The first column contains the centers of the ten histogram bins, and the second column contains the scaled

frequencies, while the third column (with weights equal to one) indicates that unweighted fitting is to be used.

The section starting with the token begin{limits} and ending with the token end{limits} gives the lower

limits, the starting estimates, then the upper limits to be used by program qnfit for constrained nonlinear

regression in the EXPERT mode, i.e. where such estimates are appended to the data file.

The results from fitting by the SimFIT quasi–Newton constrained optimization technique are shown next.

Number Low-Limit High-Limit Value Std.Error Lower95%cl Upper95%cl p

1 1 5 2.26957 0.454304 1.22195 3.31720 0.0011

2 1 5 1.70249 0.301995 1.00609 2.39889 0.0005

3 1 1 1.00000 0.000000 1.00000 1.00000 fixed

For 50,90,95,99% con. lim. using [parameter value +/- t(alpha/2)*std.err.]

t(.25) = 0.706, t(.05) = 1.860, t(.025) = 2.306, t(.005) = 3.355

Note that the model used by SimFIT has the following parameter definitions.

?(1) = U
?(2) = V
?(3) = Δ

where Δ is a scaling factor than can be used if the area under the histogram is not one. For this fit ?(3) was

not varied but was fixed, i.e., Δ = 1.

After listing all the goodness of fit results program qnfit first shows a default graph where the tops of the

histogram bins are shown as dots and the best–fit curve is displayed as a smooth curve ranging between the

the centers of the first and last histogram bins.
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This default graph from program qnfit is shown next.
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It is possible to create such graphs with many more possible options by saving the best–fit curve parameters,

then reading the data into the Data Exploration option of program simstat to create the histogram overlayed

by the pdf for a beta distribution with the best-fit parameters over the full range, etc.

Example 2: Fitting a beta cdf
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Proceeding as before then fitting a beta cdf to the data file beta32_cdf.tf1 using program qnfit yields these

parameter estimates.

Number Low-Limit High-Limit Value Std.Error Lower95%cl Upper95%cl p

1 1 5 2.52779E+00 5.57879E-02 2.41708E+00 2.63850E+00 0.0000

2 1 5 1.88851E+00 4.03438E-02 1.80845E+00 1.96857E+00 0.0000

3 1 1 1.00000E+00 0.00000E+00 1.00000E+00 1.00000E+00 fixed

For 50,90,95,99% con. lim. using [parameter value +/- t(alpha/2)*std.err.]

t(.25) = 0.677, t(.05) = 1.661, t(.025) = 1.984, t(.005) = 2.627

The following best-fit curve was edited by simply replacing the default plotting symbols (dots with no lines)

for the data by no symbols but a cdf-type step curve.
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It is clear that fitting such simple models with just two varied parameters gives well–defined parameter

estimates (? = 0) but fitting the cdf using all 100 points gives better estimates than fitting to a histogram

which only fits ten points.

To quantify this observation, the procedure of data generation by program rannum followed by fitting using

program qnfit was repeated, and the Euclidean distance � between the estimates (Û, V̂) and the actual

parameter values (U, V) was calculated, where � is defined as follows,

� =

√
(U − Û)2 + (V − V̂)2.
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Û V̂ � Type Best Fit

2.38518 1.84594 0.633828 pdf: U = 3, V = 2

2.52170 2.06080 0.482149 cdf: U = 3, V = 2 cdf

2.60811 1.65327 0.523259 pdf: U = 3, V = 2

2.63019 1.76255 0.439479 cdf: U = 3, V = 2 cdf

2.26957 1.70249 0.788695 pdf: U = 3, V = 2

2.52799 1.88851 0.484998 cdf: U = 3, V = 2 cdf

1.94617 3.97530 0.059226 pdf: U = 2, V = 4

1.85620 3.86457 0.197534 cdf: U = 2, V = 4 pdf

1.64910 3.79293 0.407442 pdf: U = 2, V = 4

1.67319 4.03689 0.328885 cdf: U = 2, V = 4 cdf

2.45517 4.91705 1.023797 pdf: U = 2, V = 4

2.37186 4.82599 0.905836 cdf: U = 2, V = 4 cdf

2.13494 7.54346 0.476065 pdf: U = 2, V = 8

2.12449 8.17192 0.212260 cdf: U = 2, V = 8 cdf

From this table, where both the pdf and cdf were fitted to the same data set as both histograms (observations

pooled into 10 bins) and cumulative frequencies (all 100 observations) for a total of seven separate simulations,

a number of tentative conclusions can be drawn.

• The parameters were estimated rather better using the data in cumulative distribution format.

• There is a tendency to underestimate the parameters.

Although not shown, there is an improvement in parameter estimates when the additional normalizing

parameter is allowed to vary, more so with histograms of course. However there are other ways to decide

which technique to use.

Example 3: Plotting a combined graph

Often beta distributions are plotted simply to estimate the extent to which the mode is skewed away from the

central position, and this is most convincingly seen in histograms as long as the number of bins is not too

large.

So, as there are only two, or rarely three parameters to be fitted and the beta distribution is robust as an

empirical model and easy to fit to a sample of observations, there seems no reason why both should not be

fitted at the same time.

For a combined graph from such a fitting procedure there are two considerations.

1. Four files of coordinates are required, that is:

• File 1: coordinates for the histogram;

• File 2: coordinates for the best–fit pdf;

• File 3: coordinates for the sample cumulatives; and

• File 4: coordinates for the best-fit cdf.

2. Two scales are required for the vertical axes, such as:

• plotting the histogram and pdf using a left–hand scale; and

• plotting the sample cumulative and cdf using a right–hand scale.

There are several methods by which this process can be done. Perhaps the most obvious is to save the coordinate

files from the graphs of data and best fit graphs displayed by program qnfit, but this is not necessarily the best

way.



480 Curve and surface fitting

Probably the best and easiest SimFIT technique do this, for instance, for a beta distribution like the one from

the previous table with U = 2, V = 8, is as follows.

1. Open the option in the SimFIT program simstat to compare a sample with an assumed distribution.

2. Read in the data and construct a histogram plotted against a beta distribution with best–fit parameters

Û = 2.13494, V̂ = 7.54346.

3. From this save the coordinates to File 1 and File 2.

4. Now construct a cumulative distribution stair-step type plot with added cdf with best–fit parameters

Û = 2.12449, V̂ = 8.17192.

5. From this save the coordinates to File 3 and File 4.

6. Open program simplot then choose two create a double axis plot and read in File 1 and File 2 to plot

against the left–hand . -axis, then File 3 and File 4 for the right–hand axis.

All that remains is fine tuning to create the following plot.
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It should be noted that plotting symbols can be replaced by filled polygons, but if these are filled with color the

histogram bin outlines will be lost. This can be overcome by using the same file (File 1) added interactively

as an additional file (File 5) used to outline the resulting filled polygons. Alternatively, if this situation is

anticipated, an additional copy of File 1 containing the histogram outlines can be added right from the start.
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Practical issues

As the shape of the data will be evident before any computation of best–fit parameters, then visual inspection

helps in the choice of starting estimates and limits.

Writing the beta probability density function, i.e. the PDF, in the following form

5G (G : U, V) = 1

�(U, V) G
U−1(1 − G)V−1

emphasizes that, as the complete beta function itself, i.e., �(U, V) is a constant and not dependent on G, the

graphical behaviour of this density function for 0 ≤ G ≤ 1 depends only on the expression

GU−1(1 − G)V−1

so there is a single turning point for non-degenerate cases at the mode " where

" =
U − 1

U + V − 2
.

As " = 0.5 when U = V, while " > 0.5 if U > V, and " < 0.5 if U < V, the displacement of the mode from

0.5 indicates the relative magnitude of U and V. Of course the degenerate case when U = V = 1 corresponding

to a uniform distribution, the complications due to vertical asymptotes when G = 0 for U < 1 and G = 1 for

V < 1, along with the general inversion of shape when U < 1 and V < 1 must be considered. As the general

shape would be indicated by the data then this means it is easy to decide on the lower limits of 1 when U > 1

and V > 1 and upper limits of 1 when U < 1 and V < 1.

There are two other practical issues to consider when fitting the beta distribution to observations.

1. The range of G values
In the cases where U > 1 and V > 1 then there is no restriction of range and observations can be

anywhere between G = 0 and G = 1. However, if vertical asymptotes are anticipated, then values must

be restricted near potential asymptotes so that computation does not lead to overflow.

2. The parameter limits
As computation of best–fit parameters proceeds then, at every fixed value of G, the values of the internal

estimates Û and V̂ are perturbed by factors of the order of machine precision. So the upper and lower

limits should normally be chosen such that singular cases are avoided.

Another issue concerns the evaluation of the complete beta function for non–integer arguments. As U

and V become larger then the time taken to evaluate the complete beta function increases very rapidly.

Of course the computer code doing this is is optimized, but is still faced with such limitations. So it is

recommended that the upper limits requested for parameter estimates should be selected conservatively

with this in mind to avoid lengthy computations.
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8.6.6 Graphical deconvolution

It is often necessary to fit models that are sums of sub–models, and some way of detecting the minimum

number of sub–models required to explain the data is needed. Statistical tests like a sequential � test can help,

but it is also useful to visualize the contribution of sub–models by plotting the sub–models at the same time as

the best–fit curve. In SimFIT this technique is loosely referred to as graphical deconvolution. In short, given

a model of the form

5 (G, ?) =
=∑
8=1

58 (G, ?)

where G is a vector of user–supplied independent variables and ? is a vector of parameters to be estimated,

then how should we attempt to calculate the contribution of sub–models 58 to the overall best–fit model, and

thereby decide upon the minimum acceptable value for =, i.e., the minimum number of sub–models required.

As a typical example, consider the situation where a large sample is available and it is wished to fit a sequence

of sums of normal distribution 235 B as follows.

235= (G) =
?1

?2=+1

√
2c

∫ G

−∞
exp

(
−1

2

{
D − ?=+1

?2=+1

}2
)
3D + ?2

?2=+2

√
2c

∫ G

−∞
exp

(
−1

2

{
D − ?=+2

?2=+2

}2
)
3D + · · ·

+ ?=

?3=

√
2c

∫ G

−∞
exp

(
−1

2

{
D − ?2=

?3=

}2
)
3D + ?3=+1

However, particularly with machine–generated data, a histogram often has to be fitted using ?35 B in this form.

?35= (G) =
?1

?2=+1

√
2c

exp

(
−1

2

{
G − ?=+1

?2=+1

}2
)
+ ?2

?2=+2

√
2c

exp

(
−1

2

{
G − ?=+2

?2=+2

}2
)
+ · · ·

+ ?=

?3=

√
2c

exp

(
−1

2

{
G − ?2=

?3=

}2
)
+ ?3=+1

For a sum of = such sub–models then up to 3= + 1 parameters have to be estimated, namely

• ?1, ?2, . . . , ?= are positive partitioning fractions, which may be constrained, e.g.,
∑=
8=1 ?8 = 1

• ?=+1, ?=+2, . . . , ?2= are means of arbitrary sign,

• ?2=+1, ?2=+2, . . . , ?3= are positive standard deviations, and

• ?3=+1 is an arbitrary background correction factor that is sometimes required.

Several points should be noted about fitting this model.

1. Fitting the 235 uses a data set that is unique up to order, but the shape is somewhat featureless making

it difficult to guess parameter starting estimates and limits.

2. Fitting the ?35 is not unique as it depends on the number of histogram bins but, when the peaks are

well–separated, it is easier to guess parameters starting estimates and assess goodness of fit visually.

3. The numbering of sub–models is arbitrary as regards permutations, so the starting estimates and

parameter limits must be chosen with considerable care to limit the search directions for minimizing

the objective function in order to avoid ambiguity. This consideration also applies when fitting similar

models like sums of saturation functions or exponentials.

However, models such as these are not always used for statistical analysis of a mixed sample but rather as

simple empirical models in an attempt to resolve the contribution of individual signals to an overall profile.

So, in order to illustrate this procedure in such an application, we shall consider the data set contained in the

SimFIT test file gauss3.tf1 which contains triplicates as illustrated next.
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From inspecting this profile we see that there are at least three distributions involved. These appear to make

similar contributions so we could guess that

?1, ?2 and ?3 would be of order unity, while

0 ≈ ?4 << ?5 << ?6 << 12,

1 ≈ ?7 << ?8 << ?9 << 5, and it would be safe to fix the constant term so that

?10 = 0.

So attached to the end of gauss3.tf1 will be found these limits and starting estimates, allowing this data set

to be fitted in EXPERT mode where such estimates and limits are read from the data file, and which greatly

facilitates fitting by SimFIT program qnfit.

begin{limits}

0, 0.5, 2

0, 1.5, 2

0, 0.5, 2

­2, 0.0, 2

2, 4.0, 6

8, 10.0, 12

0.1, 1.0, 2

1, 2.0, 3

2, 3.0, 4

0, 0.0, 0

end{limits}

To appreciate how such an analysis would be conducted proceed as follows.



484 Curve and surface fitting

How to plot a graphical deconvolution

1. Open SimFIT using either w_simfit.exe for the 32-bit version, or x64_simfit.exe for the 64-bit version.

2. From the main SimFIT menu press the [A/Z] option.

3. Scroll down the list displayed and open program qnfit.

4. Accept the default options and select the option to fit one function of one variable.

5. Read in the test file called gauss3.tf1 by pressing the [Demo] button on the file opening dialogue and

scrolling down the list provided.

6. Choose the option to fit Gaussian ?35 B (spikes) with no constant term.

7. When asked how many terms are required input a 3, i.e., choose to fit a sum of three terms.

8. Select the option to run in the EXPERT mode which reads starting estimates and limits off the data file

gauss3.tf1.

9. Proceed to fitting.

A summary of the optimization procedure and preliminary comments about the goodness of fit are given and

then the parameter estimates from fitting are displayed and output as text to the results file as below.

Best­fit parameters for curve­fit 1 using LBFGSB

No. Low­Limit High­Limit Value Std.Error Lower95%cl Upper95%cl p

1 0.000E+00 2.000E+00 9.07541E­01 2.16240E­02 8.64792E­01 9.50291E­01 0.0000

2 0.000E+00 2.000E+00 1.16433E+00 4.21732E­02 1.08096E+00 1.24770E+00 0.0000

3 0.000E+00 2.000E+00 9.25185E­01 3.01303E­02 8.65619E­01 9.84750E­01 0.0000

4 ­2.000E+00 2.000E+00 ­7.29763E­02 1.55718E­02 ­1.03761E­01 ­4.21918E­02 0.0000

5 2.000E+00 6.000E+00 3.74510E+00 5.08157E­02 3.64464E+00 3.84556E+00 0.0000

6 8.000E+00 1.200E+01 1.02774E+01 9.64127E­02 1.00868E+01 1.04680E+01 0.0000

7 1.000E­01 2.000E+00 9.26404E­01 1.43311E­02 8.98073E­01 9.54736E­01 0.0000

8 1.000E+00 3.000E+00 2.34330E+00 7.05668E­02 2.20380E+00 2.48281E+00 0.0000

9 2.000E+00 4.000E+00 2.76906E+00 6.26372E­02 2.64523E+00 2.89289E+00 0.0000

parameter(10) is the excluded constant term

For 50,90,95,99% con. lim. using [parameter value +/­ t(alpha/2)*std.err.]

t(.25) = 0.676, t(.05) = 1.656, t(.025) = 1.977, t(.005) = 2.611

Later, after using the [Results] option from the main SimFIT menu, these results can be extracted as in the

following table for inclusion in documents.

Best-fit parameters for curve-fit 1 using LBFGSB

Number Low-Limit High-Limit Value Std.Error Lower95%cl Upper95%cl ?

1 0.0 2.0 0.90754 0.021624 0.86479 0.95029 0.0000

2 0.0 2.0 1.16433 0.042173 1.08096 1.24770 0.0000

3 0.0 2.0 0.92519 0.030130 0.86562 0.98475 0.0000

4 -2.0 2.0 -0.07298 0.015572 -0.10376 -0.04219 0.0000

5 2.0 6.0 3.74510 0.050816 3.64464 3.84556 0.0000

6 8.0 12 10.2774 0.096413 10.0868 10.4680 0.0000

7 0.1 2.0 0.92640 0.014331 0.89807 0.95474 0.0000

8 1.0 3.0 2.34330 0.070567 2.20380 2.48281 0.0000

9 2.0 4.0 2.76906 0.062637 2.64523 2.89289 0.0000

parameter(10) is the excluded constant term

For 50,90,95,99% con. lim. using [parameter value +/- t(U/2)*std.err.]

t(.25) = 0.676, t(.05) = 1.656, t(.025) = 1.977, t(.005) = 2.611
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After proceeding through subsequent menus providing options for graphical display and goodness of fit

analysis a final end–of–analysis menu is reached. From this the option to view the graphical deconvolution

can be selected to create the next graph showing the data, best–fit curve, and individually contributing

components, or the subsequent plot illustrating error bars.
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8.6.7 Plotting contours of the objective function at solution points

Constrained nonlinear regression involves the attempt to locate a local minimum of some objective function

which is a function of the variable parameters to be estimated given the fixed fixed data and weights supplied

by the user.

In SimFIT the following definitions are used

H1, H2, . . . , H= : The observations

G1, G2, . . . , G= : Values of the independent variable

F1, F2, . . . , F= : The assumed weights

Θ = \1, \2, . . . , \< : The parameters to be estimated

61, 62, . . . , 6= : The function values evaluted at G,Θ

where it is assumed that, for errors n ,

H = 6(G,Θ) + n,

and the appropriate objective function to be minimized is the weighted sum of squared residuals divided by

the number of degrees of freedom, that is

5 (Θ) = ,((&

= − <

=
1

= − <

=∑
8=1

F8 (H8 − 68)2.

If the weights are reasonably accurate and the errors are normally distributed with zero means this should be

an approximately chi-squared variable of order unity at the solution point and, in addition, if sensible starting

estimates have been supplied the parameters should also be of order unity at the solution point.

Now the basis of constrained nonlinear regression is that the objective function should be approximately

quadratic at the solution point, and that therefore a well-defined local minimum should have contours at the

solution point that are approximately elliptical.

To demonstrate a case where this condition is realized then consider fitting the test data file exfit.tf2 using

a one-exponential model in the form

6(G, �, :) = � exp(−:G)

using program qnfit and noting that starting estimates are indicated on this data file as follows

begin{limits}

0.0 0.5 3.0

0.0 1.5 3.0

0.0 0.0 0.0

end{limits}

so that the EXPERT mode can be used. After fitting, the option to view the objective function at the solution

point can be chosen to obtain the following plot.
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WSSQ/NDOF = f(k,A)
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As a more complicated example consider fitting the data in test file qnfit_data.tf4 using the model

defined in qnfit_model.tf4 which defines the double Michaelis-Menten model in the following way, first

in parameter form then in the more familiar enzyme kinetic form

6(G,Θ) = \3G

\1 + G
+ \4G

\2 + G

≡ +<0G1(

 <1 + (
+ +<0G2(

 <2 + (
.

Three important points should be noted.

1. Complications with more than two parameters

There are now more than two parameters so the objective function and contours can be plotted in several

ways to display the surface as a function of just two parameters.

2. Ambiguity with the model

The model is ambiguous in that the pairs +<0G1,  <1 and +<0G2,  <2 are not uniquely defined. In

other words, the parameter estimates will refer to these pairs in arbitrary order, depending only on the

starting estimates and limits set.

3. Elongated valleys

The eccentricity of the elliptical contours at the solution point will be exaggerated if the order of

magnitude of the parameters chosen and the range chosen to display the plots are not comparable.

The point is that the contours are stretched with the chosen pair of parameters as will be seen in the next plot,

and this is what happens when more than two parameters are estimated namely, long valleys leading to the

solution point makes convergence to the local minimum increasingly difficult.
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This can also be confirmed by observing the eigenvalues and condition number of the internal Hessian matrix

which, for this example, were as follows.

Eigenvalues of the internal Hessian matrix

5.07548E-01 1.45150E+01 1.88722E+02 3.44715E+03, Condition number = 6.79178E+03

The condition number is the ratio of largest to smallest eigenvalue, which reflects the ratio of the longest

valley to the shortest. This value will clearly be distorted in cases where not all the estimated parameters are

of comparable size in internal coordinates.
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8.6.8 Contours with residuals and sections across a best fit surface

After fitting a function of two or more variables to a data set, the techniques for visualizing the best-fit model

are more restricted than for cases with a single independent variable. To illustrate some possibilities, examples

from fitting functions of two variables will be explained.

The first data set

For the first example, the data set contained in the SimFIT test file inhibit.tf1 will be used. This is for

the case of enzyme kinetic data for a range of substrate concentrations at each of several fixed inhibitor

concentrations. From the format of this data set it will be noted that the data are arranged for increasing

sequences of ( at each fixed inhibitor concentration. namely � = 0, 1, 2, 3, 4 and data should be arranged in

such an ordered sequence to facilitate subsequent analysis.

The first model

This is taken from the library of enzyme kinetic models for two variables, namely the generalized inhibition

model

5 (G, H) = ?1G

?2(1 + H/?3) + G(1 + H/?4)
equivalent to the more familiar form

E((, �) = +<0G(

 <(1 + �/ 8B) + ((1 + �/ 88 )
.

The first technique: Plotting sections across a best-fit surface

Before the days of computers, nonlinear regression, and statistical analysis, this was cast in the form

1

E
=
 <(1 + �/ 8B )

+<0G

(
1

(

)
+ (1 + �/ 88 )

+<0G

and analyzed by plotting double reciprocal plots then re–plotting the slopes and intercepts to estimate the

inhibition constants from the observed slope and intercept effects.

To see the modern way to do this type of analysis, open program qnfit from the [A/Z] option on the main

SimFIT menu, choose to fit a function of two variables, read in the test file inhibit.tf1 followed by the model

just discussed from the library of statistical models for functions of two variables, then fit in the EXPERT

mode. This reads in the following starting estimates and limits appended to the data file

begin{limits}

0.0 0.5 5.0

0.0 1.5 5.0

0.0 5.0 9.0

0.0 1.0 5.0

end{limits}

and provides the options to display the best-fit surface and the sections across the best-fit surface for functions

of ( at fixed � , which simply requires accumulating the sections into your project archive in order to plot

retrospectively or create a library file referencing the data and best-fit curves contributing to the five cross–

sections.
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Best-Fit Surface and Contours for: v = f(S,I)
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The second technique: Plotting the sign of residuals on contours

It is not always possible to create a good display of the data plotted with the corresponding best–fit surface

because some data may lie below the surface and some above no matter how the surface is rotated.

To illustrate this phenomenonand present an alternative way to view the residuals consider the second example

using the following statistical model.

The bivariate normal pdf: ?1 = `G , ?2 = fG , ?3 = `H , ?4 = fH , ?5 = d

?6

2cfGfH
√

1 − d2
exp

{
−1

2(1 − d2)

[ (
G − `G
fG

)2

− 2d

(
G − `G
fG

) (
H − `H
fH

)
+

(
H − `H
fH

)2
]}

+ ?7

This can be fitted as follows.

1. Open SimFIT program qnfit then select to fit a function of two variables.

2. Read in the test file bivariate.tf1, which contains data generated using program makdat followed

by adding random error using program rannum.

3. Fit in the EXPERT mode which reads the starting estimates from the data file.

4. Observe the goodness of fit results, view the residuals, and then plot the best–fit surface, as shown next.

Best-Fit Scaled Bivariate Normal Distribution

XY

Z

2.5

-2.5

2.5

-2.5

6.8347×10-4

184.34

It is obvious from the table of residuals that there is a scatter of data points both above the best-fit surface

(positive residuals) and below the best-fit surface (negative residuals) and a technique to display this scatter is

presented next.
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Note that each time a request is made to view the best-fit surface after fitting a function of two variables to a

data set, program qnfit archives two temporary files containing the G, H coordinates of the data partitioned as

follows.

• qnfit_positive_residuals.txt (contains coordinates for the positive residuals).

• qnfit_negative_resdiduals.txt (contains coordinates for the negative residuals).

These two temporary files are written to your ...\Documents\Simfit\res folder, and it only remains to

explain how these are to be overlayed as shown in the following contour diagram.
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Each time the choice to display a best-fit surface is made there are several alternatives. In particular, it will

be seen that on the main interface to the displays is an option to add overlays to the contour diagrams. This

allows users to add arbitrary coordinate files to be plotted as lines or symbols in chosen colors as overlays on

the contours.

For instance, in the above example the positive residuals are displayed as half-filled circles in red, while the

negative residuals are shown as blue half-filled triangles. It is clear from the scatter of color over the evenly

spaced grid of data points that there is no evidence for systematic lack of fit, and this can be corroborated

from inspection of the best-fit parameters and tables of results together with using several other alternative

methods for statistical analysis.
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8.6.9 Simultaneous fitting of multiple equations in one variable

Often experimental data have been obtained for several responses as a function of the same independent

variable and it is wished to fit a model consisting of several deterministic equations to the combined data set.

For example, in a chemical experiment several components of a complex reaction can sometimes be measured

simultaneously. There are two distinct situations.

• The equations do not involve the same parameters

In this situation there is nothing to be gained from performing a joint determination of all parameters

and it is more sensible to analyze the components separately.

• The equations have common parameters.

Separate analysis of the components can be used to get some idea of possible starting estimates but,

as the equations are linked, it will necessary to fit the comprehensive model to obtain meaningful

parameter estimates.

This type of multiple curve fitting using SimFIT program qnfit requires the following steps.

1. Choosing the correct option

From the [A/Z] option on the main SimFIT menu open program qnfit then choose to fit a model defining

= functions of 1 variable.

2. Providing data

The = data sets can be input in sequence by file-selection or from your curve fitting project archive, but

by far the best method is to input a library file. This has the additional advantage that a percent sign can

be used to imply a missing data set.

3. Providing starting estimates

These can be input interactively but it is infinitely preferable to supply starting estimates using the

begin{limits} ... end{limits} technique appended to the first data set because the program can

then be run in EXPERT mode.

4. Providing a model

The model must be prepared as an ASCII text model file using SimFIT program usermod.

To illustrate this procedure an extremely simple data set and model with three linear equations unlinked by

common parameters will be used.

Example 8: case 1

From the [Demo] button on the file input control read in the library file line3.tfl which is as follows.

3 lines for line3.mod/qnfit

line1.data

line2.data

line3.data

The first line is the title of the library file and the next three lines are the names of the individual data files.

It is important to note that short names are used in this example because SimFIT recognizes that these three

files are test files but, in your own examples, you must use the full path to your data files.

Now consider the first of these test data file, namely line1.data shown next.
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data for line3.mod y = x + 1

5 3

1 1.1 1

2 2.0 1

3 2.9 1

4 4.2 1

5 4.8 1

begin{limits}

­10 0.5 10

­10 0.5 10

­10 1.0 10

­10 3.0 10

­10 2.0 10

­10 2.5 10

end{limits}

We see that, after the title, the file header dimension indicates that there 5 values in 3 columns, that is,

G = 1, 2, 3, 4, 5 in column 1, H = 1.1, 2.0, 2.9, 4.2, 4.8 in column 2, and constant weights equal to 1 in column

3. These values are then followed by the limits and starting estimates.

The model

The model file is line3.mod which is now listed.

%

Three user supplied functions of 1 variable ... 3 straight lines

f(1) = p(1) + p(2)x: (line 1)

f(2) = p(3) + p(4)x: (line 2)

f(3) = p(5) + p(6)x: (line 3)

%

3 equations

1 variable

6 parameters

%

begin{expression}

f(1) = p(1) + p(2)x

f(2) = p(3) + p(4)x

f(3) = p(5) + p(6)x

end{expression}

%

The parameter estimates

Upon proceeding to fit this model the following table of parameter estimates is obtained, indicating that,

except for the intercept to line 1 all parameters were well–defined.

Number Low-Limit High-Limit Value Std.Error Lower95%cl Upper95%cl ?

1 -10.0 10.0 0.12001 0.367597 -0.66351 0.90352 0.7486 *

2 -10.0 10.0 0.96000 0.110835 0.72376 1.19623 0.0000

3 -10.0 10.0 2.04286 0.296218 1.41149 2.67423 0.0000

4 -10.0 10.0 1.99643 0.066236 1.85525 2.13761 0.0000

5 -10.0 10.0 2.96944 0.254625 2.42672 3.51216 0.0000

6 -10.0 10.0 3.00833 0.045248 2.91189 3.10478 0.0000
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The best–fit curves

After fitting the best–fit curves can be displayed as below from the final menu by choosing the option to use

the best fit model to plot/extrapolate/deconvolute.
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Example 8: case 2

In cases linked by common parameters it is often necessary to fit a system of nonlinear differential equations

using program deqsol, but the next example illustrates a case where an explicit solution can be obtained for

the scheme

�
:1→ �

:2→ �

where ?1 = :1, ?2 = :2, ?3 = �(0), ?4 = �(0), ?(5) = � (0).

�(C) = ?3 exp(−?1C)

�(C) =
{
?1?3

?2 − ?1

}
exp(−?1C) +

{
?4 −

?1?3

?2 − ?1

}
exp(−?2C)

= (?1?3C + ?4) exp(−?1C), if :1 = :2

� (C) = ?3 + ?4 + ?5 −
{
?2?3

?2 − ?1

}
exp(−?1C) −

{
?4 −

?1?3

?2 − ?1

}
exp(−?2C)

= ?3 + ?4 + ?5 − �(C) − �(C), if :1 = :2.

Using qnfit to analyze the data in library file qnfit_data.tf8 with the model qnfit_model.tf8, which

includes the alternative expression for the singular case :1 = :2, gives the results obtained before and after

fitting shown next. Note that these two test files can be input using the [Demo] button from the qnfit file

opening dialogue.
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8.6.10 Fitting a convolution integral

Fitting convolution integrals is often required when an output function is the time–dependent response resulting

from an input function interacting with a target function. Parameter estimates and goodness of fit criteria can

then be used to justify the assumed functions

The convolution integral required in such situations is defined as 53 (G) = 51(C) ∗ 52 (C) resulting from the

functions 51 (C) and 52(C) according to

53(G) =
∫ G

0

51(C) 52(G − C) 3C

= 51 ∗ 52
= 52 ∗ 51

where it is understood that functions 51 and 52 vanish for negative arguments. This presents no difficulty

if the functions are known and the integral can be evaluated formally, but a variety of special situations are

encountered experimentally. The case that SimFIT program qnfit can analyze is where functions 51 and 52
are assumed deterministic functions but possibly with parameters that have to be estimated from observations

on at least one of the functions 51, 52, or 53, and where observations may have experimental error as well as

arbitrary spacing and numbers of replicates. Because several situations can arise, for instance when 51 (G) is

known exactly, or where 52(G) cannot be determined independently, the method for supplying data must be

sufficiently versatile to accommodate all possible cases and this will be explained first.

Example 9

In general there could be between 1 and 3 data sets and, for the example to be discussed, where the models are

51 (C) = exp(−?1C)
52 (C) = ?2

2C exp(−?2C),

the data will be accessed using the model test data set defined by the library file qnfit_data.tf9, and this

file is as follows.

Convolution data

%

%

convolv3.data

Here the first line is the title of the library file and the next 3 lines identify the 3 individual data files for the

three models 51, 52 and 53 = 51 ∗ 52. However, note that percentage signs at lines 2 and 3 indicate missing

data so that only 1 data set is to be provided, i.e., for the output function. Users should note that when library

files are created the files referenced must contain the fully qualified path and filename and not the short name.

The reason a short name is used here is because SimFIT recognizes that convolv3.data is a known test file

that is to be found in the installation dem folder, e.g., c:\program files\simfit\dem.

The data set referenced by test file qnfit_data.tf9 is as as shown next.
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p(1) = 1, p(2) = 2, 7.5% relative error

50 3

1.0000E­01, 1.9472E­02, 2.0200E­03

1.0000E­01, 1.6683E­02, 2.0200E­03

1.0000E­01, 1.8557E­02, 2.0200E­03

1.0000E­01, 1.5427E­02, 2.0200E­03

1.0000E­01, 2.0353E­02, 2.0200E­03

1.5440E­01, 4.1841E­02, 2.3773E­03

1.5440E­01, 4.0062E­02, 2.3773E­03

1.5440E­01, 3.8858E­02, 2.3773E­03

1.5440E­01, 3.6756E­02, 2.3773E­03

1.5440E­01, 3.6039E­02, 2.3773E­03

2.3850E­01, 7.6279E­02, 6.5248E­03

2.3850E­01, 6.7460E­02, 6.5248E­03

2.3850E­01, 8.4294E­02, 6.5248E­03

2.3850E­01, 8.0786E­02, 6.5248E­03

2.3850E­01, 7.3433E­02, 6.5248E­03

3.6840E­01, 1.5220E­01, 1.0492E­02

3.6840E­01, 1.4586E­01, 1.0492E­02

3.6840E­01, 1.2986E­01, 1.0492E­02

3.6840E­01, 1.5788E­01, 1.0492E­02

3.6840E­01, 1.4757E­01, 1.0492E­02

5.6900E­01, 2.5783E­01, 5.3012E­03

5.6900E­01, 2.5305E­01, 5.3012E­03

5.6900E­01, 2.5728E­01, 5.3012E­03

5.6900E­01, 2.4757E­01, 5.3012E­03

5.6900E­01, 2.4645E­01, 5.3012E­03

8.7880E­01, 3.5996E­01, 4.3440E­02

8.7880E­01, 3.4269E­01, 4.3440E­02

8.7880E­01, 3.0933E­01, 4.3440E­02

8.7880E­01, 3.2765E­01, 4.3440E­02

8.7880E­01, 4.2261E­01, 4.3440E­02

1.3570E+00, 4.2238E­01, 2.4938E­02

1.3570E+00, 4.1043E­01, 2.4938E­02

1.3570E+00, 4.3381E­01, 2.4938E­02

1.3570E+00, 3.7102E­01, 2.4938E­02

1.3570E+00, 3.9175E­01, 2.4938E­02

2.0960E+00, 2.8337E­01, 1.5549E­02

2.0960E+00, 2.9260E­01, 1.5549E­02

2.0960E+00, 2.9741E­01, 1.5549E­02

2.0960E+00, 3.1985E­01, 1.5549E­02

2.0960E+00, 3.1586E­01, 1.5549E­02

3.2370E+00, 1.2023E­01, 1.2802E­02

3.2370E+00, 1.1852E­01, 1.2802E­02

3.2370E+00, 1.4342E­01, 1.2802E­02

3.2370E+00, 1.1157E­01, 1.2802E­02

3.2370E+00, 1.1337E­01, 1.2802E­02

5.0000E+00, 2.3755E­02, 1.9893E­03

5.0000E+00, 2.9036E­02, 1.9893E­03

5.0000E+00, 2.7638E­02, 1.9893E­03

5.0000E+00, 2.7016E­02, 1.9893E­03

5.0000E+00, 2.7876E­02, 1.9893E­03

begin{limits}

0.001 0.5 5.0

0.001 1.0 5.0

end{limits}

Parameter starting estimates and limits have been appended to the data, not the library file, so that program

qnfit can be used in the EXPERT mode, and the model file is qnfit_model.tf9 shown below.
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%

convolution integral: from 0 to x of f1(u)*f2(x ­ u) du, where

f1(t) = exp(­p(1)*t), f2(t) = [p(2)^2]*t*exp(­p(2)*t)

f3(x) = f1*f2

%

3 equations

1 variable

2 parameters

%

begin{expression}

A = p(1)

B = p(2)

C = p(2)*p(2)

end{expression}

1

x

user1(x,m)

f(1)

2

x

user1(x,m)

f(2)

0.0001

epsabs

0.001

epsrel

0

blim(1)

x

tlim(1)

convolute(1,2)

f(3)

%

begin{model(1)}

%

Example: exponential decay, exp(­p(1)*x)

%

1 equation

1 variable

0 parameter

%

begin{expression}

f(1) = exp(­A*x)

end{expression}

%

end{model(1)}

begin{model(2)}

%

Example: gamma density of order 2

%

1 equation

1 variable

0 parameters

%

begin{expression}

f(1) = C*x*exp(­B*x)

end{expression}

%

end{model(2)}
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As usual, the model starts with a title section followed by a main section using some commands that require

explanation, as all models for fitting convolution integrals must have these features.

1. Values returned

For each value of the independent variable G the model returns the following results.

• 51(G)
• 52(G)
• 53(G)

The value of 51 (G) can be used to fit model 1 independently, similarly the value of 52(G) corresponds

to the response measured independently of 51. but not at the same time as 5 (3) where the argument

for 52 in the integrand is G − C. The intention to be used demonstrates how 53(G) could be fitted at the

same time as 51 (G) if data were supplied for both 51 (G) and 53 (G) but 52(G) could only be fitted at the

same time if the data corresponded to the response as a simple function. More usually 51(G) and 52(G)
are only made available for plotting, as per text–book examples.

2. Communicating parameters to sub–models

begin{expression}

A = p(1)

B = p(2)

C = p(2)*p(2)

end{expression}

This is a useful way to allow the parameters to be used by the sub–models without using the command

putpar which is used for this purpose in the reverse Polish version convolv3.mod.

3. Evaluating the sub–models

1

x

user1(x,m)

f(1)

2

x

user1(x,m)

f(2)

This code simply defines 51(G) and 52(G) at the current point G.

4. Parameters controlling the integration

0.0001

epsabs

0.001

epsrel

0

blim(1)

x

tlim(1)

convolute(1,2)

f(3)
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This is how the relative and absolute tolerances are set then the convolution is performed.

5. The sub–models

The sub–models are then defined as if they were standard models except that the number of parameters

is set to zero in each model, since the parameters to be estimated have been declared globally using A,

B, and C.

Example 9

The steps required to fit a convolution integral using data and models provided by SimFIT are now listed with

additional comments.

1. Opening the curve fitting program data

From the main SimFIT menu either choose [Fit] or [A/Z] and proceed to open program qnfit.

2. Supplying data

Specify that you wish to fit = functions of 1 variable and then specify that = is to be 3. When

asked to supply data press the [Demo] button on the file opening dialogue and select the library file

qnfit_data.tf9.

3. Supplying models

When asked for a model file use the [Demo] button on the file opening dialogue to choose the model

file qnfit_model.tf9.

4. Supplying starting estimates

The best way to supply parameter starting estimates and limits is to choose the EXPERT mode as

that reads settings from the actual data set supplied which is convolv3.data, and not the library file

qnfit_data.tf9.

5. Performing a fit

At this stage you can preview the parameter starting estimates and limits, or view the fit of the model

with starting estimates overlayed on the data before proceeding to fitting.

After fitting the following summary and a table of best-fit parameters will be displayed.

Results from curve-fit number 1

Number of data points 50

Number of parameters 2 (0 currently fixed)

Degrees of freedom 48

WSSQ before entry 62318.7

IFAIL from LBFGSB 0

WSSQ from fitting 49.654

P(j2 ≥ WSSQ) 0.4072

Time taken to fit 0.194 (secs cpu time)

Best-fit parameters for curve-fit 1 using LBFGSB

Number Low-Limit High-Limit Value Std.Error Lower95%cl Upper95%cl ?

1 0.001 5.0 0.99684 0.0089381 0.97887 1.01482 0.0000

2 0.001 5.0 2.00479 0.0115128 1.98164 2.02793 0.0000

For 50,90,95,99% parameter confidence limits using [parameter value +/- t(U/2)*std.err.]

t(0.25) = 0.680, t(0.05) = 1.677, t(0.025) = 2.011, t(0.005) = 2.682
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Of course, now the model validity can be checked if the parameters are known independently by comparing

the differences between the known and estimated parameters. Additional tests for goodness of fit can be

displayed and eventually a plot showing the input function, response function (as a function of G and not

shifted) and output convolution as illustrated next.

0.00

0.50

1.00
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Fitting a Convolution Integral f*g

Time t

f(
t)

, g
(t

) 
an

d 
f*

g

f(t) = exp(- t)

g(t) = 2 t exp(- t)

f*g
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8.6.11 Fitting a single differential equation

Often observations are made that can be modeled by fitting a differential equation. This can be done using

SimFIT program deqsol which is very useful for simulating and fitting, but program qnfit is recommended for

fitting a single differential equations as there are many more options available for altering starting estimates

interactively and recording goodness of fit criteria.

It is important to stress several issues that are important when fitting a differential equation.

1. The Data

It is very important to only attempt fitting when data are very extensive and accurate and the model has

been simulated to observe the behavior over the data range. Otherwise parameter estimates will be very

unreliable.

2. The initial condition

When advancing the solution of a differential equation from the chosen starting point it is clear that the

whole trajectory is governed by this starting point. This raises several points.

• If the initial condition is known with certainty then it is preferable to fit without the initial

condition being estimated. However, an incorrectly specified fixed initial condition can result in

a tail–wagging–the–dog situation leading to biased parameters estimates.

• If the initial condition is estimated then the fitting can be dominated by the inial condition parameter

having a different effect on convergence than the other parameters.

• If the initial condition is to be estimated then this will probably be be known within a fairly narrow

range, so the parameter limits on the initial condition could be fairly close. However, it should

be pointed out that fixing parameter limits too close can prevent the convergence techniques from

operating optimally.

3. The starting estimates

Constrained nonlinear regression works best when the internal parameters are of order unity and, if

possible, are parameterized in the formulation of the model so that sensitivity of the model to all the

parameters to be estimated is similar. Where possible SimFIT scales parameters before optimization

commences using the starting estimates. Evidently this cannot be done for very small starting estimates.

4. The parameter limits

Models for differential equation must have n parameters involved in the model plus a further parameter

that is the value of the initial condition. That is, for a differential equation of the form

3H/3G = 5 (G, H,Θ), H(0) = H0

involving parameters Θ = \1, \2, . . . , \=+1, then parameter \=+1 = H0. The parameter starting estimates

and limits should be such that parameters to be varied should have a small range of variation (but not too

small) and parameters to be fixed can be indicated by setting the limits equal to the starting estimates.

In this way the inititial condition can be fixed.

5. The simulation

A differential equation can easily be simulated using program makdat, or for more comprehensive

options deqsol where, to initialize the simulation, the range of integration can be appended to the end

of the model file.

6. The methods

To allow for stiff equations a Jacobian can be added to the model file, but should also compared with

simulation without an explicit Jacobian to ensure that the Jacobian has been coded correctly.
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Case 1: Irreversible substrate depletion

This fits the irreversible Michaelis-Menten substrate depletion scheme

3(

3C
= − +<0G(

 < + ( = 5

35

3(
= − +<0G <

( < + ()2
= �

which is also provided in the SimFIT model library both as a formal integrated equation as well as a built in

differential equation model.

The data file deqn_data.tf1 ends with the following limits

begin{limits}

0.5 0.75 1.5

0.5 1.25 2.5

0.5 0.8 1.5

end{limits}

so qnfit can be used in the EXPERT mode. The corresponding model file deqn_model.tf1 is

%

model: irreversible Michaelis­Menten substrate depletion curve

differential equation: f(1) = dy(1)/dx

= ­p(2)*y(1)/[p(1) + y(1)]

jacobian: j(1) = df(1)/dy(1)

= ­p(1)p(2)/[p(1) + y(1)]^2

initial condition: y0(1) = p(3)

Note: the last parameter must be y0(1) in a differential equation

y(1) = S, p(1) = Km, p(2) = Vmax, y0(1) = S(0)

%

1 equation

differential equation

3 parameters

%

begin{expression}

D = p(1) + y(1)

f(1) = ­p(2)y(1)/D

end{expression}

%

begin{expression}

j(1) = ­p(1)p(2)/D^2

end{expression}

%

begin{limits} ... low­limits, starting estimates, upper­limits

0 1 3

0 1 3

0 1 3

end{limits}

begin{range} ... number of points, x_start and x_end for integration

121

0

10

end{range}
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To appreciate how to supply your own data eventually it is suggested you read in the data file deqn_data.tf1,

then the model file qnfit_model.tf1, and study the structure of the model file to make sure you understand

the format.

SimFIT program usermod can be used to create your own model if the model you require is not provided by

the pre-compiled library of models for simulating and fitting.

A number of details need mentioning.

1. The begin{limits} ... end{limits} section appended to the data file is only provided to allow

program qnfit to be used in the EXPERT mode. Program qnfit is opened, fitting a differential equation

is selected, and deqn_data.tf1 is read in using the [Demo] button on the file–open dialogue. Typically

these limits would be edited interactively if a good fit cannot be obtained. After reading in the data,

the option to open an ASCII text model file would be selected and deqn_model.tf1 should be read in

using the [Demo] button on the file–open dialogue.

2. The begin{limits} ... end{limits} section appended to the model file is only needed if fitting or

simulation is to be undertaken using program deqsol.

3. The begin{range} ... end{range} section appended to the model file is only needed to fix the

number of points and range of simulation if simulation is to be undertaken using program deqsol.

Here is the best–fit curve obtained using program qnfit.
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dS/dt = -VmaxS/(Km + S)
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Case 2: The Von Bertalanffy Allometric Differential Equation

The appropriate default data file is deqn_data.tf2 and the model file is deqn_model.tf2 for

3H/3G = �H= − �H<

which can be integrated for some = and < to give the family of growth equations fitted by program gcfit.

%

f(1) = p(1)*y(1)^p(2) ­ p(3)*y(1)^p(4), y(0) = p(5)

j(1) = p(1)*p(2)*y(1)^(p(2) ­ 1.0) ­ p(3)*p(4) y(1)^(p(4) ­ 1.0)

%

1 equation

differential equation

5 parameters

%

begin{expression}

f(1) = p(1)y(1)^p(2) ­ p(3)y(1)^p(4)

end{expression}

%

begin{expression}

A = p(2) ­ 1.0

B = p(4) ­ 1.0

j(1) = p(1)p(2)y(1)^A ­ p(3)p(4)y(1)^B

end{expression}

%

begin{limits}

0 1.0 3

0 0.6666667 3

0 1.0 3

0 1.0 3

0 0.01 1

end{limits}

0.0
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0.4

0.6

0.8

1.0

1.2

0.0 5.0 10.0 15.0

Von Bertalanffy Allometric Differential Equation

x

y

dy/dx = Ayn - Bym
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Case 3: Modified von Bertalanffy equation

The model dealt with in Case 1 is very easy to fit, but the model described in Case 2 is much more difficult

to fit as it involves exponents. This means that the model fitting must be constrained to avoid raising negative

numbers to non-integer powers, and to restrict the range within which exponents can vary.

However, the example to be described in Case 3 is chosen because it is an extreme example of a simple looking

model that proves very difficult to fit, requiring both high quality data and careful choice of parameters and

limits.

The motivation for this model should be explained first. The von Bertalanffy differential equation had a

fanciful origin in proposing to balance the opposing effects of anabolism and catabolism by an appeal to the

contrast between effects due to surface area and those due to volume. As it is an autonomous differential

equation the derivative is defined unambiguously by the value of its argument and hence the integral can have

no turning points. Now, as many growth situations have a phase of decline following a rise to maximum size,

then clearly such a monotonic growth equation will not give a satisfactory fit, and parameter estimates will not

be meaningful. To remedy this situation we can introduce a process of time–dependent deterioration affecting

the surface area term more significantly than the volume term as follows, where� is a further parameter to be

estimated.

3H/3G = exp(−�G)�H= − �H<

� = exp(−�G)�=H=−1 − �<H<−1

The data set deqn_data.tf3 was generated using program makdat, then pseudo–random error was added in

triplicate using program adderr with constant relative error. The following model file (deqn_data.tf3) was

composed using program usermod, noting than the last parameter is for the initial condition.

%

model: modified von Bertalanffy growth model

differential equation: f(1) = dy(1)/dx

= exp(­p(5)x)*p(1)*y(1)^p(2) ­ p(3)*y(1)^p(4)

jacobian: j(1) = df(1)/dy(1)

= exp(­p(5)x)*p(1)*p(2)*y(1)^(p(2) ­ 1.0)

­p(3)*p(4)*y(1)^(p(4) ­ 1.0)

initial condition: y0(1) = p(5)

%

1 equation

differential equation

6 parameters

%

begin{expression}

C = p(1)*exp(­p(5)x)

f(1) = C*y(1)^p(2) ­ p(3)y(1)^p(4)

end{expression}

%

begin{expression}

A = p(2) ­ 1.0

B = p(4) ­ 1.0

j(1) = C*p(2)y(1)^A ­ p(3)p(4)y(1)^B

end{expression}

%

Note that this model has no protection against underflow or overflow, but the SimFIT library versions of this

and the previous model are protected against such numerical instability.
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The parameter starting estimates and limits appended to the data set in deqn_data.tf3 are shown next

begin{limits}

0.5 1.1 2.0

0.75 0.8 0.85

0.5 0.9 2.0

0.85 0.9 0.95

0.001 0.05 0.2

1.0e­5 1.0e­4 1.0e­3

end{limits}

which should be compared with the parameters used to generate the data.

p(1) = 1.00000E+00

p(2) = 8.00000E­01

p(3) = 1.00000E+00

p(4) = 9.00000E­01

p(5) = 1.00000E­01

p(6) = 1.00000E­04

After reading the data set deqn_data.tf3 into program qnfit followed by the assumed model contained in the

file deqn_model.tf3, the EXPERT mode was selected and, before commencing to fit, the starting-estimate

best–fit curve was overlayed on the data as shown next.
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This illustrates how, with differential equations containing parameters as exponents, a small variation in

parameters can lead to large and somewhat unexpected changes in the integral, and at first sight it would seem

improbable that this model could be made to fit the data.
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However, qnfit found a good solution with well–defined parameters and excellent goodness of fit criteria as

shown next.

Results from curve-fit number 1

Number of data points = 33

Number of parameters = 6 (0 currently fixed)

Degrees of freedom = 27

WSSQ before entry = 1482310.0

IFAIL from LBFGSB = 0

WSSQ from fitting = 31.383

P(j2 ≥ WSSQ) = 0.2557

Time taken to fit = 2.5994 (secs cpu time)

Best-fit parameters for curve-fit 1 using LBFGSB/DVODE

Number Low-Limit High-Limit Value Std.Error Lower95%cl Upper95%cl ?

1 0.5 2.0 1.68365 0.00188 1.67979 1.68750 0.0000

2 0.75 0.85 0.84996 0.00625 0.83713 0.86279 0.0000 *

3 0.5 2.0 1.78207 0.03956 1.70091 1.86324 0.0000

4 0.85 0.95 0.92920 0.00661 0.91563 0.94278 0.0000

5 0.001 0.2 0.06624 0.00376 0.05853 0.07395 0.0000

6 1.000E-05 0.001 0.00010 4.04070E-06 9.64899E-05 0.00011 0.0000

For 50,90,95,99% confidence limits using [parameter value +/- t(U/2)*std.err.]

t(0.25) = 0.684, t(0.05) = 1.703, t(0.025) = 2.052, t(0.005) = 2.771
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9 Data smoothing, calibration, and time series

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

9.1 Introduction

Data smoothing is used to fit arbitrary curves to observations when there is no sense in fitting deterministic

models to estimate meaningful parameters, because all that is required is a smoothed representation of the

data to identify trends, or perform calibration for instance. SimFIT provides the following procedures.

1. Smoothing time series.

Given a succession of points measured at a constant interval of space, time, etc. then various filters,

such as Hanning or T5432H, can be applied to generate a smoothed representation. This technique,

available from program simstat, is widely used in time series analysis.

2. Autocorrelation.

Program simstat can analyze an arbitrary succession of values for lags and autocorrelations.

3. Moving average analysis.

Program simstat can also fit ARIMA models in order to predict future performance.

4. Fitting a polynomial.

This can be done for a succession of polynomials of degree one to six with statistics given to find the

highest degree that can be justified. The resulting best-fit polynomial fitted by program polnom can be

used to estimate deviations from linearity, or to act as as a calibration curve.

5. Fitting piecewise cubic splines.

Several types of splines are available.

• Program compare can be used to fit splines with automatically calculated knots to two profiles in

order to compare the similarity and differences between two sets of measurements over a similar

range of independent variable. For instance, for nonparametric comparison of two growth profiles.

• Program calcurve fits splines with knots fixed by users in order to generate a calibration curve

that can be used for inverse prediction. That is, given measurements of a variable H as a function

of some variable G, to predict G given H.

• Program spline can fit splines with knots fixed by users, calculated automatically, or chosen by

cross-validation in order to visualize trends.

Items 1, 2, and 3 in the above list require data in the form of a vector + , that is, a succession of = data points

+ = (G1, G2, G3, . . . , G=) .

However items 4 and 5 require a = by 3 matrix " with independent variable G, observations H and standard

error estimates B4

" =

©­­­
«

G1 H1 B41

G2 H2 B42

. . . . . . . . .

G= H= B4=

ª®®®¬
where the third column would be standard deviations determined from replicates for weighting F = 1/B42, or

more usually set to 1, or even omitted altogether for unweighted fitting.
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9.2 Spline smoothing
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9.2.1 Fitting cubic splines

Given a set of observations there are several ways to fit a piecewise cubic spline curve in order to generate a

best-fit smoothed approximation than can then be used to visualize trends in the data, to perform calculations

such as estimating derivatives, or to use as a calibration curve. It is important to appreciate that the best-fit

spline is very dependent on the technique used so this must be explained.

Definition of a piecewise spline curve

A spline curve consist of contiguous sections separated at junction points called called knots, where a distinct

cubic polynomial is defined for each section. If the data points G, H are in nondecreasing order of G with only

one observation H8 at each value G8 then such a piecewise cubic spline curve has (: + 4)/2 knots in all, with

four of these at the first G value, four at the last G value, and (: − 12)/2 at interior G values. For each interval

defined by the extreme G values and the interior knots there will be a cubic polynomial ?(G) given by

?(G) = ?0 + ?1G + ?2G
2 + ?3G

3

so that the model equation is actually a set of cubic polynomials with one for each interval. This model is fitted

to minimize some objective function using the model evaluated for G8 as the value of the corresponding cubic

polynomial defined for the interval containing G8 . Cubic polynomials that are adjacent must have the same

function value and derivative where they meet at a knot, but there are numerous ways to define or calculate

knot positions, and to define the objective function to be minimized. Note that, as spline fitting procedures

require only one observation H8 at each distinct G8 value, replicate observations in data sets supplied to SimFIT

are transformed internally to data sets with means replacing replicates for fitting, and weights calculated from

replicates if no weights were supplied.

Program spline which can be opened using the [A/Z] option from the SimFIT main menu offers two options.

• Input a new data file for fitting

This can then be fitted to generate a set of spline knots and calculate spline coefficients which then

become the defaults for all subsequent procedures.

• Input a previously saved spline knots file

This must contain a set of knots and coefficients to define a default best-fit spline curves that can be

used directly for all subsequent procedures.

In addition there are the following main fitting techniques available.

1. Knots defined by users

2. Knots calculated automatically given a smoothing factor �

3. Knots between data points defined by a smoothing parameter d

4. Knots between data points with d defined by cross-validation

There are no hard and fast rules but the SimFIT program calcurve uses method 1 which is the easiest to
understand and gives users complete control over defining a calibration curve, program compare uses method
2 to define splines that can be used to compare profiles for similarity and differences, program csafit uses
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method 1 to approximate flow cytometry profiles, while program spline is for those who wish to investigate
several methods for estimating derivatives, arc lengths, curvature, displaying trends in data, or for calibration
analysis. The SimFIT test file that will be used to demonstrate spline fitting procedures is compare.tf1

containing the following data.

G H B4

0.25000 0.017267 1

0.25000 0.015585 1

0.25000 0.014268 1

0.25000 0.014136 1

0.48647 0.12861 1

0.48647 0.12536 1

0.48647 0.13339 1

0.48647 0.14230 1

0.67860 0.26261 1

0.67860 0.34277 1

0.67860 0.30364 1

0.67860 0.31373 1

0.94662 0.67252 1

0.94662 0.70382 1

0.94662 0.59192 1

0.94662 0.54850 1

1.3205 0.90417 1

1.3205 0.74158 1

1.3205 0.77353 1

1.3205 0.74208 1

1.8420 0.79030 1

1.8420 0.79384 1

1.8420 0.67971 1

1.8420 0.76176 1

2.5695 0.58575 1

2.5695 0.66178 1

2.5695 0.70023 1

2.5695 0.72772 1

3.5844 0.53286 1

3.5844 0.62744 1

3.5844 0.55484 1

3.5844 0.52923 1

4.2334 0.55003 1

4.2334 0.46641 1

4.2334 0.46840 1

4.2334 0.53647 1

5.0000 0.49920 1

5.0000 0.51847 1

5.0000 0.44355 1

5.0000 0.40895 1

The columns contain data in the following format.

1. Column 1: the variable G which must be in non-decreasing order.

2. Column 2: the response H presumed to be dependent on G.

3. Column 3: the value of 1 indicates that the replicates will be used to calculate the sample standard

deviations at each G-replicate value to be used for weighting.

This column can be omitted or set to a positive value B4 if it is wished to supply weighting factors F

directly which would then be used as F = 1/B42.
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Knots defined by user

Here the user must specify the number of interior knots and their spacing in such a way that genuine dips,

spikes or asymptotes in the data can be modeled by clustering knots appropriately. Four knots are added

automatically to correspond to the smallest G value, and four more are also added to equal the largest G value.

If the data are monotonic and have no such spike features, then equal spacing can be resorted to, so users only

need to specify the actual number of interior knots. The programs calcurve and csafit offer users both of

these techniques, as knot values can be provided after the termination of the data values in the data file, while

program spline provides the best interface for interactive spline fitting. Fixed knot splines have the advantage

that the effect of the number of knots on the best fit curve is fully intuitive; too few knots lead to under-fit,

while too many knots cause over-fit. The next figure illustrates the effect of changing the number
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of equally spaced knots when fitting the data in compare.tf1 by this technique. The vertical bars at the knot

positions were generated by replacing the default symbols (dots) by narrow (size 0.05) solid bar-chart type

bars. It is clear that the the fit with one interior knot is quite sufficient to account for the shape of the data,

while using four gives a better fit at the expense of excessive undulation. To overcome this limitation of fixed

knots SimFIT provides the facility to provide knots that can be placed in specified patterns and, to illustrate

this, the next figures display several aspects of the fit to e02baf.tf1.
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The left hand figure shows the result when spline knots were input from the spline file e02baf.tf2, while the

right hand figure shows how program spline can be used to predict - given values of. . Users simply specify

a range of - within the range set by the data, and a value of . , whereupon the intersection of the dashed

horizontal line at the the specified value of . is calculated numerically, and projected down to the - value

predicted by the vertical dashed line. Note that, after fitting e02baf.tf1 using knots defined in e02baf.tf2,

the best fit spline curve was saved to the file spline.tf1 which can then always be input again into program

spline to use as a deterministic equation between the limits set by the data in e02baf.tf1.
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Automatically calculated knots

Here the knots are generated automatically and the spline is calculated to minimize

[ =

<−5∑
8=5

X2
8 ,

where X8 is the discontinuity jump in the third derivative of the spline at the interior knot 8, subject to the

constraint

0 ≤ ,((&# ≤ �

where � is user-specified. If � is too large there will be under-fit and best fit curve will be unsatisfactory, but

if � is too small there will be over-fit. For example, setting � = 0 will lead to an interpolating spline passing

through every point, while choosing a large � value will produce a best-fit cubic polynomial with [ = 0 and

no internal knots. In weighted least squares fitting ,((& will often be approximately a chi-square variable

with degrees of freedom equal to the number of experimental points minus the number of parameters fitted,

so choosing a value for � ≈ # will often be a good place to start. The programs compare and spline provide

extensive options for fitting splines of this type. The next figure, for example, illustrates the effect of fitting

e02bef.tf1 using smoothing factors of 1.0, 0.5, and 0.1.
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In between knots: d input

Here there is one knot between each distinct G value and the spline 5 (G) is calculated as that which minimizes

,((&# + d
∫ ∞

−∞
( 5 ′′(G))2 3G.

As with the automatically generated knots, a large value of the smoothing parameter d gives under-fit while

d = 0 generates an interpolating spline, so assigning d controls the overall fit and smoothness. As splines are

linear in parameters then a matrix � can be found such that

Ĥ = �H̄

and the degrees of freedom a can be defined in terms of the leverages ℎ88 in the usual way as

a = Trace(� − �)

=

#∑
8=1

(1 − ℎ88) .

This leads to two ways to specify the spline coefficients which depend on d being fixed by the user or estimated

in some way.
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The spline can be fixed by specifying the value of d. To use this option, the value of d is input interactively,

and the resulting fit inspected graphically until it is acceptable. This way users have complete control over

the amount of smoothing required.

In between knots: d by generalized cross validation

Alternatively, d can be estimated by minimizing the generalized cross validation ��+ , where

��+ = #

( ∑#
8=1 A

2
8

(∑#
8=1 (1 − ℎ88))2

)
.

As this leads to a unique estimate for d, users have no control if the spline leads to either over-smoothing or

over-fitting.

Here are the results for fitting compare.tf1 which has 10 distinct data points using cross validation, and

plotted with 95% confidence range error bars calculated from replicates, and with large dots to indicate the

knot positions.

d 1.907E-03

�$� 3.489E-01
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9.2.2 Using cubic splines for calculations

Cubic splines that have been fitted to a data set can be used to calculate parameters that characterize a data

profile, or to act as a standard curve for calibration, e.g. LD50 determination. Once a spline has been fitted

to a data set it generates a set of knots and coefficients that can be save to a file in order to re-use the spline

retrospectively.

From the main SimFIT menu choose [A/Z] and open program spline which has a default data set in test file

compare.tf1, and a corresponding default spline file spline.tf2. Choosing to calculate using the current

spline file offers the following choices.

1. --Range: select � = -<8=, � = -<0G

2. Evaluate: spline and derivatives

3. Evaluate: Area-Length-Curvature

4. Calibrate: predict - given .

5. Plot: spline

6. Plot: derivative

7. View: knots and coefficients

Choosing to view the knots and coefficients displays the following values.

Spline knots

0.25000

0.25000

0.25000

0.25000

0.67860

0.94662

1.32050

1.84200

5.00000

5.00000

5.00000

5.00000

Spline coefficients

0.01531456

0.05658395

0.20421635

0.71563087

0.82384236

0.63789726

0.50485453

0.46681088

There are always four knots at the lowest - value, and four at the highest - value, then between these are the

locations of the interior knots. The coefficients are multipliers for the � splines. It should be noted that, after

every fit of a piecewise spline to a data set has concluded, the splines from this fit become the current spline

and can be saved to a file formatted like spline.tf2.
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Evaluate a spline and derivatives

Supplying G = 1 for this calculation leads to these results.

--value Spline First derivative Second derivative Third derivative

1 0.6678 0.7695 -3.216 7.129

Evaluate Area-Length-Curvature

Choosing this option leads to the following results for the range � = -<8=, � = -<0G.

� � Area ! = Arc-length Integral|^ | 3B In degrees

0.25 5 2.720 5.053 1.738 99.61

The area under the curve estimate is very valuable for calculating �*� in those pharmacology studies where

exponentials cannot be fitted by program exfit to quantify drug availability.

The arc length estimate can be used in studies where response along a path is more meaningful than simply

over the range of dependent or independent variable traversed.

The estimated absolute curvature integral is given in radial measure and degrees, and summarizes the amount

of oscillation in the best-fit curve.

Plot a spline

The best-fit spline curve and the position of the interior knots can be plotted as follows.
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Plot the derivative

This estimates extreme values of 3H/3G and corresponding G values as in the next table and graph.

Minimum independent variable 0.2500 Maximum independent variable 5.000

Minimum selected value (�) 0.2500 Maximum selected value (�) 5.000

Minimum first derivative -0.1335 in range(�, �) at G-value 1.825

Maximum first derivative 1.245 in range(�, �) at G-value 0.7751

-0.5

0.0
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First derivative

X

dy
/d

x

This procedure can be used to estimate the maximum and minimum growth rates with data sets are too noisy,

or that cannot be analyzed for some other reason by program gcfit.

Calibrate by predicting G given H

Spline reference curves are useful with noisy data, or in situations where bias would result from using an

ill-fitting deterministic equation, e.g. LD50 determination.

From requesting a value for G predicted given a value of H = 0.4 we get the next result and graph illustrating

the values input and predicted as dotted lines.

For . = 0.4, - predicted = 0.75545
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--Range: select � = -<8=, � = -<0G

The ability to vary the range of investigation has many applications because, if the values for � and � are

such that � is larger than the lowest point where the spline is defined, or � is less than the highest point where

the spline is defined, then calculations for areas, arc length, curvature, derivatives, and calibration will refer

to the new restricted range of values � ≤ G ≤ �.

For instance, from the previous graph it will be clear that, because of the turning point, some attempts to

predict G0 given H0 will fail because of ambiguity leading to two intersections of the line H = H0 with the

best-fit spline curve. This is because, for a spline defined as 5 (G), SimFIT calculates H� = 5 (�) − H0 and

H� = 5 (�) − H0 in order use these as starting estimates for solving the equation

5 (G0) − H0 = 0

numerically, and iteration cannot commence when H�H� > 0.

To illustrate how this problem can be circumvented we calculate the two solutions for H = 0.6.

First we select the range � = 0.25, � = 1.5 which gives the lower solution.

For . = 0.6, - predicted = 0.92438

Then we re-define � = 1.0, � = 5 which gives the upper solution.

For . = 0.6, - predicted = 3.1696
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This is the graph for the low range solution
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while this is the graph for the high range solution.
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Theory

As splines are defined by knots and coefficients rather than equations, special techniques are required to re-use

best fit spline functions. SimFIT provides procedures to save spline parameters to a file so that they can be

re-used to restore previously fitted spline functions. This is particularly useful when a best-fit spline is to be

re-used as reference function or standard curve, as in calibration.

Input a spline file such as spline.tf1 into program spline to appreciate how to re-use a best fit spline stored

from spline, calcurve, or compare, to estimate derivatives, areas, curvatures and arc lengths.

SimFIT spline files of length : ≥ 12, such as spline.tf1, have (: + 4)/2 knots, then (: − 4)/2 coefficients

as follows.

• There must be at least 8 nondecreasing knots

• The first 4 of these knots must all be equal to the lowest G value

• The next (: − 12)/2 must be the non-decreasing interior knots

• The next 4 of these knots must all be equal to the highest G value

• Then there must be (: − 4)/2 spline coefficients 28

With =̄ spline intervals (i.e. one greater than the number of interior knots),_1, _2, _3, _4 are knots corresponding

to the lowest G value, _5, _6, . . . , _=̄+3 are interior knots, while _=̄+4, _=̄+5, _=̄+6, _=̄+7 correspond to the largest

G value. Then the best-fit spline 5 (G) is

5 (G) =
=̄+3∑
8=1

28�8 (G) .

where the 28 are the spline coefficients, and the �8 (G) are normalized B-splines of degree 3 defined on the

knots _8 , _8+1, . . . , _8+4.

When the knots and coefficients are defined in this way, the function H = 5 (G) can be used as a model-free

best fit curve to obtain point estimates for the derivatives H′, H′′, H′′′, as well as the area �*�, arc length !,

or total absolute curvature ^ over a range U ≤ G ≤ V, defined as

�*� =

∫ V

U

H 3G

! =

∫ V

U

√
1 + H′2 3G

^ =

∫ !

0

|H′′ |
(1 + H′2) 3

2

3;

=

∫ V

U

|H′′ |
1 + H′2

3G

which are valuable parameters to use when comparing data sets. For instance, the arc length ! provides a

valuable measure of the length of the fitted curve, while the total absolute curvature indicates the total angle

turned by the tangent to the curve and indicates the amount of oscillatory behavior.
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9.2.3 Using cubic splines to compare curves

Cubic splines can be used for nonparametric comparison of two data sets for similarities and differences.

Splines under tension are first fitted to each data set, then the areas under each curve and the absolute area

between them are estimated using the trapezoidal method, integration of the best-fit curves, and Simpson’s

method for the absolute differences, in order to express differences as percentages.

From the main SimFIT menu select [A/Z], open program compare then view the default test file compare.tf1

containing the following data.

G H B4

0.25000 0.017267 1

0.25000 0.015585 1

0.25000 0.014268 1

0.25000 0.014136 1

0.48647 0.12861 1

0.48647 0.12536 1

0.48647 0.13339 1

0.48647 0.14230 1

0.67860 0.26261 1

0.67860 0.34277 1

0.67860 0.30364 1

0.67860 0.31373 1

0.94662 0.67252 1

0.94662 0.70382 1

0.94662 0.59192 1

0.94662 0.54850 1

1.3205 0.90417 1

1.3205 0.74158 1

1.3205 0.77353 1

1.3205 0.74208 1

1.8420 0.79030 1

1.8420 0.79384 1

1.8420 0.67971 1

1.8420 0.76176 1

2.5695 0.58575 1

2.5695 0.66178 1

2.5695 0.70023 1

2.5695 0.72772 1

3.5844 0.53286 1

3.5844 0.62744 1

3.5844 0.55484 1

3.5844 0.52923 1

4.2334 0.55003 1

4.2334 0.46641 1

4.2334 0.46840 1

4.2334 0.53647 1

5.0000 0.49920 1

5.0000 0.51847 1

5.0000 0.44355 1

5.0000 0.40895 1
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The columns contain data in the following format.

1. Column 1: the variable G which must be in non-decreasing order.

2. Column 2: the response H presumed to be dependent on G.

3. Column 3: the value of 1 indicates that the replicates will be used to calculate the sample standard

deviations at each G-replicate value to be used for weighting.

This column can be omitted or set to a positive value B4 if it is wished to supply weighting factors F

directly which would then be used as F = 1/B42.

Splines were fitted with the default smoothing factor which simply fits a cubic with no internal knots, then

the smoothing factor � was decreased to 10, which is the number of data points after replicates in the data

were replaced by means, which gave a distinct improvement in fit. Then, as will be appreciated from the

next diagram, increasing the tension by halving the smoothing factor to � = 5 then � = 2.5 gave very little

subsequent improvement.
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The following table summarizes the conclusion that, in this case, the trapezoidal estimate was very close to the

area under the best-fit spline. Two figures are given for the percentage which depend on whether the absolute

difference is scaled by the sum of areas or, perhaps more sensibly in some cases, by their average.

Area by trapezoidal rule (A) 2.7151

Area under best-fit spline (B) 2.7087

Absolute difference (C = |A - B|) 0.0063784

Fractional difference C/(A + B) 0.0012

Percent difference between A and B 0.1176% (denominator = sum)

Fractional difference C/[0.5(A + B)] 0.0024

Percent difference between A and B 0.2352% (denominator = average)
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The next figures illustrate the comparison of data in test file compare.tf1 and compare.tf2, first with

original data, then with means, 95% confidence limits and best-fit splines.
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It is clear that these data sets are very similar, and this is quantified by the next table.
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Comparison of data sets and best-fit curves

Area under curve 1 (0.25 < G < 5.0) (�1) 2.7087

Area under curve 2 (0.3 < G < 5.5) (�2) 2.8351

For window number 1: 0.3 < G < 5.0, H<8= = 0

For window number 2: 0.3 < G < 5.0, H<8= = 0.024346

Area under curve 1 inside window 1 (�1) 2.7077

Area under curve 2 inside window 1 (�2) 2.6241

Integral of |curve 1 - curve 2| for the G-overlap (�0) 0.20507

Area under curve 1 inside window 2 (�1) 2.5933

Area under curve 2 inside window 2 (�2) 2.5096

Estimated percentage differences between the curves

Over total range of G values: 100|�1 − �2 |/(�1 + �2) 2.2808%

In window 1 (with a zero baseline): 100(�0)/(�1 + �2) 3.8462%

In window 2 (with H<8= baseline): 100(�0)/(�1 + �2) 4.0187%

Over total range of G values: 200|�1 − �2 |/(�1 + �2) 4.5616%

In window 1 (with a zero baseline): 200(�0)/(�1 + �2) 7.6924%

In window 2 (with H<8= baseline): 200(�0)/(�1 + �2) 8.0374%

Conclusion: Comparison of curves is good (likely to be identical)

Note that corrections may have to be made if the ranges of G are not identical for both data sets, if negative H

values are encountered, or if the smallest H value is not zero, so these estimates have the following meanings.

1. Areas under curves �1, �2

These are calculated for the best-fit spline curves over the ranges indicated without any corrections.

2. Windows

These are defined as rectangles where the G ranges overlap and, if no H value is zero, or if any H values

are negative, these are corrected by the parameter H<8= . In window 1 H<8= = 0, but in window 2 H<8= is

the smallest value that must be used to correct the H values to make sure the minimum H value is zero,

and that all areas are for integration of nonnegative curves.

3. Area under curves inside windows �1, �2, �1, �2

The values �1, �2 are corrected, if required, depending on H<8= .

4. Integral of absolute difference

This is evaluated by using Simpson’s rule with the integrand defined as the absolute value of the

difference between curves, but only over the range of G-overlap.

5. 100 or 200 in percentage calculations

100 is used to refer to the sum of areas in the denominator so that the value cannot exceed 100%,

whereas 200, which refers to the average of areas in the denominator, can cause confusion as it can be

as large as 200%.

6. Conclusion

This is an arbitrary qualitative decision based on considering all the values in the above table.

The most useful values from this table are the last two giving the percentage difference between the curves

with a zero baseline and when using a baseline shift, and also using the average of the two areas in the

denominator when calculating the ratios, which is preferred when �1 ≈ �2 and �1 ≈ �2.

Archiving spline files

When a best-fit spline has been calculated the knots and coefficients can be saved to a spline file. This can be

used during the running of program compare or can be input into program spline for retrospective analysis,

such as using as a standard curve for calibration.
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9.3 Smooth interpolation of discrete data

Smooth interpolation of a sparse set of exact (G8 , H8) points consists of filling in gaps where function values

are changing rapidly, by adding extra points in order to create a better curve when the data are plotted or

printed as a smooth curve.

There are two cases.

1. The G, H data points were generated from a function H = 5 (G) where H is a single–valued function of G.

This situation is encountered when a best fit curve has been obtained by evaluating a model equation at

equally spaced points and has a peak or valley where closer spaced points would have been better able

to capture the turning points.

2. The G, H data points were generated as the solutions to an implicit function 6(G, H) = 0, for instance

parametrically as G(C), H(C).

This may be necessary when orbits of a system of differential equations have been plotted and there

may be multiple values of H given G.

Of course the problem can usually be rectified by simply repeating the calculation using more function values,

but it is sometimes required to be wise after the event, e.g., when preparing results for publication when

parameter values are no longer available. More trivially, when preparing a graph for publication the ability to

arbitrarily smooth chosen curves specified by known mathematical functions can be much appreciated.

It must be admitted that we cannot get something for nothing and that any interpolation technique must be

understood and controlled otherwise spurious excursions and undulations could be introduced.

Potential problems with interpolation

Most methods for smooth interpolation use some sort of cubic polynomial smoothing and the methods

provided by SimFIT are based on using cubics which are specified by treating neighboring points to generate

local cubics in much the the same way as knots are used in global spline fitting.

Evidentally, placing knots strategically is vital in order to avoid unwanted oscillations and we commence by

using the example of a simple sine curve with the following data, which is to be smoothed using the cubic

Bessel method.

x y

-3.1415927 0.0

-1.5707963 -1.0

0.0000000 0.0

1.5707963 1.0

3.1415927 0.0

Now all computer generated curves are actually constructed by joining defined pixels by straight lines, and in

the next graph we can see how the interpolated curve with 90 points generated from the original 5 five points

is remarkably close to the exact curve with 200 points.
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To illustrate the effect of displacing the original data from the extreme positions, consider next the result

when the given G data are simply incremented by c/4. Because of this shift from the critical coordinates the

next graph indicates a very much worse fit because the original data were not situated at the turning points

leading to undershoot. This is one of the problems when interpolating sparse data with turning points when

undershoot or overshoot can occur with the cubic Bessel technique.
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Cubic Bessel Interpolation
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As undershoot or overshoot can give a misleading impression of false turning points when observing the
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closeness of data to a best–fit curve or when plotting the profile from numerical solution of differential

equations, it is necessary to impose constraints by using the piecewise monotonic method which preserves

the sign of 5 ′(G) between successive G values as shown next.
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0.0

0.5

1.0

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0

Piecewise Monotonic Smoothing

x

y

Exact Data

Interpolated Data

As this method does not allow the interpolated data to exceed obvious turning points by setting 5 ′(G) = 0 at

extreme H8 points it avoids overshoot and undershoot, but at the expense of straight line sections.

Example 1: smoothing a single valued function

From the main SimFIT menu choose the [Statistics] option then the [Data smoothing] option and select

smooth interpolation of discrete data for H = 5 (G), which uses the following data contained in the test file

j07caf.tf1.

x y

0.0 1.0

1.0 1.1

2.0 1.1

3.0 1.2

4.0 1.3

5.0 7.2

6.0 3.1

7.0 2.6

8.0 1.9

9.0 1.7

10.0 1.6

Note that you can decide whether to use the cubic Bessel or piecewise monotonic method, and also you can

specify the tolerance factor. This would usually be satisfactory with the default value of 2000. Note that

decreasing this factor will result in less smooth curves but with fewer extra interpolated points.

The difference between the possibly over flexible cubic Bessel result and rather stiffer piecewise monotonic

curve will be clear from the next two graphs.
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Example 2: Smoothing a parametric curve

From the main SimFIT menu choose the [Statistics] option then the [Data smoothing] option and select

smooth interpolation of discrete data for G(C), H(C)) which uses the following data contained in the test file

j07ccf.tf1.

x y

0.5 0.80

0.7 0.65

0.5 0.50

0.3 0.35

0.5 0.20

0.7 0.35

0.5 0.50

0.3 0.65

0.5 0.80

Note that these data have the last pair of coordinates equal to the first pair, as this technique is required to

indicate a closed loop. Also observe that the parameter C does not occur in the data file, only the (G8 , H8)
coordinates. For instance, a circle defined parametrically by G = A cos \, H = A sin \ can also be expressed in

the implicit form G2 + H2 = A2 without reference to the parameter \. First consider simply joining up these

coordinates with no smoothing.
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0.30

0.40

0.50

0.60

0.70

0.80

0.30 0.40 0.50 0.60 0.70

No interpolation

x

y

Now the McConalogue method which is analogous to the cubic Bessel providing a flexible curve and the

Butland method which is similar to the piecewise monotonic method and yields a stiffer curve.
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Theory

The SimFIT program spline can be used to make a global spline interpolation for a single valued function

but the user must then specify the additional interpolation points. The reason to use these local methods is

that they can be used interactively to achieve satisfactory visual smoothness from within the SimFIT graphics

utilities. They are perfectly adequate for this purpose as will be explained elsewhere for advanced curve fitting

using program qnfit, differential equation simulation and fitting using program deqsol, and advanced graph

plotting and contouring using program simplot.

The code used is based on development of the two routines j06caf and j06ccf from the discontinued NAG

graphics library which differ from the original NAG routines by supplying the discrete data on input but then

returning the enlarged and interpolated data set. They can be called by programmers who use the Simdem

package with the following details.

• For single valued functions

subroutine smooth$(n, nmax, x, y)

integer, intent (in) :: nmax

integer, intent (inout) :: n

double precision, intent (inout) :: x(nmax), y(nmax)

Here we must have x monotonically increasing (or decreasing). The value of n returned is increased

and the coordinates returned contain the interpolated values, so the dimension nmax for x and y in the

calling program must be large enough to contain the enlarged data set.

For configuration use

subroutine j06cfg_1(isend, itolf, method)

integer, intent (in) :: isend

integer, intent (inout) :: itolf, method

where isend = 1 sets the parameters directly otherwise an interactive interface is provided, while

method = 1 uses the piecewise monotonic method and method = 2 uses the cubic Bessel technique.

• For parametric functions

subroutine contr1$(n, nmax, x, y)

integer, intent (in) :: nmax

integer, intent (inout) :: n

double precision, intent (inout) :: x(nmax), y(nmax)

To use the end points for a closed polygon the first and last coordinate pairs must be equal.

For configuration use

subroutine j06cfg(isend, itolf, method)

integer, intent (in) :: isend

integer, intent (inout) :: itolf, method

where isend = 1 sets the parameters directly otherwise an interactive interface is provided, while

method = 1 uses the Butland method and method = 2 uses the McConalogue technique.
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The tolerance parameter ITOLF controls the number of additional interpolated points required before interpo-

lation is satisfactory, and the default value is 2000. Increasing ITOLF beyond this value is not likely to have

much effect, while decreasing ITOLF down to about 200 generates fewer additional interpolation points and

progressively decreases the smoothness.

This will be clear from the details as follows.

For smooth$ the cubic 2(G) and piecewise linear polynomial ?(G) must satisfy

|2(G) − ?(G) | ≤ |."�- − ."�# |
�)$!�

.

For contr1$ the piecewise cubic (G(C), H(C)) and piecewise linear polynomial (?G (C), ?H (C)) must satisfy

|G(C) − ?G (C) | ≤
|-"�- − -"�# |

�)$!�

and |H(C) − ?H (C) | ≤
|."�- − ."�# |

�)$!�
.



534 Data smoothing, calibration, and time series

9.4 Calibration

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

9.4.1 Introduction to calibration and bioassay

It is convenient to deal separately with univariate calibration and bioassay, as multivariate calibration is

performed in SimFIT using the partial least squares (PLS) technique.

Calibration

This requires fitting a curve H = 5 (G) to a (G, H) training data set with G known exactly and H measured with

limited error, so that the best fit model 5̂ (G) can then be used to predict G8 given arbitrary H8 . Usually the

model is of no significance and steps are taken to use a data range over which the model is approximately

linear, or at worst a shallow smooth curve. It is assumed that experimental errors arising when constructing

the best fit curve are uncorrelated and normally distributed with zero mean, so that the standard curve is a

good approximation to the maximum likelihood estimate.

• Calibration curves

Creating and using a standard calibration curve involves:

1. Measuring responses H8 at fixed values of G8 , and using replicates to estimate B8 , the sample

standard deviation of H8 if possible.

2. Preparing a curve fitting type file with G, H, and B using program makfil, and using makmat to

prepare a vector type data file with G8 values to predict H8 .

3. Finding a best fit curve H = 5 (G) to minimize,((&, the sum of weighted squared residuals.

4. Supplying H8 values and predicting G8 together with 95% confidence limits, i.e. inverse-prediction

of G8 = 5̂ −1(H8). Sometimes you may also need to evaluate H8 = 5̂ (G8).

It may be that the B8 are known independently, but often they are supposed constant and unweighted

regression, i.e. all B8 = 1, is unjustifiably used. Any deterministic model can be used for 5 (G),
e.g., a sum of logistics or Michaelis-Menten functions using program qnfit, but this could be unwise.

Calibration curves arise from the operation of numerous effects and cannot usually be described by one

simple equation. Use of such equations can lead to biased predictions and is not always recommended.

Polynomials are useful for gentle curves as long as the degree is reasonably low (≤ 3 ?) but, for

many purposes, a weighted least squares data smoothing cubic spline is the best choice. Unfortunately

polynomials and splines are too flexible and follow outliers, leading to oscillating curves, rather than

the data smoothing that is really required. Also they cannot fit horizontal asymptotes. You can help in

several ways.

a) Get good data with more distinct G-values rather than extra replicates.

b) If the data approach horizontal asymptotes,either leave some data out as they are no use for prediction

anyway, or try using log(G) rather than G, which can be done automatically by program calcurve.

c) Experiment with the weighting schemes, polynomial degrees, spline knots or constraints to find the

optimum combinations for your problem.

d) Remember that predicted confidence limits also depend on the s values you supply, so either get the

weighting scheme right, or set all all B8 = 1.
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• Turning points in calibration curves

Some programs will warn you if 5 (G) has a turning point, since this can make inverse prediction

ambiguous. You can then re-fit to get a new curve, eliminate bad data points, get new data, etc., or

carry on if the feature seems to be harmless. You will be given the option of searching upwards or

downwards for prediction in such ambiguous cases. It should be obvious from the graph, nature of

the mathematical function fitted, or position of the turning point in which direction the search should

proceed.

• Calibration using polynomials

For linear or almost linear data you can use program linfit which just fits straight lines of the form

5 (G) = ?0 + ?1G.

However, for smooth gentle curves, program polnom is preferred because it can also fit a polynomial

5 (G) = ?0 + ?1G + ?2G
2 + · · · + ?=G=,

where the degree = is chosen according to statistical principles. What happens is that polnom fits

all polynomials from degree 0 up to degree 6 and gives statistics necessary to choose the statistically

justified best fit =. However, in the case of calibration curves, it is not advisable to use a value of =

greater than 2 or at most 3, and warnings are issued if the best fit standard curve has any turning points

that could make inverse prediction non-unique.

• Calibration using cubic splines

If a polynomial of degree 2 or at most 3 is not adequate, a cubic spline calibration curve could be

considered. It does not matter how nonlinear your data are, calcurve can fit them with splines with

several types of knots and tension. The best-fit spline curve from programs such as calcurve, compare,

and spline can be archived for repeated initialization of a reference standard curve to use for calibration.

• Advanced calibration using special models

Sometimes you would want to use a specific mathematical model for calibration such as a straight line

through the origin, or a quadratic with no linear term, but other models might be more appropriate. For

instance, a mixture of two High/Low affinity binding sites or a cooperative binding model might be

required for a saturation curve, or a mixture of two logistics might adequately fit growth data. If you

know an appropriate model for the standard curve, use qnfit for inverse prediction because, after fitting,

the best-fit curve can be used for calibration, or for estimating derivatives or areas under curves (�*�)

if appropriate.

Bioassay

This is a special type of calibration, where the data are obtained over as wide a range as possible, nonlinearity

is accepted (e.g. a sigmoid curve), and specific parameters of the underlying response, such as the time to

half-maximum response, final size, maximum rate, area �*�, ��50, !�50, or ��50 are to be estimated.

With bioassay, a known deterministic model may be required, and assuming normally distributed errors may

sometimes be a reasonable assumption, but alternatively the data may consist of proportions in one of two

categories (e.g. alive or dead) as a function of some treatment, so that binomial error is more appropriate and

probit analysis, or similar, is called for.

A special type of inverse prediction is required when equations are fitted to dose response data in order

to estimate some characteristic parameter, such as the half time C1/2, the area under the curve �*�, or

median effective dose in bioassay (e.g. ��50, ��50, ��50, !�50, etc.), along with standard errors and 95%

confidence limits. The model equations used in this sort of analysis are not supposed to be exact models

constructed according to scientific laws, rather they are empirical equations, selected to have a shape that is
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close to the shape expected of such data sets. So, while it is is pedantic to insist on using a model based on

scientific model building, it is important to select a model that fits closely over a wide variety of conditions.

Older techniques, such as using data subjected to a logarithmic transform in order to fit a linear model, are no

longer called for as they are very unreliable, leading to biased parameter estimates. Hence, in what follows,

it is assumed that data are to be analyzed in standard, not logarithmically transformed coordinates, but there

is nothing to prevent data being plotted in transformed space after analysis, as is frequently done when the

independent variable is a concentration, i.e., it is desired to have an the independent variable proportional to

chemical potential. The type of analysis called for depends very much on the nature of the data, the error

distribution involved, and the goodness of fit of the assumed model. It is essential that data are obtained over a

wide range, and that the best fit curves are plotted and seen to be free from bias which could seriously degrade

routine estimates of percentiles, say. The only way to decide which of the following procedures should be

selected for your data, is to analyze the data using those candidate models that are possibilities, and then to

adopt the model that seems to perform best, i.e., gives the closest best fit curves and most sensible inverse

predictions.

• Exponential models

If the data are in the form of a simple or multiphasic exponential decline from a finite value at C = 0

to zero as C → ∞, and half times C1/2, or areas �*� are required, use exfit to fit one or a sum of two

exponentials with no constant term.

• Trapezoidal estimation

If no deterministic model can be used for the �*� it is usual to prefer the trapezoidal method with

no data smoothing, where replicates are simply replaced by means values that are then joined up

sequentially by sectional straight lines. The program average is well suited to this sort of analysis.

• The Hill equation

This empirical equation is

5 (G) = �G=

�= + G= ,

which can be fitted using program inrate, with either = estimated or = fixed, and it is often used

in sigmoidal form (i.e. = > 1) to estimate the maximum value � and half saturation point �, with

sigmoidal data (not data that are only sigmoidal when G-semilog transformed, as all binding isotherms

are sigmoidal in G-semilog space).

• Ligand binding and enzyme kinetic models

There are three cases:

a) data are increasing as a function of an effector, i.e., ligand or substrate, and the median effective

ligand concentration ��50 or apparent  < = ��50 = ��50 is required,

b) data are a decreasing function of an inhibitor [�] at fixed substrate concentration [(] and ��50, the

concentration of inhibitor giving half maximal inhibition, is required, or

c) the flux of labeled substrate [�>C], say, is measured as a decreasing function of unlabeled isotope

[�>;3], say, with [�>C] held fixed.

If the data are for an increasing saturation curve and ligand binding models are required, then hlfit or,

if cooperative effects are present, sffit can be used to fit one or two binding site models.

More often, however, an enzyme kinetic model, such as the Michaelis-Menten equation will be used

as now described. To estimate the maximum rate and apparent  <, i.e., ��50 the equation fitted by

mmfit in substrate mode would be

E( [(]) = +<0G [(]
 < + [(]

while the interpretation of ��50 for a reversible inhibitor at concentration [8] with substrate fixed at

concentration ( would depend on the model assumed as follows.
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Competitive inhibition E( [�]) = +<0G [(]
 < (1 + �/ 8 ) + [(]

��50 =
 8 ( < + [(])

 <

Uncompetitive inhibition E( [�]) = +<0G [(]
 < + [(] (1 + [�]/ 8]

��50 =
 8 ( < + [(])

[(]

Noncompetitive inhibition E( [�]) = +<0G [(]
(1 + [�]/ 8) ( < + [(])

��50 =  8

Mixed inhibition E( [�]) = +<0G [(]
 (1 + [�]/ 81) + [(] (1 + [�]/ 82)

��50 =
 81 82 ( < + [(])
( < 82 + [(] 81)

Isotope displacement E( [�>;3]) = +<0G [�>C]
 < + [�>C] + [�>;3]

��50 =  < + [�>C]

Of course, only two independent parameters can be estimated with these models, and, if higher order

models are required and justified by statistics and graphical deconvolution, the apparent +<0G and

apparent  < are then estimated numerically.

• Growth curves

If the data are in the form of sigmoidal increase, and maximum size, maximum growth rate, minimum

growth rate, C1/2 time to half maximum size, etc. are required, then use gcfit in growth curve mode.

For instance, with the logistic model

5 (C) = �

1 + � exp(−:C)

C1/2 =
log(�)
:

the maximum size � and time to reach half maximal size C/2 are estimated.

• Survival curves

If the data are independent estimates of fractions remaining as a function of time or some effector, i.e.

sigmoidally decreasing profiles fitted by gcfit in mode 2, and C1/2 is required, then normalize the data

to proportions of time zero values and use gcfit in survival curve mode 2. The Weibull model

((C) = 1 − exp(−(�C)�)

C1/2 =
log(2)
��

.

is very useful.

• Survival time models

If the data are in the form of times to failure, possibly censored, then gcfit should be used in survival

time mode 3. With survival time models the median survival time C1/2 is estimated, where∫ C1/2

0

5) (C) 3C =
1

2
,

and 5) (C) is the survival probability density function.
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• Models for proportions

If the data are in the form of numbers of successes (or failures) in groups of known size as a function

of some control variable and you wish to estimate percentiles, e.g., ��50, ��50, or maybe !�50 (the

median dose for survival in toxicity tests), use gcfit in GLM dose response mode. This is because the

error distribution is binomial, so generalized linear models should be used. You should

95% confidence regions in inverse prediction

polnom estimates non-symmetrical confidence limits assuming that the # values of H for inverse prediction

and weights supplied for weighting are exact, and that the model fitted has = parameters that are justified

statistically. calcurve uses the weights supplied, or the estimated coefficient of variation, to fit confidence

envelope splines either side of the best fit spline, by employing an empirical technique developed by simulation

studies. Root finding is employed to locate the intersection of the H8 supplied with the envelopes. The AUC,

LD50, half-saturation, asymptote and other inverse predictions in SimFIT use a C distribution with # − =
degrees of freedom, and the variance-covariance matrix estimated from the regression. That is, assuming a

prediction parameter defined by ? = 5 (\1, \2, . . . , \=), a central 95% confidence region is constructed using

the prediction parameter variance estimated by the propagation of errors formula

+̂ (?) =
=∑
8=1

(
m 5

m\8

)2

+̂ (\8) + 2

=∑
8=2

8−1∑
9=1

m 5

m\8

m 5

m\ 9
�̂+ (\8 , \ 9 ) .

Note that this formula for the propagation of errors can be used to calculate parameter standard errors for

parameters that are calculated as functions of parameters that have been estimated by fitting, such as apparent

maximal velocity when fitting sums of Michaelis-Menten functions. However, such estimated standard errors

will only be very approximate.
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9.4.2 Using straight line standard curves

When an experimental data set is approximately linear it is possible to fit a straight line and use this as a

standard curve for calibration, that is, predicting G with 95% confidence limits given H.

From the main SimFIT menu choose [A/Z], open program linfit, then select simple calibration using a straight

line and view line.tf1, the test file provided, containing the following data.

G G B4

1.0000 4.4644 1.7613

1.0000 3.1709 1.7613

1.0000 3.7496 1.7613

1.0000 4.2803 1.7613

2.0000 3.2552 1.6302

2.0000 2.6066 1.6302

2.0000 1.3453 1.6302

2.0000 4.0994 1.6302

3.0000 4.1542 1.0229

3.0000 3.9500 1.0229

3.0000 4.5843 1.0229

3.0000 2.2531 1.0229

4.0000 2.7339 0.88866

4.0000 3.7064 0.88866

4.0000 4.8613 0.88866

4.0000 4.1335 0.88866

5.0000 6.2512 0.83435

5.0000 5.8701 0.83435

5.0000 7.6285 0.83435

5.0000 5.8742 0.83435

6.0000 4.7595 0.43208

6.0000 5.0619 0.43208

6.0000 5.5940 0.43208

6.0000 4.6181 0.43208

7.0000 5.2595 1.2461

7.0000 7.8164 1.2461

7.0000 5.9849 1.2461

7.0000 5.0962 1.2461

8.0000 5.1014 2.4624

8.0000 10.259 2.4624

8.0000 6.8319 2.4624

8.0000 9.8217 2.4624

9.0000 10.568 1.2809

9.0000 9.9537 1.2809

9.0000 7.6227 1.2809

9.0000 9.0264 1.2809

10.000 13.560 1.5105

10.000 10.573 1.5105

10.000 10.966 1.5105

10.000 10.249 1.5105

The columns contain data in the following format.
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1. Column 1: the independent variable G.

2. Column 2: the response H presumed to be linearly dependent on the value in column 1.

3. Column 3: the positive sample standard deviation of the replicate response measurements.

This column can be omitted or set to 1 if unweighted regression is required.

Here are the parameter estimates for the best-fit straight line followed by a graph with confidence limits, which

are the branches of a hyperbola for the true values of H at the corresponding fixed values of G.

Parameter Value Standard error Lower95%cl Upper95%cl ?

Intercept 0.38322 0.61376 -0.85926 1.6257 0.5361 *

Slope 0.89513 0.10508 0.68241 1.1078 0.0000

'2 = 0.7862, ' = 0.8867, ? = 0.0000
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The following table gives the prediction of G with 95% confidence limits given H, which are confidence limits

for the true value of G given the corresponding true, i.e. fixed exact, values of H. Note that, if a prediction

leads to a confidence limit outside of the range of G values, a warning message is displayed, e.g., for the case

H = 2 and H = 9.

H-measured G-predicted Lower95%cl Upper95%cl

2.0 1.8062 5.3878 2.6274 Limit out of range

3.0 2.9234 1.9662 3.5681

4.0 4.0405 3.3589 4.5434

5.0 5.1577 4.6680 5.6024

6.0 6.2748 5.8250 6.8134

7.0 7.3920 6.8487 8.1578

8.0 8.5091 7.8092 9.5653

9.0 9.6263 8.7435 10.999 Limit out of range
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9.4.3 Using polynomial standard curves

When observations are not linear but suggest that a gentle curve would give a better fit than a straight line,

then polynomials can be used to generate a standard curve for calibration analysis. For most applications

piecewise cubic splines would probably be better, especially if there is statistical evidence that a polynomial

of degree greater than two is required, e.g., a cubic rather than a quadratic.

From the main SimFIT menu choose the [A/Z] option, open program polnom, then browse the default test

file polnom.tf1 which contains the following data set.

G H B

0.0 0.098421 0.0056072

0.0 0.10950 0.0056072

0.0 0.10248 0.0056072

2.0 3.8448 0.052139

2.0 3.8647 0.052139

2.0 3.9434 0.052139

4.0 6.8490 0.38867

4.0 6.1469 0.38867

4.0 6.2091 0.38867

6.0 8.5864 0.22982

6.0 9.0156 0.22982

6.0 8.6585 0.22982

8.0 9.8616 0.45524

8.0 9.8748 0.45524

8.0 9.0798 0.45524

10.0 9.5218 0.51790

10.0 9.3098 0.51790

10.0 10.294 0.51790

The columns are for data simulated by SimFIT according to H = 0.1 + 2.0G + 0.1G2 and have the following

meanings.

1. The first column contains the independent variable G8 in triplicate.

2. The second column contains the dependent variable H8 arising from evaluating the model equation using

SimFIT program makdat, then adding 5% relative error using SimFIT program adderr to simulate

experimental error.

3. The third column are the sample standard deviations B8 calculated by SimFIT program adderr to use

for weights F8 = 1/B28 . In the absence of replicates to calculate sample standard deviations for H8 at

fixed G8 , the third column could be replaced by B8 = 1, or simply omitted, whereupon a default value of

B8 = 1 would be used for unweighted regression.

Program polnom will then proceed to fit polynomials of degree < according to

5 (G) = \0 + \1G + \2G
2 + \3G

3 + · · · + \6G
6

for< = 0, 1, 2, . . . , : where : ≤ 6 depends on the number of distinct values of G. That is, < = 0 for a constant

term, < = 1 for a straight line, < = 2 for a quadratic, < = 3 for a cubic, and so on. After fitting each degree,

several statistics are output to assess goodness of fit and determine the highest degree that can be justified.
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The idea of this systematic procedure is to determine if there is statistical evidence to justify a trend line or

progressive curvature in noisy data, or to select a model equation to use as a calibration curve for inverse

prediction. To appreciate this aspect consider the following results tables when the data are analyzed.

Table 1: Degree fitted and Chebyshev coefficients

< �0 �1 �2 �3 �4 �5

0 0.31113

1 16.034 7.9080

2 12.737 4.8194 -1.4456

3 12.735 4.8132 -1.4591 -0.0083774

4 12.762 4.8342 -1.4387 -0.055083 -0.059600

5 12.654 4.6602 -1.3858 -0.087456 -0.035275 0.22979

Another table of statistics required to determine the degree of the polynomial required is also displayed as

follows.

Table 2: Statistics to determine degree of the fitted polynomial

< f %change ,((& %change %(j2 ≥ ,((&) 5% �+ %(� ≥ �+) 5%

0 36.703 22901 0.0000 no

1 8.0833 77.98 1045.4 95.44 0.0000 no 334.50 0.0000 yes

2 0.9914 87.73 14.744 98.59 0.4700 yes 1048.6 0.0000 yes

3 1.0253 3.42 14.718 0.18 0.3977 yes 0.0249 0.8769 no

4 1.0511 2.52 14.363 2.41 0.3488 yes 0.3213 0.5805 no

5 1.0000 4.87 11.999 16.46 0.4457 yes 2.3639 0.1501 no

Here < is the degree fitted, f =
√
,((&/#�$�, and �+ is the � value for assessing the significance of

variance reduction by adding higher degree terms.

There are many results displayed in Tables 1 and 2 in order to suggest the highest degree that can be justified

statistically. The qualitative conclusions do not use a Bonferroni correction, but the actual significance levels

are also provided for purists. At this point SimFIT program polnom outputs the next table to aid decision.

Table 3: information to help you select a best-fit polynomial

Lowest degree where < 10% change in f 2

Lowest degree where < 10% change in,((& 2

Lowest degree by chi-sq. at 5% significance level 2

Lowest degree by chi-sq. at 1% significance level 2

Lowest degree by F test at 5% significance level 2

Lowest degree by F test at 1% significance level 2

Accepting the recommendations of Table 3 leads to Table 4 for the best-fit quadratic.

Table 4: Results for weighted fitting (F = 1/B2)
Parameter Value Std. error Lower95%cl Upper95%cl ?

\0 0.10347 0.0032091 0.096630 0.11031 0.0000

\1 2.1203 0.019731 2.0783 2.1624 0.0000

\2 -0.11565 0.0035714 -0.12326 -0.10803 0.0000

Correlation matrix

1

-0.0960 1

0.0516 -0.8432 1
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If you selected to predict G from H the following warning is issued.

You must be very careful if you wish to use this best-fit

curve as a calibration curve for predicting x given y since

there are turning points for -<8= ≤ G ≤ -<0G as follows:

G-value H-value

9.1673 9.8224

This is because the quadratic has a turning point within the range of the data, and so predicting G from H could

be misleading if a horizontal line for H = H0 for some H0 intersected the best fit curve twice. So you have to

choose whether to search upwards or downwards along the G axis for the prediction required. If a spurious

prediction results you have to change the search order. For degrees greater than two there may be multiple

turning points, so using degrees greater than two is not normally recommended for inverse prediction. Table

5 results from choosing to predict G from H along with 95% confidence ranges using the data supplied in test

files polnom.tf2 and polnom.tf3 or typed in interactively.

Table 5: using a best-fit polynomial to predict G given H

Inverse prediction data for program polnom : H = 2, 4, 6, 8

H-measured G-predicted 95% confidence limits

2.0 0.9429 0.9253, 0.9612

4.0 2.0718 2.0347, 2.1100

6.0 3.4182 3.3566, 3.4819

8.0 5.1976 5.0739, 5.3342

This next graph shows the data and best-fit quadratic along with arrows indicating the prediction of G given H

from Table 5. Confidence limits for the prediction are calculated by an extension of the method for unweighted

linear regression to the case of weighted polynomial regression, based on the presumption that the weights

are accurate, and that the H values used to predict G are exact, not means of replicate observations.
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9.4.4 Using cubic spline standard curves

Cubic splines can be used to create standard curves for calibration when the data are nonlinear and more

complex than a simple quadratic or cubic. Under some circumstances it is also possible to generate approximate

95% confidence limits for plotting and predicting G from H, or H from G.

From the main SimFIT menu choose [A/Z], open program calcurveand scan the default test file calcurve.tf2

containing the following data.

G H

0.50 0.26885

0.50 0.30026

0.50 0.27048

0.50 0.28205

0.50 0.27368

1.00 0.81924

1.00 0.79264

1.00 0.80419

1.00 0.86795

1.00 0.80573

1.50 1.5215

1.50 1.6423

1.50 1.6953

1.50 1.7242

1.50 1.4159

2.00 2.5742

2.00 2.3165

2.00 2.5198

2.00 2.6637

2.00 2.5150

4.00 6.7101

4.00 6.4626

4.00 6.4935

4.00 5.9591

4.00 6.3087

6.00 7.9744

6.00 7.9506

6.00 8.2786

6.00 8.4860

6.00 8.1895

8.00 9.6610

8.00 9.6185

8.00 9.5581

8.00 9.3566

8.00 8.0443

10.0 10.713

10.0 10.619

10.0 9.7203

10.0 9.7127

10.0 9.4258
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1. Column 1 contains the fixed independent variable G

2. Column 2 contains the observations H

3. The absence of a third column of weighting factors B is equivalent to a column of B = 1 indicating

unweighted regression, but if accurate estimates for B, the sample standard deviations of replicates, are

available they can be added as a third column.

Example 1

Choosing the option to create a standard calibration curve using the calcurve defaults then using the option

to predict G given H equal to 2, 4, 6, 8, 10 leads to the following table.

H-measured G-predicted

2.00 1.7410

4.00 2.7105

6.00 3.7716

8.00 5.6437

10.0 9.8853

To appreciate how this table results, consider the following graph where it will be clear that, for any given

value of H = H0, program calcurve solves the equation

H0 − 5 (G) = 0

involving the best-fit spline function 5 (G), using numerical techniques to locate the G-values located at the

arrow heads.
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Example 2

The two most often required changes to the default configurations in program calcurve are

1. swap from using data-files/clipboard for standard curve data to typing in data interactively; and

2. estimate 95% confidence limits for plotting or prediction.

Typing in data interactively instead of using files or the clipboard is merely a convenience choice,but estimating

confidence limits is more controversial. Unlike the situation when an appropriate deterministic equation is

fitted and the best-fit parameters can be used for this purpose, the cubic spline is an empirical model which

can be made to fit arbitrarily closely to data by choosing the knot placements and tension settings. Hence the

weighted sum of squares at the solution point cannot be used to create a variance estimate if the default choice

of unweighted fitting with cross-validation splines is employed.

Nevertheless calcurve will attempt to generate confidence limits in this default case leading to the following

outcome when attempting to predict G from H.

H-measured G-predicted Lower95%cl Upper95%cl

2.00 1.7410 0.78716 2.4583

4.00 2.7105 1.9565 3.5280

6.00 3.7716 2.8267 5.2894

8.00 5.6437 3.8358 9.6669

10.0 9.8853 5.5667 10.000 ** Discard

The intersection of horizontal lines displayed in the previous graph is used to find the intersections with the

confidence limit curves and, as will be obvious from the next graph, this fails to locate the intersection of

H = 10 with the lower confidence limit curve. A fuller discussion of this subject will be presented later.
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Example 3

Configuration options can be added to the data set to over-ride defaults, as illustrated by fitting calcurve.tf1

with standard deviations from replicates added as a third column.
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The next graph illustrates how the actual situation of constant relative error appears like constant variance

under H-semilog transformation.
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The best way to use program calcurve is to experiment with the configuration options until a satisfactory

standard curve is obtained. The details of such a configuration can then be added to the data file to temporarily

over-ride the defaults. The great advantage of this expert mode is that data sets for creating standard curves

will always give rise to the same standard curve. For instance, fitting calcurve.tf1 in expert mode reads 8

integers followed by a floating point number that informs calcurve to use weights F = 1/B2, log G instead of

G as independent variable, and weighted least squares splines instead of cross-validation splines.

To illustrate this point, the next graph shows the fit obtained for calcurve.tf1 using the expert mode

parameters except that a cross-validation spline curve was used. The previous graphs show how weighted

least squares fitting smooths out noisy data, while the next graph illustrates how using too many knots, as with

cross validation, can lead to excessive undulations in response to local variations in noise. A full explanation

of such configuration issues will now be given.
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Expert mode configuration options

It will be seen on inspection that calcurve.tf1 has an integer after the data indicating the number of

additional lines of text appended to the data. The first line appended has the following eight integers followed

by a floating point number.

2, 2, 2, 1, 2, 3, 2, 2, 5.0

Program calcurve will recognize that this second line after the end of the data is a list of instructions indicating

that the default configuration options are temporarily to be replaced by these new options as long as the data

file is the current data file.

When a new data file is opened, the last set of active settings derived from the defaults will be re-instated

unless the new data set has another set of such temporary re-configuration instructions.

There follows a full description of all the calcurve options
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Configuration options

• Option 1

1. Use a file (or equivalently the clipboard) for all data input

2. Use a file (or equivalently the clipboard) for observations but type in prediction values

3. Type in both observations and prediction values from the terminal

The value of 3 is not valid in expert mode which must use file/clipboard input mode for observations. If

sub-option 3 is selected, then data typed in will be written to a temporary file that can be saved from the

SimFIT user results folder for re-use. It is always best to use a file for input of observations, especially

if the number of observations is large, and this is also true if a large number of prediction values are

required

• Option 2

1. Use the independent variable as supplied

2. Transform the independent variable internally into the logarithm for fitting

The second sub-option can only be used if the independent variable supplied is positive, and is valuable

for calibration data that approaches a horizontal asymptote in order to prevent an undulating standard

curve. All transformation occurs internally, and all communication with the user is in the coordinates

supplied for the original observations.

If either of these sub-options are changed interactively the standard curve will have to be re-fitted.

• Option 3

1. Sparse knots ( = #/12)

2. Medium knots ( = #/6 but  ≥ 1)

3. Dense knots ( = #/3 but  ≥ 2)

4. Solid knots ( = # − 1 but cross validation)

Four knots are always placed at the first and last distinct points, but the number of equally spaced interior

knots depends on the number of distinct data points # . Solid knots places a knot between each distinct

data point then uses generalized cross validation to estimate a smoothing factor. As explained, the type

of knots used will strongly effect the shape of the standard curve. For instance, sparse knots will usually

fit a simple cubic and may give rise to turning points, while solid knots may give too much undulation.

If either of these sub-options are changed interactively the standard curve will have to be re-fitted.

• Option 4

This option is linked to option 6.

1. Weights given by F = 1/B2 where B values are supplied

2. Weights given by F = 1/(2E%|H |)2 where 2E% is the percentage coefficient of variation assumed

3. Weights given by F = 1 i.e., unweighted regression

It is only sensible to supply weights B as sample standard deviations if the sample sizes are sufficiently

large to be meaningful (i.e. ≥ 5), but using unweighted regression assumes constant variance which

is usually incorrect. If constant relative error rather than constant variance can be established, it is

best to input the estimated percentage coefficient of variation and use F = 1/(2E%|H |)2 for smoother

weighting.

If either of these sub-options are changed interactively the standard curve will have to be re-fitted.
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• Option 5

1. Plot H as a function of G

2. Also plot approximate 95% confidence limits using the settings of options 4 and 6.

Confidence limits should only be plotted if the settings of options 4 and 6 are sensible.

• Option 6

This option is linked to option 4.

1. No confidence limits on prediction

2. Slack confidence limits on prediction (using 4B)

3. Medium confidence limits on prediction (using 3B)

4. Tight confidence limits on prediction (using 2B)

Confidence limits are calculated as the intersection of either H0 or G0 as appropriate with the upper

and lower confidence limit envelopes described for option 4. They are very approximate and must

be interpreted with restraint. When sub-option 3 of option 4 is selected it is not sensible to use

,((,/#�$� as a variance estimated as the degrees of freedom depend on the knots and, using too

many knots with no replicates can lead to,((& = 0. In this case the number of standard deviations B

used to space the confidence limits above and below the best-fit standard curve are calculated using the

percentage coefficient of variation assumed and the average absolute value of the observations.

If either of these sub-options are changed interactively the standard curve will have to be re-fitted.

• Option 7

Reserved for future use.

• Option 8

Reserved for future use.

• Option 9

If sub-options 2 or 3 of option 4 are selected the estimated percentage coefficient of variation must be

provided.

If this option is changed interactively the standard curve will have to be re-fitted.

Some examples for Expert mode settings

So, for instance, the expert line to restore defaults is

2, 1, 4, 3, 1, 1, 2, 2, 7.5

while changing to input of observations and prediction values from the terminal would require

3, 1, 4, 3, 1, 1, 2, 2, 7.5

Also changing from cross-validation splines to medium density weighted least squares would need

3, 1, 2, 3, 1, 1, 2, 2, 7.5

while a further change to invoke weighting F = 1/B2, medium prediction confidence limits and addition of

95% confidence limits for graphs and predictions would result from

3, 1, 2, 1, 2, 3, 2, 2, 7.5
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9.4.5 Dose-response curves, bioassay, percentiles and LD50

Dose-response curves and related bioassay techniques are frequently used to estimate percentiles such as LD50,

the median concentration causing 50% mortality. When the experiment consists of estimating proportions in

disjoint groups as a function of some effector, the proportions are estimates of binomial probabilities so it

may be reasonable to fit a generalized linear model (GLM) that assumes binomial distribution of error.

Example 1

From the main SimFIT menu choose [A/Z] then proceed as follows.

• Open program gcfit

• Select the option to perform bioassay (percentiles/EC50/LD50)

• Read in the default test file ld50.tf1 using the [Demo] button on the SimFIT file selection control

Test file ld50.tf1 contains the following data.

H # G

1 10 1

4 20 2

4 10 3

5 10 4

15 30 5

7 10 6

9 10 7

12 15 8

9 10 9

8 10 10

The results were for the number of animals dying in ten separate groups after dosing with toxin as follows.

1. Column 1

The number of animals dying (H8) within a fixed time at a dose G8

2. Column 2

The number of animals in the corresponding group (#8)

3. Column 3

The concentration of toxin (G8)

Here, for 8 = 1, 2, . . . , 10 there is a binomial distribution with probabilities ?8 and estimates ?̂8 as follows

?̂8 =
H8

#8
.

Further, as the groups are independent, we can calculate exact non-symmetrical confidence limits for such

estimates. However, recognizing the distribution of the proportions has no further value unless it is possible

to construct a model for the dependence of such proportions on the effector substance at concentration G8 .

In the event that a deterministic model cannot be constructed in the usual way it is possible to explore

generalized linear models to see if they can give an adequate fit and yield meaningful estimates of the

percentiles with confidence limits. For instance, here are the results from analyzing the test data using the

logistic, probit, and complementary log-log models in order to estimate the 50% point. From the results it is

clear that, in this case, all three models give comparable estimates for the 50% point.
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Method: GLM with binomial errors, Link: Logistic

Number of samples = 10, Deviance = 4.2461

Parameter Value std. error Lower95%cl Upper95%cl ?

Constant -2.0986 0.47329 -3.1900 -1.0072 0.0022

Slope 0.4507 0.08725 0.2495 0.6519 0.0009

50% point 4.6564 0.44415 3.6322 5.6806 0.0000

Method: GLM with binomial errors, Link: Probit

Number of samples = 10, Deviance = 4.5642

Parameter Value std. error Lower95%cl Upper95%cl ?

Constant -1.2513 0.27078 -1.8757 -0.6269 0.0017

Slope 0.2668 0.04855 0.1548 0.3787 0.0006

50% point 4.6902 0.44633 3.6610 5.7194 0.0000

Method: GLM with binomial errors, Link: Complementary log-log

Number of samples = 10, Deviance = 6.6004

Parameter Value std. error Lower95%cl Upper95%cl ?

Constant -1.6696 0.32951 -2.4294 -0.9097 0.0010

Slope 0.2664 0.05079 0.1492 0.3835 0.0008

50% point 4.8922 0.51820 3.6972 6.0872 0.0000

The next graph shows the best-fit curve obtained with the logistic model and indicates how the intersection

of ?̂ = 0.5 with the curve leads to the estimation of the 50% point. Actually other percentiles can also be

estimated if required.
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Example 2

As GLM techniques are to be used it should be mentioned that the analysis just described can also be carried

out with data in the standard GLM format. For instance, the column order for binomial GLM fitting is

covariates first, successes, trials, then finally weighting factors. Generally, as in this case, the weighting

factors would be 1, but they must be included so that the number of covariates is counted correctly.

Another point is that the same estimates for percentiles can also be carried out with the data in complementary

format, where the percent surviving is estimated and not the percent dying, as long as it is remembered to

reflect values other than the 50% point. One major advantage of the GLM data format is that it can be extended

to include other covariates such as time, or allowing for heterogeneity in the groups.

Here, for example, are the data contained in test files ld50.tf2 and ld50.tf3.

ld50.tf2 ld50.tf3

x y N s x N-y N s

1 1 10 1 1 9 10 1

2 4 20 1 2 16 20 1

3 4 10 1 3 6 10 1

4 5 10 1 4 5 10 1

5 15 30 1 5 15 30 1

6 7 10 1 6 3 10 1

7 9 10 1 7 1 10 1

8 12 15 1 8 3 15 1

9 9 10 1 9 1 10 1

10 8 10 1 10 2 10 1

The next graphs illustrate the difference between analyzing data as proportion surviving instead of proportion

dying, and from these it will be clear that both data sets give the same 50% point but that any other percentiles

would have to be treated carefully. For instance, 10% dying would be equivalent to 90% surviving.
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Now the standard SimFIT analysis of proportions routines only involve an indicator variable G to identify

samples or to plot the variation in estimates with confidence limits as functions of G. In the estimation of

LD50 we have to make further assumptions as to how the binomial parameter depends on G, not as an indicator

variable but as an independent variable or, as it is usually referred to in generalized linear models, a covariate.

Such models are not based on biochemical theories as to how a toxin acts, but are empirical models that are

only useful to the extent that they fit the dose-response curve adequately.
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Theory

Given # trials at fixed G with probability ? for success in each trial then the probability of H successes is

%(H) =
(
#

H

)
?H (1 − ?)#−H, for H = 0, 1, . . . , #

and the best estimate for ? is

?̂ =
H

#

where an unsymmetrical 100(1 − U)% confidence range (?; , ?D) may be obtained by solving the nonlinear

equations

#∑
C=H

(
#

C

)
?C; (1 − ?;)#−C

= U/2

H∑
C=0

(
#

C

)
?CD (1 − ?D)#−C

= U/2

for ?; and ?D .

The generalized linear model for binomial errors supposes that the expectation of . is to be estimated, i.e.,

� (. ) = `.

given the distribution

5. =

(
#

H

)
?H (1 − ?)#−H

and the assumption that a predictor function [ exists, which is a linear function of the < covariates, i.e.,

independent explanatory variables, as in

[ =

<∑
9=1

V 9G 9 .

Finally, it is assumed that a link function 6(`) exists between the expected value of . and the linear predictor.

The choices for

6(`) = [

with the binomial distribution, where H successes have been observed in # trials, are the logistic, probit, or

complementary log-log link functions

logistic: [ = log

(
`

# − `

)

probit: [ = Φ
−1

( `
#

)
complementary log-log: [ = log

(
− log

(
1 − `

#

))
.
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9.5 Time series

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

9.5.1 Running medians, moving averages and the Tukey-Hanning 4253H twice smoother

Given a sequence of observations at equal increments of time or space, etc. a smoothed curve can be fitted in
several alternative ways using running medians and/or moving averages. From the main SimFIT menu choose
[Statistics], [Time series], [Data smoothing], then study the test file provided which is g10caf.tf1.
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These are measurements of coal production in millions of tons per year in the USA from 1920 to 1968, and

SimFIT provides the following smoothing options.

1. Running medians with span 4 then 2

2. Running medians with span 5

3. Running medians with span 3

4. Moving averages with span 3 using Hanning

5. The Tukey-Hanning 4253H twice smoother

The result of smoothing is to create a smoothed fit together with residuals, known as rough, that is

Data = Smooth + Rough

and the usual options are available to analyze and plot the smoothed fit and residuals.

The first four options may be investigated,especially with sparse data, but for most purposes the Tukey-Hanning

4253H twice smoother would be preferred as illustrated in the next graph.
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Theory

1. Running medians of even span (e.g. 4 followed by 2)

These are applied in pairs as there are complications due to lack of symmetry. For instance, a span of

four generates n + 1 smooths from a sample size n as follows.

I1 = H1

I2 = (H1 + H2)/2
I3 = median(H1, H2, H3, H4)
. . .

I=−1 = (H=−2 + H=−1)/2
I= = (H=−1 + H=)/2

I=+1 = H=

Following this by a span of two restores the dimension of smooths to n in the following way.

I1∗ = (I1 + I2)/2
I2∗ = (I2 + I3)/2
. . .

I=−1∗ = (I=−1 + I=−2)/2
I=∗ = (I= + I=+1)/2

2. Running medians of odd span

For instance a span of five proceeds as follows

I1 = H1

I2 = median(H1, H2, H3)
I3 = median(H1, H2, H3, H4, H5)
. . .

I= = H=

while a span of three is simply

I1 = H1

I2 = median(H1, H2, H3)
I3 = median(H2, H3, H4)
. . .

I= = H=

3. Moving averages

This usually involves a weighting scheme as with the Hanning of span three with binomial weights.

I1 = H1

I2 = 0.25H1 + 0.5H2 + 0.25H3

. . .

I= = H=
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4. Endpoint rules

To correct for singular behavior at the extreme points SimFIT uses the correction

I1 = median(3I2 − 2I3, I1, I2)
I= = median(3I=−2 − 2I=−1, I=, I=−1)

5. The 4253H twice smoother

The previous simple smoothers may be of some use with sparse data, but the most widely recommended

smoother is the Tukey-Hanning 4253H twice smoother. This applies running medians of four, then two,

then five, then 3, followed by a Hanning filter of span 3. The rough (i.e. residuals) are then calculated

but are then also subjected to the same sequence before being added to the smooth from the first pass,

followed by calculating new rough.
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9.5.2 Lags, auto-correlations, and partial auto-correlation functions

It is usual to analyze a time series for auto-correlations before proceeding to ARIMA.

From the main SimFIT menus choose [Statistics], [Time series] then [Lags and auto-correlations], analyze

the test file times.tf1, then plot the undifferenced time series to obtain the following graph.
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As there is clearly an increasing trend with these data it would be sensible to try a non-seasonal differencing

of order 1 to remove a linear trend leading to the following differenced series.
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The next table presents the results from an analysis with such a non-seasonable differencing of one and

calculating for ten lags.

Current data title is: Test file times.tf1: time series data (J06SBF)

Original dimension (NX) 100

After differencing (NXD) 99

Non-seasonal order (ND) 1

Seasonal order (NDS) 0

Seasonality (NS) 0

Number of lags (NK) 10

Number of PACF (NVL) 10

--mean (differenced) 0.42833

--variance (differenced) 0.31521

Statistic (() 83.1349

%(j2 ≥ () 0.0000 Reject �0 at 1% significance level

Lag R PACF VR ARP

1 0.5917 0.591740 0.649844 0.391570

2 0.5258 0.270263 0.602378 0.398778

3 0.3087 -0.129867 0.592219 0.001602

4 0.1536 -0.143970 0.579944 -0.143950

5 0.0345 -0.054313 0.578233 -0.136536

6 -0.0297 0.011048 0.578162 -0.045279

7 -0.0284 0.071092 0.575240 0.147351

8 -0.0642 -0.044918 0.574080 0.130623

9 -0.1366 -0.175865 0.556324 -0.067066

10 -0.2619 -0.249824 0.521603 -0.249824

The abbreviations used in this table are defined as follows.

Abbreviation Meaning

X the sample (i.e. vector of data with no missing values)

NX dimension of X

XD transformed vector derived from X by differencing

NXD dimension of XD (i.e. NXD = NX - ND - NS*NDS)

ND order of non-seasonal differencing

NDS order of seasonal differencing

NS seasonality of seasonal differencing

NK number of lags requested

NL number of partial correlations requested

NVL number of valid partial correlations

R calculated auto-correlation coefficients

PACF calculated partial auto-correlation coefficients

VR calculated predictor error variance ratios

ARP calculated auto-regressive parameters of maximum order

S statistic for testing �0: all autocorrelations zero

Note if ND = NDS = NS = 0, the original sample X is analyzed

From these results the j2 test clearly indicates that not all correlations are zero, so it is useful to proceed to

comparing the strengths of autocorrelations and partial autocorrelations as functions of the lags.
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Note that, in the next figures, the approximate 95% confidence limits are estimated as 2/√=, where = is the

sample size after differencing (if any).
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These figures illustrate what is summarized in the previous table, that only the correlations with lags of one

and two are highly significant.
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Theory

A time series is a vector G(C) of = > 1 observations G8 obtained at a sequence of points C8 , e.g., times, distances,

etc., at fixed intervals Δ , i.e.

Δ = C8+1 − C8 , for 8 = 1, 2, . . . , = − 1,

and it is assumed that there is some seasonal variation, or other type of autocorrelation to be estimated.

A linear trend can be removed by first order differencing

∇GC = GC − GC−1,

while seasonal patterns of seasonality B can be eliminated by first order seasonal differencing

∇BGC = GC − GC−B .

Note that differencing of orders 3 = #�, � = #�(, and seasonality B = #( may be applied repeatedly to a

series so that

FC = ∇3∇�B GC
will be shorter, of length #-� = = − 3 − � × B, and will extend for C = 1 + 3 + � × B, . . . , #- .

Non-seasonal differencing up to order 3 is calculated sequentially using

∇1G8 = G8+1 − G8 for 8 = 1, 2, . . . , = − 1

∇2G8 = ∇1G8+1 − ∇1G8 for 8 = 1, 2, . . . , = − 2

. . .

∇3G8 = ∇3−1G8+1 − ∇3−1G8 for 8 = 1, 2, . . . , = − 3
while seasonal differencing up to order � is calculated by the sequence

∇3∇1
BG8 = ∇3G8+B − ∇3G8 for 8 = 1, 2, . . . , = − 3 − B

∇3∇2
BG8 = ∇3∇1

BG8+B − ∇3∇1
BG8 for 8 = 1, 2, . . . = − 3 − 2B

. . .

∇3∇�B G8 = ∇3∇�+1
B G8+B − ∇3∇�+1

B G8 for 8 = 1, 2, . . . , = − 3 − � × B.
Note that, as indicated in the previous tables, either the original sample - of length #- , or a differenced

series -� of length #-�, can be analyzed interactively, by simply adjusting #�, #�(, or #(. Also

the maximum number of autocorrelations # < #-� and maximum number of partial autocorrelations

! ≤ # , can be controlled, although the maximum number of valid partial autocorrelations #+! may turn

out to be less than !. Now, defining either G = - , and = = #- , or else G = -� and = = #-� as appropriate,

and using  = # , the mean and variance are recorded, plus the autocorrelation function ', comprising the

autocorrelation coefficients of lag : according to

A: =

=−:∑
8=1

(G8 − Ḡ) (G8+: − Ḡ)
/ =∑
8=1

(G8 − Ḡ)2.

If = is large and much larger than  , then the ( statistic

( = =

 ∑
:=1

A2
:

has a chi-square distribution with  degrees of freedom under the hypothesis of zero autocorrelation, and so

it can be used to test that all correlations are zero.
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The partial autocorrelation function %��� has coefficients at lag : corresponding to ?:,: in the autoregression

GC = 2: + ?:,1GC−1 + ?:,2GC−2 + · · · + ?:,;GC−: + 4:,C

where 4:,C is the predictor error, and the ?:,: estimate the correlation between GC and GC+: conditional upon

the intermediate values GC+1, GC+2, . . . , GC+:−1. Note that the parameters change as : increases, and so : = 1 is

used for ?1,1, : = 2 is used for ?2,2, and so on.

These parameters are determined from the Yule-Walker equations

A8 = ?:,1A8−1 + ?:,2A8−2 + · · · + ?:,:A8−: , 8 = 1, 2, . . . , :

where A 9 = A | 9 | when 9 < 0, and A0 = 1.

An iterative technique is used and it may not always be possible to solve for all the partial autocorrelations

requested. This is because the predictor error variance ratios +' are defined as

E: = +0A (4:,C )/+0A (GC)
= 1 − ?:,1A1 − ?:,2A2 − · · · − ?:,:A: ,

unless |?:,: | ≥ 1 is encountered at some : = !0, when the iteration terminates, with #+! = !0 − 1.

The Autoregressive parameters of maximum order �'% are the final parameters ?!, 9 for 9 = 1, 2, . . . , #+!

where #+! is the number of valid partial autocorrelation values, and ! is the maximum number of partial

autocorrelation coefficients requested, or else ! = !0 − 1 as before in the event of premature termination of

the algorithm.
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9.5.3 Auto-correlation and cross-correlation matrices

This technique is used when there are two corresponding time series, or in fact any series of signals recorded

at a sequence of fixed discrete intervals of time or space etc., and a comparison of the two series is required.

From the main SimFIT menu choose [Statistics], [Time series], then [Auto- and cross-correlation matrices]
and examine the test file g13dmf.tf1 provided which contains the following data.

- .

-1.490 7.340

-1.620 6.350

5.200 6.960

6.230 8.540

6.210 6.620

5.860 4.970

4.090 4.550

3.180 4.810

2.620 4.750

1.490 4.760

1.170 10.880

0.850 10.010

-0.350 11.620

0.240 10.360

2.440 6.400

2.580 6.240

2.040 7.930

0.400 4.040

2.260 3.730

3.340 5.600

5.090 5.350

5.000 6.810

4.780 8.270

4.110 7.680

3.450 6.650

1.650 6.080

1.290 10.250

4.090 9.140

6.320 17.750

7.500 13.300

3.890 9.630

1.580 6.800

5.210 4.080

5.250 5.060

4.930 4.940

7.380 6.650

5.870 7.940

5.810 10.760

9.680 11.890

9.070 5.850

7.290 9.010

7.840 7.500

7.550 10.020

7.320 10.380

7.970 8.150

7.760 8.370

7.000 10.730

8.350 12.140

Column 1 contains time series - and column 2 contains the corresponding time series . . As multivariate

time series with more than two variables can be difficult to analyze it is necessary to select any two variables

for pairwise analysis using this technique.
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The next table illustrates the results from analyzing test file g13dmf.tf1 for the first ten lags using the SimFIT

cross-correlation matrices time series options.

Auto- and cross-correlation matrices

Sample size = = 48

Approximate standard deviation = 0.1443

Mean of - = 4.37021

Mean of . = 7.86750

For lag < = 0: sample -,. Correlation coefficient A = 0.2493

< = 1 0.7366(***) 0.1743

0.2114 0.5541(***)

< = 2 0.4562(**) 0.0764

0.0693 0.2602

< = 3 0.3795(**) 0.0138

0.0260 -0.0381

< = 4 0.3227(*) 0.1100

0.0933 -0.2357

< = 5 0.3414(*) 0.2694

0.0872 -0.2499

< = 6 0.3634(*) 0.3436(*)

0.1323 -0.2263

< = 7 0.2802 0.4254(**)

0.2069 -0.1283

< = 8 0.2482 0.5217(***)

0.1970 -0.0845

< = 9 0.2400 0.2664

0.2537 0.0745

< = 10 0.1621 -0.0197

0.2667 0.0047

Indicators: ? < 0.005(***), ? < 0.01(**), ? < 0.05(*)

Maximum off-diagonal, < = 8, |� (1, 2) | = 0.5217

In the above two by two matrices A8 9 the positions have the following meanings at the lags indicated.

A (1, 1): auto-correlation for -

A (2, 2): auto-correlation for .

A (1, 2): cross-correlation for - with . (lags in . )

A (2, 1): cross-correlation for . with - (lags in -)

The significance levels are indicated if ? ≤ 0.05. These indicate significant auto-correlation for - at lags 1

to 6 but for . only at lag 1, and also significant cross-correlation for A12 at lags 6 to 8.
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Theory

It is assumed that the data are from a multivariate time series or similar set of observations of several variables

at fixed intervals, and it is wished to make pairwise analysis of such observations.

The data must be supplied as two vectors, say - and . of length = for instance, with - as column 1 of a = by

2 matrix, and . as column 2.

The routine first calculates the sample means Ḡ and H̄, the sample variances+G and+H, and sample correlation

coefficient A. Then, for a selected number of lags< = 1, 2, . . . , :, the auto-correlations and cross-correlations

are output as a sequence of 2 by 2 matrices.

Since 1/
√
= is a rough approximation to the standard errors of these estimates, the approximate significance

for the sample cross-correlations is indicated as in the table using the following labeling scheme.

|A (8, 9) | > 3.29/
√
= : ∗ ∗ ∗

|A (8, 9) | > 2.58/
√
= : ∗∗

|A (8, 9) | > 1.96/
√
= : ∗.

Finally, the off-diagonal i.e., cross-correlation, coefficient with largest absolute value is indicated. If this value

is close to unity it indicates that the series are closely similar, and the value of < at which this occurs indicates

the extent to which the series have to be slid past each other to obtain maximum similarity of profiles. Usually,

the largest value of < selected for analysis would be for : ≤ =/4.

Defining the denominator � as follows

� =

√√
=∑
8=1

(G8 − Ḡ)2

√√
=∑
8=1

(H8 − H̄)2

then the auto-correlations A (1, 1) and A (2, 2), and the cross-correlations A (1, 2) and A (2, 1) as functions of <

are given by

A (1, 1) = 1

�

=−<∑
8=1

(G8 − Ḡ) (G8+< − Ḡ)

A (1, 2) = 1

�

=−<∑
8=1

(G8 − Ḡ) (H8+< − H̄)

A (2, 1) = 1

�

=−<∑
8=1

(G8+< − Ḡ) (H8 − H̄)

A (2, 2) = 1

�

=−<∑
8=1

(H8 − H̄) (H8+< − H̄)

for < = 1, 2, . . . , :.
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9.5.4 ARIMA with forecasts

When a time series has been analyzed for non-seasonal and seasonal differencing it is possible to fit an

autoregressive integrated moving average model (ARIMA) and obtain forecasts for future values.

From the main SimFIT menu choose [Statistics], [Time series], then the [ARIMA with forecasts] option and

fit the test file time.tf1 using the default settings to obtain the following results, and plots.

ARIMA with forecasts

Current data title is:

Test file times.tf1: time series data (J06SBF)

Original dimension (#-) 100

After differencing (#-�) 99

Non-seasonal order (#�) 1

Seasonal order (#�() 0

Seasonality (#() 0

Number of forecasts (#�) 3

Number of parameters (#%) 1

Number of iterations (�)�) 2

Sum of squares (((&) 19.9092

Parameter Value Std. err. Type

q(1) 0.60081 0.08215 Autoregressive

� (0) 0.42960 0.11239 Constant term

prediction(1) 43.9351 0.45305 Forecast

prediction(2) 44.2082 0.85512 Forecast

prediction(3) 44.5437 1.23335 Forecast

0.0

20.0

40.0

60.0

0 20 40 60 80 100 120

ARIMA forecasts with 95% Confidence Limits

Time

O
bs

er
va

tio
ns

Forecasts



568 Data smoothing, calibration, and time series

-2.00

0.00

2.00

4.00

0 20 40 60 80 100

Differenced Series and ARIMA Fit

Time

D
at

a 
an

d 
B

es
t F

it Differenced Series
Best ARIMA Fit

Theory

It must be stressed that fitting an ARIMA model is a very specialized iterative technique that does not yield

unique solutions. So, before using this procedure, you must have a definite idea, by using the auto-correlation

and partial auto-correlation options or by knowing the special features of the data, exactly what differencing

scheme to adopt and which parameters to fit. Users can select the way that starting estimates are estimated,

they can monitor the optimization, and they can alter the tolerances controlling the convergence, but only

expert users should alter the default settings.

It is assumed that the time series data G1, G2, . . . , G= follow an ARIMA model so that a differenced series given

by

FC = ∇3∇�B G8 − 2

can be fitted, where 2 is a constant, 3 is the order of non-seasonal differencing, � is the order of seasonal

differencing and B is the seasonality. The method estimates the expected value 2 of the differenced series in

terms of an uncorrelated series 0C and an intermediate series 4C using parameters q, \,Φ,Θ as follows. The

seasonal structure is described by

FC = Φ1FC−B +Φ2FC−2×B + · · · +Φ%FC−%×B + 4C − Θ14C−B − Θ24C−2×B − · · · − Θ&4C−&×B

while the non-seasonal structure is assumed to be

4C = q14C−1 + q24C−2 + · · · + q?4C−? + 0C − \10C−1 − \20C−2 − · · · − \@0C−@.

The model parameters q1, q2, . . . , q?, \1, \2, . . . , \@ and Φ1,Φ2, . . . ,Φ%,Θ1Θ2, . . . ,Θ& are estimated by

nonlinear optimization, the success of which is heavily dependent on choosing an appropriate differencing

scheme, starting estimates and convergencecriteria. After fitting an ARIMA model, forecasts can be estimated

along with 95% confidence limits.
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10 Simulation

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

10.1 Introduction

Simulation is used to predict the outcome of experiments where a deterministic mathematical model has been

formulated, so that the effect of varying parameters and independent variables can be investigated. Once a

profile for exact data has been generated it can be perturbed to resemble various types of uncertainty, for

instance that resulting from stochastic processes or experimental error.

SimFIT provides the following procedures.

• Program random

This allows the creation of random matrices or vectors from specified distributions and also provides

facilities for scrambling a vector, generating random Latin squares for use in experimental design, and

testing the Uniform(0,1) generator. As computers cannot calculate genuine random numbers, they first

accumulate pseudo-random numbers from a Uniform(0,1) distribution using techniques that have a

large cycle and minimal autocorrelation. Alternative distributions can then be simulated from such

Uniform(0,1) numbers, and the ability to test the generator is provided so users can appreciate sample

sizes required (often hundreds) before the histograms generated resemble the simulated distributions.

• Program makdat

This program allows the creation of exact data sets in just two cases.

1. The model is available from one of the SimFIT library of models

2. The model is supplied from a user-defined script

Users simply supply the model parameters and the range, size, and number of data points to be simulated.

The simulated data sets are then written to coordinate files.

• Program deqsol

This is used if the deterministic model is set of nonlinear differential equations.

• Program adderr

This accepts an exact data set then adds random noise to simulate uncertainty or experimental error as

summarized below.

Model −→ makdat −→ Exact

data
−→ adderr −→ Simulated

data

• Program makcsa

This creates random histograms, for example, to simulate flow cytometry investigation of cell surface

antigens.

Simulation should be used where a model has been fitted to some data and best-fit parameters have been

estimated, because then the model can be simulated in order to get some idea of how to interpret the goodness

of fit statistics, and also what reliance to place on the point estimates for the parameter values. This is because

the procedures used to fit nonlinear models are iterative, and the objective function solution point will depend

on the starting estimates and may not be unique. Further, the statistical techniques used to calculate parameter

standard error estimates and make decisions about goodness of fit are only approximations, and usually only

close to the assumed distributions with very large numbers of observations.
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10.2 Simulation: random numbers

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

10.2.1 Generating a random vector

A sample of pseudo–randomnumbers can be generated using program rannum after selecting the distribution,

parameters required, and sample size. For instance, selecting [Simulate] from the main SimFIT menu, then

choosing to simulate a normal distribution with ` = 0 and f2 = 1 for sample sizes of 10, 20, 40, and 80

created four vector files. These were then analyzed by program normal leading to the histograms shown

below.
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Sample size = 80

In these histograms we can see that a sample size of ten generates a sample that bears little comparison to the

theoretical distribution shown as a dotted curve. Even a sample size of twenty does not look convincingly like

the theoretical distribution and a sample size of eighty is required before the histogram does really suggest the

theoretical distribution. Of course this is merely a warning not to the use the shape of a histogram to suggest

the parent distribution unless the sample size is sufficiently large, and in any case the shape of histograms

depend on the number of bins used and are therefore to a degree arbitrary. Of course program normal provides

many graphical and statistical techniques to determine if a sample can be regarded as coming from a normal

distribution.

There follows a list of distributions available using program rannum.
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Distributions and their density/mass functions

Cauchy: parameters � and �, where � > 0

5 (G) = 1

�c [1 + ((G − �)/�)2]
Chi-square: # degrees of freedom, where # > 0, G > 0

5 (G) = G# /2−1 exp(−G/2)
2# /2 (#/2 − 1)!

Negative exponential: mean �, where � > 0, G > 0

5 (G) = (1/�) exp(−G/�)

Gamma: parameters � and �, where � > 0, � > 0, G > 0

5 (G) = G�−1 exp(−G/�)
��Γ(�)

Logistic: mean �, spread �, where � > 0

5 (G) = exp[(G − �)/�]
�(1 + exp[(G − �)/�])2

Lognormal: parameters � and �, where � > 0, G > 0

5 (G) = 1

�G
√

2c
exp−1

2

(
log(G) − �

�

)2

Normal: mean �, standard deviation �, where � > 0

5 (G) = 1

�
√

2c
exp−1

2

(
G − �
�

)2

Uniform: real parameters � and �, where � > �

5 (G) = 1

� − �
Weibull: parameters � and �, where � > 0, � > 0, G > 0

5 (G) = �G�−1

�
exp−

(
G�

�

)

�: " (numerator), # (denominator) degrees of freedom, where G > 0

5 (G) = Γ((" + #)/2) ("/#)"/2G"/2−1

Γ("/2)Γ(#/2) [1+ ("/#)G] ("+# )/2

C: # degrees of freedom

5 (G) = Γ((# + 1)/2)
Γ(#/2)

√
#c

(
1 + G

2

#

)−(#+1)/2

Binomial: parameters # and ?, where # ≥ 1, 0 ≤ ? ≤ 1

5 (G) =
(
#

G

)
?G (1 − ?)#−G

Poisson: mean ) , where ) > 0

5 (G) = )
G exp(−))
G!

Uniform: integer parameters " and # , where # > "

5 (G) = 1

# − " + 1
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10.2.2 Generating a random matrix

A data matrix of pseudo–random numbers can be generated using program rannum after selecting the

distribution, parameters required, number of rows, and number of columns.

This can be very useful when exploring the variation to be expected in typical experiments. So there are

default choices for the distributions of the columns (or rows by transposition using editmt) but SimFIT also

allows user to simulate random matrices with a very large choice for the column distributions by joining <

random columns of length = together using program editmt to form a = by < matrix.

Example 1: Simulating analysis of proportions

For instance, from the main SimFIT menu, choosing [Simulate] then running program rannum was used to
simulate a binomial distribution with # = 10 and ? = 0.5. The resulting random matrix was written to a data
file that was then read into program simstat for analysis of proportions leading to the following results.

H # lower 95% ?̂ upper 95%

7 10 0.34755 0.70000 0.93326

5 10 0.18709 0.50000 0.81291

6 10 0.26238 0.60000 0.87845

5 10 0.18709 0.50000 0.81291

5 10 0.18709 0.50000 0.81291

6 10 0.26238 0.60000 0.87845

5 10 0.18709 0.50000 0.81291

5 10 0.18709 0.50000 0.81291

4 10 0.12155 0.40000 0.73762

3 10 0.06674 0.30000 0.65245

4 10 0.12155 0.40000 0.73762

4 10 0.12155 0.40000 0.73762

7 10 0.34755 0.70000 0.93326

7 10 0.34755 0.70000 0.93326

4 10 0.12155 0.40000 0.73762

4 10 0.12155 0.40000 0.73762

5 10 0.18709 0.50000 0.81291

3 10 0.06674 0.30000 0.65245

4 10 0.12155 0.40000 0.73762

4 10 0.12155 0.40000 0.73762

Successes and number of trials for binomial #, ? = 10, 0.5000

To test �0: equal binomial ?-values

Sample-size (rows) 20

Overall sum of . 97

Overall sum of # 200

Overall estimate of ? 0.4850

Lower 95% confidence limit 0.4139

Upper 95% confidence limit 0.5565

−2 log_ (−2!!) 11.67, #�$� = 19

%(j2 ≥ −2!!) 0.8991

j2 test statistic (�) 11.43, #�$� = 19

%(j2 ≥ �) 0.9085

The next figure illustrates the wide 95% confidence limits for the ? estimates for the individual samples of

size 10 (open circles) compared to the overall estimate for the pooled sample (filled circle).
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Example 2: simulating analysis of variance

Program rannum provides several options for random matrices, but it is possible to control the distributions
for the columns by generating sample vectors, i.e. columns, then joining them up to form a matrix. For
instance, the distribution of errors in many experiments are more like a Cauchy than a normal distribution. So
three columns of Cauchy random numbers with � = 0, � = 1 were generated then joined together by program
editmt to form this 10 by 3 data matrix, and from the results it seems that ANOVA was not sensitive to the
outliers (indicated by *) in this particular simulation.

0.7553767 0.0114847 0.1967812

*15.782768 -10.974171 0.0389082

0.1525358 0.0614315 -0.6627294

0.3088897 -0.4970650 -2.0314559

-0.4559783 0.2725820 -0.7291483

2.8106498 *8.2014348 0.9221295

-0.9132832 -1.3773182 -1.5086666

-0.7499996 1.5989911 -1.5862460

-1.1157865 -0.8385944 -3.8728595

1.3796620 -0.6206551 *23.120279

1-Way Analysis of Variance: Grand Mean 9.227E-01

Transformation:- G (untransformed data)

Source ((& #�$� "(& � ?

Between Groups 27.72 2 13.86 0.3885 0.6818

Residual 963.1 27 35.67

Total 990.8 29

Kruskal–Wallis Nonparametric One Way Analysis of Variance

Test statistic #�$� ?

2.114 2 0.3476
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10.2.3 Generating a randomly shuffled list

In experimental design it is often required to take a list of numbers, names, or similar, and jumble them up to generate a

randomly shuffled list.

From the main SimFIT menu select [A/Z], open program rannum and choose to permute a list. As all lists of = items

can be regarded as in one to one correspondence to the successive integers 1, 2, . . . , =, all that is required is a technique

to select one of the =! possible lists, where every permutation is equally likely.

Here is the starting set followed by such a set of ten shuffled lists, each with ten items but note that, for = ≤ 26, the

corresponding alphabetical characters are also displayed as here, which some may find convenient.

Starting list

1 2 3 4 5 6 7 8 9 10

A B C D E F G H I J

10 out of the 10! possible shuffled lists

7 4 6 1 5 3 9 10 2 8

G D F A E C I J B H

6 3 10 7 1 5 4 8 2 9

F C J G A E D H B I

8 2 3 7 9 1 6 5 10 4

H B C G I A F E J D

9 10 6 8 4 5 2 3 7 1

I J F H D E B C G A

9 6 3 4 2 1 7 5 8 10

I F C D B A G E H J

7 6 2 5 3 1 9 8 4 10

G F B E C A I H D J

4 6 9 3 10 8 2 1 5 7

D F I C J H B A E G

6 8 3 7 10 9 2 5 1 4

F H C G J I B E A D

2 7 1 10 9 5 4 8 6 3

B G A J I E D H F C

10 9 5 8 2 1 7 6 3 4

J I E H B A G F C D

After scrambling such a list, a chosen permutation can be copied to the clipboard or written to a SimFIT type data file

for retrospective use, with alphabetical equivalents appended for = ≤ 26. Note that program rannum will generate a new

permutation at every operation unless the option to input a fixed seed to regenerate an identical list is chosen, and the fixed

seed is input at the start of the permutations.
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10.2.4 Generating a random Latin square

In experimental design, especially with Latin square ANOVA, it is often required to use a randomly generated Latin

square.

To make this clear, consider the SimFIT test file ANOVA3.TF1 (shown in full and colored blue below) by choosing [View]

from the SimFIT main menu and browsing the test files.

Latin Square ANOVA Data ... see NAG routine G04ADF

10 5

5 4 1 3 2

2 5 4 1 3

3 2 5 4 1

1 3 2 5 4

4 1 3 2 5

6.67 7.15 8.29 8.95 9.62

5.40 4.77 5.40 7.54 6.93

7.32 8.53 8.50 9.99 9.68

4.92 5.00 7.29 7.85 7.08

4.88 6.16 7.83 5.38 8.51

7

Line 1 title for this data set

Line 2 number of rows then number of columns

Line 3 first row of keys (using 1,2,3,... instead of A,B,C...)

Line 7 last row of keys (using 1,2,3,... instead of A,B,C...)

Line 8 first row of data values(corresponding to first row of keys)

Line 12 last row of data values(corresponding to last row of keys)

Line 13 number of rows of comments appended to data set

First of all note that there are two ways to represent Latin squares.

1. Using integers as in

1 2 3

2 3 1

3 1 2.

2. Using characters as in

A B C

B C A

C A B.

To create a SimFIT data file for = by = Latin square ANOVA you first generate a = by = Latin square and save it to file.

Then take the corresponding = by = data file, and copy and paste the Latin square (in integer format) into the data just

before the first line of data. Finally you must change the dimension header from = = into 2= =. For example, in the

above test file the original line number two would have had 5 5 but, after pasting in the 5 by 5 Latin square, it would

contain 10 5 to account for the doubling of the number of rows of data.
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Theory

A Latin square is a = by = array of integers with the following properties.

1. Each row must contain the complete set of positive integers 1, 2, . . . , = in some order.

2. Each column must contain the complete set of positive integers 1, 2, . . . , = in some order.

3. No two rows can be identical and no two columns can be identical.

Sometimes characters or symbols are used, for instance alphabetical characters if = ≤ 26 as in the following 4 by 4

standard cases.

A B C D A B C D A B C D A B C D

B A D C B C D A B D A C B A D C

C D B A C D A B C A D C C D A B

D C A B D A B C D C B A D C B A

The way that SimFIT generates a random Latin square is to start by generating the = by = formulation

©­­­­­
«

1 2 3 4 . . . =

= 1 2 3 . . . = − 1

= − 1 = 1 . . . . . . = − 2

. . . . . . . . . . . . . . . . . .

2 3 4 . . . . . . 1

ª®®®®®¬
with the indicated shifting. Then the rows and columns are shuffled and the option is provide to view or save the randomly

generated Latin square. For = ≤ 26 the alphabetical representation is also generated and appended to any examples that

are written to files.

Rather surprisingly, there is no simple way to calculate the total number of permutations given =, but the following table

will give some idea of the numbers involved.

= Number

3 12

4 576

5 161250

6 812851200

7 61479419904000
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10.2.5 Generating a random walk

Random walks can be used to model numerous natural processes such as diffusion, or the migration of motile cells in a

permeable gel matrix

The SimFIT program rannum provides numerous ways to generate random walks with the following options.

1. There can be 1, 2, or 3 dimensions starting from user-defined initial coordinates.

2. The distributions used for the variables can be chosen independently for each dimension.

3. Simulated walks can be displayed, tabulated, or written to files.

4. The walks can be disjoint where each coordinate is varied in sequence, or coincident when all variables change at

the same step.

Example 1: Disjoint or coincident walks

To illustrate the distinction between disjoint and coincident walks consider the next two examples.
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0
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DISJOINT ... stepwise walk
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Y
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COINCIDENT ... continuous walk

X-Position

Y
-P
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on

The distribution chosen for the two variables - and . was a random integer with just two possible values, that is

%(- = −1) = ?
%(- = +1) = 1 − ?
%(. = −1) = ?
%(. = +1) = 1 − ?

? =
1

2
.

In the disjoint mode the walk takes place first along the - coordinate then along the . coordinate, so that all movements

can clearly be seen to be either horizontal or vertical, whereas in the coincident mode the walk on the grid occurs in

diagonal jumps from node to node. Tables and data written to file are in the more economical coincident mode.
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Example 2: Plotting collections of walks

It is often useful to plot several walks starting from the same position as it is often surprising how such repeated walks

diverge. The examples below illustrate a common phenomenon where walks may tend to persist in the same direction

even with equiprobable positive and negative steps, and which can appear somewhat contrary to intuition. The examples

illustrated all had the probability of a step length of 1 equal to the probability of a step length of -1.
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There are two ways to create such plots depending on the technique used to archive the coordinates.

• Using the [Advanced] option
When it is a wished to archive the coordinates of a walk then the [Advanced] button should be used to provide

the option to save the coordinates to a file. After the file has been saved you will have the additional option to

store the file in your graphics project archive. This is simply a very convenient technique to store graphics files for

subsequent re-plotting. There are then three ways to create a graph with the collected walks using program simfit.

1. Select the files individually.

2. Select the required files as a set from a library file. created by program maklib.

3. Select the required files by multiple file selection from your project archive.

• Using coordinates written to a file
Files of random walks saved from program rannum can be used directly for retrospective plotting as, with the

special case of just one dimension, the step number is added as a first column to the file so it can be used as the -

coordinate.
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Example 3: Plotting two dimensional random walks

The previous examples used steps of 1 or -1 with equal probability but other distributions are often much more useful to

represent natural processes.

For example, the next example illustrates five random walks all starting at G = 0 and H = 0 to illustrate the large variation

in walks possible where the steps were all taken from a standard normal distribution.
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In random walks where equally probable steps of -1 or 1 are not used then the walk is no longer taking place between the

integer intersection points on rectangular grids, instead jumps can be taken between arbitrary coordinates as allowed by

the distributions selected. In the previous graph the distribution used for the steps G8 , H8 has density function

5 (C) = 1

f
√

2c
exp−1

2

( C − `
f

)2

with ` = 0 and f = 1, and so jumps larger than 3 or smaller than -3 are not very likely.

To summarize: after = random steps G8 , H8 the coordinates -=, .= plotted would be

-= = -BC0AC +
=∑
8=1

G8

.= = .BC0AC +
=∑
8=1

H8 .
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Example 4: Plotting three dimensional random walks

Three dimensional random walks are no different than two dimensional walks except that the procedure for plotting

collections of walks differs somewhat.

For instance, the next graph shows a typical three dimensional random walk from the starting point

G = 0, H = 0, I = 0

where a standard normal distribution was used for all three variables.

Random Walk in Three Dimensions
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-10.0
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To plot collections of such walks, the walks are first saved from program rannum to coordinate files. Then program

simplot is opened and the coordinate files are supplied using the option for plotting space curves. This anticipates data

in parametric form. In other words, it is assumed that the three columns in the coordinate files represent the triples

G = 5 (C)
H = 6(C)
I = ℎ(C)

for arbitrary functions 5 (.), 6(.), and ℎ(.) evaluated at equal increments of parameter C.

Note that this option should not be confused with the option to plot three dimensional surfaces.
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10.3 Simulation: User-selected models

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

10.3.1 Simulating a function of one variable

Simulating a data set that is exact to computer precision is the first step in simulation, so that random error can be added

retrospectively to simulate experimental results.

Choosing the [A/Z] option from the SimFIT main menu is used to open the program makdat, which then allows you to

create such almost-exact data from a library of models, or from a user-supplied model.

Before attempting a simulation it is essential to understand these issues.

1. Choosing the correct model

2. Choosing sensible parameters

3. Choosing a reasonable range for the independent variable(s)

4. Choosing a meaningful technique for the distribution of evaluation points

5. Viewing the current simulation

6. Saving the simulated data to a file

Program makdat has access to the particular library that is contained in either w_models.dll for 32-bit applications, or

x64_models.dll for 64-bit applications, and there are numerous versions of these where the standard library has been

augmented for special user requirements. The standard version has models for one, two, and three variables as well as for

single differential equations. For systems of differential equations program deqsol must be used.

1. Choosing the correct model

It is essential that users should have a good idea of what would be an appropriate mathematical model.

For instance, it is assumed that biochemists would know which of the following ligand binding models should be used for

simulating data for two binding sites.

5 (G) = �1 1G

1 +  1G
+ �2 2G

1 +  2G

6(G) = V

2

{
q1G + 2q1q2G

2

1 + q1G + q1q2G
2

}

Again, chemists would be expected to know which of the following double exponential models to use for reactants in the

two linked irreversible chemical reaction scheme.

� (C) =
{
?1?3

?2 − ?1

}
exp (−?1C) +

{
?4 − ?1?3

?2 − ?1

}
exp(−?2C)

� (C) = ?3 + ?4 + ?5 −
{
?2?3

?2 − ?1

}
exp (−?1C) −

{
?4 − ?1?3

?2 − ?1

}
exp (−?2C)

So the first step in simulation is to choose the correct model and appreciate the relationship between the library parameters,

which are all in the form ?1 , ?2, . . . , ?= , and the more usual dedicated nomenclature such as  <, +<0G , :0?? , �0, �0

and so on.

Note that the models contained in the basic library are defined in the SimFIT reference manual w_manual.pdf.
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2. Choosing sensible parameters

Most users will have a good idea of the parameter values required, normally because these are values reported from

curve-fitting and it is wished to check the fit to data based on data simulated using the best-fit parameters.

Often some idea of parameter values can be obtained by simply inspecting experimental data. For instance, all the

parameters in models 5 (G), 6(G), � (C), and � (C) must be nonnegative. The final asymptotic level reached by 5 (G) and

6(G) as G → ∞ are of course �1 + �2 and V respectively, while the binding constants will tend to be around the value

of G at the half saturation point. Again, model � (C) tends to zero while � (C) tends to @3 + @4 + @5 as C → ∞ and the

exponential parameters will be of the order of the half life since � (C) is the intermediate species �(C) while � (C) is the

final product � (C) in the irreversible consecutive reaction

�
:1→ �

:2→ �

so that ?1 = :1, ?2 = :2, ?3 = �(0), ?4 = �(0), and ?5 = � (0).

3. Choosing a reasonable range for the independent variable(s)

In the case of functions of one variable there are four distinct ways to choose starting points and end points that define the

range for the independent variable.

• User inputs starting and ending - values manually.

• User inputs starting and ending . values and corresponding - values are calculated numerically.

• User reads a set of values from a file like vector.tf1.

• User edits (or simply accepts) the current data.

For an example of how to set the range manually, run the program makdat, select functions of one variable, pick statistical

distributions, choose the normal cdf, decide to have a zero constant term, set the mean ?(1) = 0, fix the standard deviation

?(2) = 1, input the scaling factor ?(3) = 1 and then choose -start = −3 and -stop = 3 to generate the next figure (after

adding the maths).
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The process of finding a range of G for simulation when this depends on fixed values of H, that is to find G = G(H) when

there is no simple explicit expression for G(H), is frequently required. For instance, finding G = G(H) when H(G) is the

normal distribution function

H(G) = 1

f
√

2c

∫ G

−∞
exp−1

2

( G − `
f

)2
3G

where f > 0. After setting parameters ` = 0, f = 1, it is clear from the previous graph that, to find the point G1 where

H(G1) = 0.1 it would be reasonable to guess −3 ≤ G1 ≤ −1, while to locate the point G2 where H(G2) = 0.9 it would be

sensible to guess that 1 ≤ G2 ≤ 3. Using these initial estimates program makdat refined them to give the following results

-start = −3, -stop = −1 : H1 = 0.1, G1 = −1.282,

-start = 1, -stop = 3 : H2 = 0.9, G2 = 1.282.

These critical points are illustrated by the next figure.
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Note that, when attempting such root-finding calculations, makdat will attempt to alter the starting estimates by decreasing

-start and increasing -stop if a root cannot be located, but it will not change the sign of these starting estimates. In the

event of problems locating roots, there is no substitute for plotting the function to get some idea of the position of the

roots, as shown in the previous figures.

4. Choosing a meaningful technique for the distribution of evaluation points

For functions of one variable program makdat provides three ways to space points.

• Points in a geometric progression (logarithmic spacing)

• Points in an arithmetic progression (linear spacing)

• Points following a SimFIT spacing algorithm
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To illustrate these data spacing options consider the next figure.
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Geometric (Logarithmic) spacing

This spacing leads to consecutive points in a geometric progression, i.e. with increasing separation between consecutive

points, and requires positive coordinates. From the point of view of optimum design for parameter estimation and model

discrimination with models like the exponentials and rational functions so often encountered in experiments, this is the

best choice as discussed in the following publication.

Optimal design for model discrimination using the F test with non-linear biochemical models. Criteria for choosing the

number and spacing of experimental points.

Bardsley,W.G., McGinlay,P.B & Roig,M.G. (1989) J. theor. Biol. 139, 85-102

Arithmetic (Linear) spacing

This spacing leads to consecutive points in an arithmetic progression, i.e. with a constant separation between consecutive

points, and is the design most used, probably out of of convenience. However it is a bad choice for many situations where

it is best to place more points where model equations change most rapidly, i.e. near the origin.

Simfit Algorithm

The SimFIT spacing is used by SimFIT when a best-fit curve is calculated for plotting against experimental data. This

spacing is a compromise as it attempts to cover the cases where data and best-fit curves are plotted in other transformations

than the logarithmic, like a Scatchard plot or double reciprocal plot for instance. It approximates to geometric spacing for

early points and reverse geometric spacing for late points.
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5. Viewing the current simulation

Once a data set has been simulated it is always possible to display a table of the independent variables and simulated

values. In addition, for one independent variable a plot can be created, while for two independent variables a surface can

be plotted together with contours if required. It is not possible to plot a function of three independent variables.

6. Saving the simulated data to a file

Files saved will have the independent variable(s) in the first column(s), then the simulated values in the penultimate

column, followed by a final column of weights.

There are three reasons for saving the simulated data to a file.

• Using the saved file for fitting
It is assumed that normally data are simulated in order to be fitted. So a final column of weights (usually 5% of the

calculated function value) will be added to the saved file to make it a curve fitting file. The last column must be

left in for weighting, or else replaced by a column of 1 if unweighted fitting is required. This is easily done using

program editmt.

• Using the saved file for plotting
As the final column of weights is not necessary for plotting it would be usual to delete the last column of weights

using program editmt. However, for plotting functions of one variable using program simplot there is no need to

delete the last column (i.e. column 3). On the other hand, for a functions of two or three variables for plotting, the

last column of weights must always be deleted.

• Adding random error
As the data written to file will be almost exact, they can be used to confirm that a model simulated with no

added error can be fitted to return the correct best-fit parameters. If it is wished to add random error to simulate

experimental data, the files can be input into program adderr, which can also overwrite the default weights by

alternative weighting schemes if required.
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10.3.2 Simulating a function of two variables

Simulating a data set for a function of two variables that is exact to computer precision is the first step in simulation, so

that random error can be added retrospectively to simulate experimental results.

Choosing the [A/Z] option from the SimFIT main menu is used to open the program makdat, which then allows you to

create such almost-exact data from a library of models, or from a user-supplied model.

Before attempting to simulate a function of two variables it is essential to understand these issues.

1. Choosing the correct model

2. Choosing sensible parameters

3. Choosing a reasonable range for the independent variable(s)

4. Choosing a sensible number of divisions of the - and . axes

5. Viewing the current simulation

6. Saving the simulated data to a file

Program makdat has access to the particular library that is contained in either w_models.dll for 32-bit applications, or

x64_models.dll for 64-bit applications, and there are numerous versions of these where the standard library has been

augmented for special user requirements. The standard version has models for one, two, and three variables as well as for

single differential equations. For systems of differential equations program deqsol must be used.

1. Choosing a model

From the interface to the SimFIT library choose a polynomial of degree two which has the following form.

5 (G, H) = ?1G + ?2H + ?3G
2 + ?4GH + ?5H

2 + ?6

This can be simulated using the default parameters but the result is not very interesting.

2. Choosing sensible parameters

A more illuminating example would be the function

5 (G, H) = G2 − H2

which can easily be simulated by editing the default parameters as follows.

?1 = 0

?2 = 0

?3 = 1

?4 = 0

?5 = 1

?6 = 0
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3. Choosing a reasonable range for the independent variable(s)

In this case it is suggested that you use the default values which are

−1 ≤ G ≤ 1

−1 ≤ H ≤ 1.

Choosing the number of divisions should be considered carefully. For instance, accepting the default values of 20 divisions

along the axes requires the simulation of 400 data points. With this example the surface can be viewed without problems

but, for other models, the range and number of points will depend on the model selected and parameters chosen.

4. Viewing the current simulation

Once a data set has been simulated it is always possible to display a table of the independent variables and simulated

values or a plot as follows.

SIMFIT 3D plot for z = f(x,y)

XY

Z

1.0

-1.0

1.0

-1.0

-0.99723

0.99723

This example highlights the surface with colored rectangles (facets) and includes the corresponding contours, but there

are a great many other ways to view the surface, including skyscraper and cylinder plots with or without error bars if the

number of divisions is suitably small.

Note that, in order to generate a convincing contour diagram, it may be necessary to increase the number of divisions up

to the maximum of 100, which would then involve the simulation of 10000 function values. A skyscraper plot with 5

divisions and a contour plot with 50 divisions for the same function and parameters are illustrated next.
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SIMFIT 3D skyscraper plot for z = x2 - y2

Z

-1
-.5

0
.5

1

-1
-.5

0
.5

1

-1.0

1.0

XY

SIMFIT 2D contour plot for z = x2 - y2

X

Y

1.0

-1.0

1.0-1.0

Key   Contour
   1 -0.8178

   2 -0.6361

   3 -0.4544

   4 -0.2726

   5 -9.0871×10-2

   6 9.0871×10-2

   7 0.2726

   8 0.4544

   9 0.6361

  10 0.8178

1

1

2 2

3 3

4 4

5 5

6

6

7

7

8

8

9

9

10

10
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5. Saving the simulated data to a file

Curve-fitting files saved will have the independent variables in the first two columns, then the simulated values in the

penultimate column, followed by a final column of weights. However such files cannot be used for plotting as will be

explained below.

There are three reasons for saving the simulated data to a file.

• Using the saved file for fitting
It is assumed that normally data are simulated in order to be fitted. So a final column of weights (usually 5% of the

calculated function value) will be added to the saved file to make it a curve fitting file. The last column must be

left in for weighting, or else replaced by a column of 1 if unweighted fitting is required. This is easily done using

program editmt.

• Using the saved file for plotting
In order to plot a surface SimFIT requires plotting files in a special format. For =G divisions of the G axis and =H
divisions of the H axis a menu option from the plot concerned allows the creation of a vector plotting file with a

column of # = =G=H + 6 values. After the usual title and row dimension (#) and column dimension (1), the first

six values in such a SimFIT vector file are as follows.

1. Line 1: =G the number of G divisions

2. Line 2: =H the number of H divisions

3. Line 3: initial G value

4. Line 4: final G value

5. Line 5: initial H value

6. Line 6: final H value

After these are the # function values in column-major format with priority G.

• Using the saved file for adding random error
As the data written to file will be almost exact, they can be used to confirm that a model simulated with no

added error can be fitted to return the correct best-fit parameters. If it is wished to add random error to simulate

experimental data, the files can be input into program adderr, which can also overwrite the default weights by

alternative weighting schemes if required.

————————————————————————————————-
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10.3.3 Simulating a differential equation

Simulating a data set that is exact to computer precision for differential equations is the first step in simulation, so that
random error can be added retrospectively to simulate experimental results.

Choosing the [A/Z] option from the SimFIT main menu is used to open the program makdat, which then allows you to
create such almost-exact data from a library of models, or from a user-supplied model.

Before attempting to simulate a differential equation it is essential to understand these issues.

1. Choosing the correct model

2. Choosing sensible parameters (including initial conditions)

3. Choosing a reasonable range for the independent variable

4. Choosing a sensible number of divisions of the - axis

5. Viewing the current simulation

6. Saving the simulated data to a file

Program makdat has access to the particular library that is contained in either w_models.dll for 32-bit applications, or
x64_models.dll for 64-bit applications, and there are numerous versions of these where the standard library has been
augmented for special user requirements.

The standard version has models for a single differential equation, but for systems of = differential equations program
deqsol must be used.

1. Choosing a model

From the interface to the SimFIT library choose the Michaelis-Menten substrate depletion model which has the following
form

3H

3G
=

−?2H

?1 + H .

Of course this model can actually be integrated and would usually have the following interpretation

3(

3C
=

−+<0G(
 < + ( .

2. Choosing sensible parameters

There is an additional complication with differential equations as the the initial conditions are also parameters, and the
SimFIT convention is that with a system of = equations the last = parameters must be the initial conditions. Note that the
default parameters for this model are as follows.

?1 = 1

?2 = 1

?3 = 1

= ((0)

so that, with this model, parameter ?3 > 0 is the substrate concentration at time C = 0.
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3. Choosing a reasonable range for the independent variable(s)

It is usual to advance the solution for differential equations from time zero, which means that program makdat will not
allow starting values less that zero.

4. Viewing the current simulation

Once a data set has been simulated it is always possible to display a table of the independent variables and simulated
values, or a plot as follows.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 1.0 2.0 3.0 4.0 5.0

Michaelis-Menten Substrate Depletion

t

S
(t

)

dS/dt = -VmaxS/(Km + S)

To illustrate the process of finding a range of G for simulation when this depends on fixed values of H, that is to find
G = G(H) when there is no simple explicit expression for G(H), consider the Von Bertalanffy growth differential equation

3H

3G
= �H< − �H=,

where � > 0, � > 0 and = > <. After setting the parameters � = � = < = 1, = = 2, and initial condition H0 = 0.001, for
instance, program makdat estimated the following results:

-start = 0, -stop = 5, H1 = 0.1, G1 = 2.3919,
-start = 0, -stop = 9, H2 = 0.9, G2 = 6.7679,

providing the roots required to simulate this equation between the limits H1 = 0.1 and H2 = 0.9.
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0.00

0.20

0.40

0.60

0.80

1.00

0.0 2.0 4.0 6.0 8.0 10.0

dy/dx = Aym - Byn

x

y

Note that, when attempting such root-finding calculations, makdat will attempt to alter the starting estimates by decreasing
-start and increasing -stop if a root cannot be located, but it will not change the sign of these starting estimates. In the
event of problems locating roots, there is no substitute for plotting the function to get some idea of the position of the
roots, as shown in the previous figure.

5. Saving the simulated data to a file

Curve-fitting files saved will have the independent variables in the first column, then the simulated values in the penultimate
column, followed by a final column of weights.

There are three reasons for saving the simulated data to a file.

• Using the saved file for fitting
It is assumed that normally data are simulated in order to be fitted. So a final column of weights (usually 5% of the
calculated function value) will be added to the saved file to make it a curve fitting file. The last column must be
left in for weighting, or else replaced by a column of 1 if unweighted fitting is required. This is easily done using
program editmt.

• Using the saved file for plotting
The simulated data can be used retrospectively for plotting by program simplot which ignores the final column of
weights.

• Using the saved file for adding random error
As the data written to file will be almost exact, they can be used to confirm that a model simulated with no
added error can be fitted to return the correct best-fit parameters. If it is wished to add random error to simulate
experimental data, the files can be input into program adderr, which can also overwrite the default weights by
alternative weighting schemes if required.
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10.3.4 Simulating a user-defined model: creating a model-file

In the unlikely event that the model you want to plot, simulate or fit is not in the SimFIT library of compiled models you
will have to create a user–defined–model file. Actually, once the format for user–defined model equations is understood,
it is very simple to create model files using any text editor. However, program usermod can be opened using the [A/Z]
option on the SimFIT main menu, and this is an easy way to create models and understand how to use them. It provides
these options.

• Open a file from the selection of demonstration examples provided using the [Demo] button on the File-Open
dialogue.

• View the model files supplied to examine the way these test examples formulate the various models and sets of
models.

• Use the options provided to check the models or use them to plot, integrate, locate zeros, or perform constrained
optimization.

• Invoke the facility to open a user-defined file or a default template in a text editor to create a model file, then save
it to a temporary file and read it back into the main program to check, etc. until the syntax is correct before finally
archiving the model.

From SimFIT version 7.1.6 onwards there are two procedures that can be used to define models.

1. Reverse Polish

This is the most versatile technique, but it is very verbose and may be found difficult to use by non-programmers.

2. Standard mathematical expressions

This is far easier to understand by scientists, and is recommended when developing new models since it uses normal
mathematical formulas but then SimFIT automatically transforms them into reverse Polish at run time.

The most versatile manner is to use standard mathematical expressions for simple one-line equations, but to resort to a
mixture of standard expressions linked by permitted SimFIT reverse Polish stack operations for complicated models.

It should be pointed out that models in the compiled library are protected against critical events such as taking logs or
square roots of negative numbers, or dividing by zero, but it is your responsibility when fitting your own user–defined
models that the parameter values and independent variables are constrained to avoid such singularities.

Reverse Polish

Reverse Polish (i.e. last–in–first–out, or post–fix) is an excellent way to prepare user–defined models for a number of
reasons.

1. It can be used to express any mathematical model unambiguously.

2. It is very similar to the way that computers perform calculations.

3. It is the way that the PostScript language and programmable calculators work.

4. There many model files distributed with SimFIT to demonstrate the technique and documentation to explain it.

5. usermod can be used to view these then develop your own models, check them for correct syntax, then use them
for plotting, calculating integrals, finding zeros of functions, fitting, or optimization.

As a simple example to introduce this technique, consider how to formulate damped simple harmonic motion, namely

5 (G) = X exp(−WC) cos(UC − V)

with

Frequency U = ?(1)
Offset V = ?(2)

Decay constant W = ?(3)
Amplitude X = ?(4), and

Independent variable C = G.

Here, for example, is the test file usermod1.tf9 to simulate damped simple harmonic motion with these definitions
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%

f(x) = p(4)*exp[­p(3)*x]*cos[p(1)*x ­ p(2)]

%

1 equation

1 variable

4 parameters

%

p(1)

x

multiply

p(2)

subtract

cosine

p(3)

x

multiply

negative

exponential

multiply

p(4)

multiply

f(1)

%

It consists of three distinct sections, separated by percentage signs as follows.

Section 1 Up to 24 lines containing any information with no formatting restrictions.

Section 2 The number of equations, variables (or else the phrase differential equation), and parameters.

Section 3 The reverse Polish commands.

In addition to browsing the library of models available using the [View] option from the main SimFIT menu,

and examining the tutorial documents on the SimFIT website, such as user_defined_models.html, there

are several additional sources of help.

• The readme files w_readme.f4, w_readme.f5, . . . w_readme.f10 also available from the [View] option

on the main SimFIT menu.

• The SimFIT reference manual w_manual.pdf available from the [Manual] option on the main SimFIT

menu.

• The help sections provided by program usermod which can be opened from the [A/Z] option on the

main SimFIT menu.

It is recommended that the first few user-defined model files, i.e. usermod1.tf1, usermod1.tf2, and

usermod1.tf3 be examined carefully as they contain appended sections containing an analysis of the way

the reverse Polish model definition scheme works.

Standard expressions

The usual mathematical notation can be used at any point in a model file provided that it is included in a
begin{expression}... end{expression} structure like the following code for defining a cubic.

begin{expression}

f(1) = p(1) + p(2)x + p(3)x^2 + p(4)x^4

end{expression}

The essential rules for using expressions are now listed.
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• Parameters must be indexed as p(i) where the index i is consistent with the header defining the number

of parameters.

• The independent variables must be consistent with these rules.

1 independent variable: G

2 independent variables: G, H

3 independent variables: G, H, I

= independent variables: H(1), H(2), . . . , H(=)

• The only other symbols that can be used are dummy variables (such as � = G2 + H2, etc. to avoid

repetition as discussed below) and those listed for for use with SimFIT reverse Polish, e.g.

cos, sin, tan, exp, log, log10, pi, sqrt, etc.

with the constants and special functions described in commands.txt and w_manual.pdf.

• Successive functions must be indexed as f(j) where the index j is consistent with the header defining

the number of equations.

• Make liberal use of the * sign for multiplication, and employ brackets {.}, [.], (.) to avoid

ambiguities, for example:

Use x*log(x) instead of xlogx

Use 1/(2pi) instead of 1/2pi

Use exp(­kt) instead of e^­kt

• It is possible to spread equations over several lines in an expression construct but blank lines should not

be used anywhere in the model defining section of a user–defined model file.

• When the expression has been evaluated the result is added to the top of the stack so it can be left there,

duplicated, stored, or used immediately to define a function value, which would pop the value off the

stack and return the function value for use by the calling procedure.

It should be pointed out that when SimFIT reads a user-defined model file it creates a temporary copy called

f$parser.tmp in your temporary file folder where equations defined in expression constructs are parsed and

written out in reverse Polish. For this reason it is important to realize the need to examine this temporary file

if the model does not compute properly, or crashes with error messages due to unrecognizable elements in

expressions which have been written unchanged into the reverse Polish code.

Here is usermod1_e.tf9 defining the previous model using a standard mathematical expression. Note the

use of _e to indicate a model using expressions. It should be noted how the command f(1) is used to define

the function.

%

f(x) = p(4)exp[­p(3)x]cos[p(1)x ­ p(2)]

%

1 equation

1 variable

4 parameters

%

begin{expression}

f(1) = p(4)exp(­p(3)x)cos(p(1)x ­ p(2))

end{expression}

%

Here is another example of the model file d01faf_e.mod that is much more succinct using the expression
technique rather than reverse Polish
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%

f(y) = {4y(1)y(3)^2[exp(2y(1)y(3))]}/{1 + y(2) + y(4)}^2

%

1 equation

4 variables

0 parameters

%

begin{expression}

f(1) = 4y(1)y(3)^2[exp(2y(1)y(3))]/[1.0 + y(2) + y(4)]^2

end{expression}

%

Here is an example with nine functions of nine variables c05nbf_e.mod which is much easier to understand
than the reverse Polish version.

%

f(1)=(3­2x(1))x(1)­2x(2)+1, ..., f9=­x(8)+(3­2x(9))x(9)+1

%

9 equations

9 variables

0 parameters

%

begin{expression}

f(1) = (3 ­ 2y(1))y(1) + 1 ­ 2y(2)

f(2) = (3 ­ 2y(2))y(2) + 1 ­ y(1) ­ 2y(3)

f(3) = (3 ­ 2y(3))y(3) + 1 ­ y(2) ­ 2y(4)

f(4) = (3 ­ 2y(4))y(4) + 1 ­ y(3) ­ 2y(5)

f(5) = (3 ­ 2y(5))y(5) + 1 ­ y(4) ­ 2y(6)

f(6) = (3 ­ 2y(6))y(6) + 1 ­ y(5) ­ 2y(7)

f(7) = (3 ­ 2y(7))y(7) + 1 ­ y(6) ­ 2y(8)

f(8) = (3 ­ 2y(8))y(8) + 1 ­ y(7) ­ 2y(9)

f(9) = (3 ­ 2y(9))y(9) + 1 ­ y(8)

end{expression}

%

Using dummy variables in standard mathematical expressions

A common feature required when creating models with long or complicated expressions is to define dummy
intermediate values to improve readability as in this example for a rational function

begin{expression}

alpha = p(1)x + p(2)x^2

beta = 1 + p(3)x + p(4)x^2

f(1) = alpha/beta

end{expression}

or, more usually, to save intermediate values for repeated re-use as in this example for optimum_e.mod.

%

Rosenbrock’s 2­dimensional function for optimisation

f(1) = 100(y ­ x^2)^2 + (1 ­ x)^2

f(2) = d(f(1))/dx = ­400x(y ­ x^2) ­ 2(1 ­ x)

f(3) = d(f(1))/dy = 200(y ­ x^2)

%

3 equations

2 variables

0 parameters

%

begin{expression}

A = y ­ x^2
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B = 1 ­ x

f(1) = 100A^2 + B^2

f(2) = ­400A ­ 2B

f(3) = 200A

end{expression}

Note the use of A and B dummy variables to avoid re-calculations. During model evaluation this method

implements the SimFIT get(.) and put(.) reverse Polish commands to archive and retrieve dummy variables.

This technique is especially useful when formulating Jacobians for systems of differential equations, as there

are frequently common expressions between the family of differential equations and their Jacobians.
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10.3.5 Simulating a user-defined model: simple examples

Simulating a data set that is exact to computer precision for a user-defined model is often the first step in

simulation, so that random error can be added retrospectively to simulate experimental results.

SimFIT can simulate a very large number of models from user-supplied model files and allows models to

include the following procedures.

1. All the standard mathematical operations such powers, logarithms, trigonometric and hyperbolic func-

tions, etc.

2. A very substantial library of special functions including erf, erfc, and Bessel functions, etc.

3. A large numberof numerical techniques such as quadrature, root finding, eigenvalues, matrix operations,

and convolution of two functions, etc.

4. Systems of differential equations with Jacobians either supplied or approximated numerically.

5. Logical tests for branching.

6. Models that include calls to sub-models.

Such models can also be used for nonlinear regression, and details will be found in the following publication

Using ASCII text files in post-fix notation (reverse Polish) to define mathematical models and systems of

differential equations for simulation and nonlinear regression.

Bardsley,W.G. & Prasad,N Computers and Chemistry (1997) 21, 71–82,

but also in the SimFIT reference manual w_manual.pdf, or in user_defined_models.html.

However, it is also possible to use standard mathematical notation in order to define a model as long as the

model is contained within a begin{expression} and a end{expression} section as will be demonstrated

for the models to be used here. For many of the demonstration model files supplied with SimFIT there are

two versions, one in reverse Polish, e.g. usermod1.tf9, and one for the same model but with subscript _e,

e.g. usermod1_e.tf9, using standard mathematical expressions.

Choosing the [A/Z] option from the SimFIT main menu is used to open the program makdat, which then

allows you to create such almost-exact data from a a user-supplied model.

Example 1. Damped simple harmonic motion

For a simple example we will investigate how to simulate damped simple harmonic motion given by

5 (G) = exp(−G/2) cos 5G.

For instance, the test file usermod1_e.tf9 has the following model for damped simple harmonic motion

5 (G) = ?4 exp(−?3G) cos(?1G − ?2)

which simply requires choosing the parameters

?1 = 5

?2 = 0

?3 = 0.5

?4 = 1.
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Model files are simple ASCII text files with a title, details of the number of equations, then the model in

reverse Polish, (i.e. last-in first-out which is how computers work and some languages like PostScript), with

standard mathematical notation included if required.

Note that the percentage sign(%) is used as a special character to denote change in content, and that there is a

SimFIT program usermod to help users develop such models.

The model file and simulated data are shown next.

%

Example: user supplied function of 1 variable ... damped SHM

Damped simple harmonic motion in the form

f(x) = p(4)*exp[­p(3)*x]*cos[p(1)*x ­ p(2)]

where p(i) >= 0

%

1 equation

1 variable

4 parameters

%

begin{expression}

f(1) = p(4)exp(­p(3)x)cos(p(1)x ­ p(2))

end{expression}

%

-1.0

-0.5

0.0

0.5

1.0

0.0 2.0 4.0 6.0 8.0

Damped Simple Harmonic Motion

x

y

y = exp(-x/2)cos(5x)

User-defined model file: USERMOD1.TF9
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Example 2: Diffusion in a long tube

This example illustrates how to use special functions such as erfc in a user-defined model.

Consider a very long tube of constant cross section filled with solvent but with a barrier separating the tube

into two sections with half the tube filled with solute at concentration�0 as illustrated next, using a coordinate

system with the barrier at position G = 0.

x = 0x < 0 x > 0

In an idealized situation where the barrier is removed instantaneously at time C = 0 with no mixing effect there

would be an initial situation as follows

� (G, C) = �0, for G < 0

� (G, C) = 1
2
�0, at G = 0

� (G, C) = 0, for G > 0.

If there is no effect operating except for simple diffusion then the concentration subsequently would obey the

diffusion equation

m�

mC
= �

m2�

mG2

with solution

� (G, C) = 1
2
�0 erfc

G

2
√
(�C)

.

and the SimFIT test file usermod1_e.tf8 shown below contains the text required to simulate this equation.

%

Example: user supplied function of 1 variable ... capillary diffusion

f(x) = p(1)*erfc[x/(2*sqrt(p(2))]

%

1 equation

1 variable

2 parameters

%

begin{expression}

f(1) = p(1)erfc(x/(2sqrt(p(2))))

end{expression}

%

With ?1 = 0.5 then ?2 =
√
(�C) varied the following graph was simulated to illustrate the result of diffusion

as a function of distance and time with ?2 = 0.01, 0.1, 1.0, 10.0, 100.0, and fixed diffusion constant � = 1.

Evidently diffusion continues until the concentration everywhere is 1
2
�0.
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Diffusion in a Tube: C = (1/2)C0erfc[x/{2√(Dt)}]
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C
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,t)

√(Dt) = 100.0
√(Dt) = 10.0
√(Dt) = 1.0
√(Dt) = 0.1
√(Dt) = 0.01

To generate this graph, program makdat was used with the range of G fixed at −6 ≤ G ≤ 6, and after each plot

the [Advanced] option was used to save each profile as an ASCII text file that was recorded in the graphics

project archive. This was then opened by program simplot to draw the composite graph above.

Theory

The SimFIT procedures for user defined models include many one-line commands to evaluate special functions,

and the case of the complementary error function used in mode file usermode1_e.tf8 is typical.

Note that the error function erf and the complementary error function erfc are defined as

erf(G) = 2
√
c

∫ G

0

exp(−C2) 3C

erf(−G) = −erf(G)

erfc(G) = 2
√
c

∫ ∞

G

exp(−C2) 3C

erf(G) + erfc(G) = 1

so that −1 ≤ erf(G) ≤ 1 and 0 ≤ erfc(G) ≤ 2. As with all special functions listed in the documents

w_manual.pdf and user­defined­models.html, these can only be evaluated using numerical techniques.
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10.3.6 Simulating a user-defined model: parametric curves

It is frequently required to plot a curve where the model has to be defined parametrically as G(C), H(C) instead

of H = 5 (G), or sometimes a parametric space curve G(C), H(C), I(C) may be required.

Example 1: The curve A = � sin(4\)

This is achieved by opening makdat then reading in the parametric model file rose_e.mod shown below to

create the plot illustrated for the parameter values ?1 = 1, and 0 ≤ \ ≤ 2c.

%

Example: Eight leaved rose

.............

r = A*sin(4*theta): where theta = x, r = f(1) and A = p(1)

.............

%

1 equation

1 variable

1 parameter

%

begin{expression}

f(1) = p(1)sin(4x)

end{expression}

%

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

r = sin(4θ): 0 ≤ θ ≤ 2π

x

y
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Example 2: The ellipse G = � cos(C), H = � sin(C).

The following model file ellipse_e.mod and graph show how a SimFIT model file can be used to define

multiple models.

%

Example: the ellipse

X = A*cos(t), Y = B*sin(t)

where: t = x, A = p(1), B = p(2)

and X(t) = f(1), Y(t) = f(2)

%

2 equations

1 variable

2 parameters

%

begin{expression}

f(1) = p(1)cos(x)

f(2) = p(2)sin(x)

end{expression}

%

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

A parametric curve x(t), y(t),

x

y
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Example 3: The helix G = � cos(C), H = � sin(C), I = �C

Model file helix_e.mod illustrates how the three coordinates for a space curve can be defined and plotted.

%

Example: the helix

X = A*cos(t), Y = B*sin(t), Z = C*t

where: t = x, A = p(1), B = p(2), C = p(3)

and X(t) = f(1), Y(t) = f(2), Z(t) = f(3)

%

3 equations

1 variable

3 parameters

%

begin{expression}

f(1) = p(1)cos(x)

f(2) = p(2)sin(x)

f(3) = p(3)x

end{expression}

%

SIMFIT 3D space plot (x,y,z)

XY

Z

1

-1

1

-1

0

10
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Example 4: Projecting space curves onto planes

Sometimes it is useful to project space curves onto planes for purposes of illustration. The next figure shows

a simulation using usermod with the model file twister.mod.

The parametric equations are

G = C cos C, H = C sin C, I = C2

and projections are created by fixing one the variables to a constant value.

Twister Curve with Projections onto Planes
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400
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300

z(t)

x(t)y(t)

Note the following about the model file twister.mod.

• There are 3 curves so there are 9 functions of 1 variable

• The value of G supplied is used as the parameter C

• Functions 5 (1), 5 (4), 5 (7) are the G(C) profiles

• Functions 5 (2), 5 (5), 5 (8) are the H(C) profiles

• Functions 5 (3), 5 (6), 5 (9) are the I(C) profiles

Also observe that the model parameters fix the values of the projection planes just outside the data range, at

?(1) = 20, ?(2) = 20.
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Example 5: Two dimensional families of curves

Users may need to plot families of curves indexed by parameters. For instance, diffusion of a substance from

an instantaneous plane source is described by the equation

5 (G) = 1

2
√
c�C

exp

(
−G2

4�C

)

which is, of course, a normal distribution with ` = 0 and f2
= 2�C, where � is the diffusion constant and

C is time, so that 2�C is the mean square distance diffused by molecules in time C. Now it is easy to plot the

concentration 5 (G) predicted by this equation as a function of distance G and time C given a diffusion constant

�, by simulating the equation using makdat saving the curves to a library file or project archive, then plotting

the collected curves. However, there is a much better way using program usermod which has the important

advantage that families of curves indexed by parameters can be plotted interactively. This is a more powerful

technique which provides numerous advantages and convenient options when simulating systems to observe

the behavior of the profiles as the indexing parameters vary.

The next figure shows the above equation plotted (in arbitrary units) using the model parameters

?8 = 2�C8 , for 8 = 1, 2, 3, 4

to display the diffusion profiles as a function of time. The plot was created using the model file family2d.mod,

which simply defines four identical equations corresponding to the diffusion equation but with four different

parameters ?8 . Program usermod was then used to read in the model, simulate it for the parameter values

indicated, then plot the curves simultaneously.
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Example 6: Three dimensional families of curves

Users may need to plot families of curves indexed by parameters in three dimensions. To show how this is

done, the diffusion equation dealt with previously in Example 5 is reformulated, using H =
√

2�C, as

I(G, H) = 1

H
√

2c
exp

{
−1

2

(
G

H

)2
}

and is plotted in the next figure for the same parameter values used before, but now as sections through the

surface of a function of two variables.

Diffusion From a Plane Source
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XY

This is, of course, a case of a family of parametric space curves projected onto the fixed values of H. Now the

model file family3d.mod was used by program usermod to create this figure, using the option to plot = sets

of parametric space curves, but you should observe a number of important facts about this model file before

attempting to plot your own families of space curves.

• There are 4 curves so there are 12 functions of 1 variable

• Functions 5 (1), 5 (4), 5 (7), 5 (10) are the parameter C, i.e. G

• Functions 5 (2), 5 (5), 5 (8), 5 (11) are the H values, i.e.
√

2�C

• Functions 5 (3), 5 (6), 5 (9), 5 (12) are the I values, i.e. the concentration profiles

Finally, it is clear that = space curves require a model file that specifies 3= equations, but you should also

realize that space curves cannot be plotted if there is insufficient variation in any of the independent variables,

e.g. if all H = :, for some fixed parameter :.
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10.3.7 Simulating a user-defined model: adding experimental error

To check the conclusions from model fitting it is advisable to simulate the model of interest, say H = 5 (G),
then study the robustness of parameter estimation and model discrimination with data simulated according to

the assumed experimental design and variance model + (H).

Example 1: Constant relative error, + (H) = (%H)2

From the main SimFIT menu choose [A/Z], open program adderr, then read in the test file mmfit.tf1. This

has exact data for the Michaelis-Menten model generated by program makdat. After choosing the defaults to

add five replicates with 7.5% constant relative error the following plot resulted.

0.0

0.2

0.4

0.6
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1.2

0.0 2.0 4.0 6.0 8.0 10.0

Using ADDERR to Simulate Constant Relative Error

X

Y

Exact Data
With Error

Constant relative error assumes that the observations$8 have experimental error which is a normal variate �8
with mean zero, and standard deviation equal to a percentage of the absolute true value )8 = H(G8), i.e.

$8 = )8 + �8
�8 ≈ # (`, f2

8 )
` = 0

f8 = %|)8 |

Although this choice attempts to represent the reality that experimental error is proportional to response, it

does tend to underestimate the error at low response so that the fitting may be dominated by small observations.
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Example 2: Constant variance, + (H) = :2

Note that program adderr can write a simulated data set to file containing the replicates along with weighting

factors appropriate for the error type assumed. Actually most curve fitting is unweighted, that is with all

weighting factors equal to one, which corresponds to assuming constant variance. The next plot illustrates

adding error of the constant variance type to the exact data.
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Using ADDERR to Simulate Constant Variance

X
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Here the observations$8 are assumed to result from adding a normal variate �8 with mean equal to zero and

constant variance to the true value )8 = H(G8), i.e.

$8 = )8 + �8
�8 ≈ # (`, f2)
` = 0

f = :, a fixed positive constant

It will be seen from this plot that assuming constant variance presumes that all data points are of equal

importance, which tends to bias towards a fit dominated by the largest observations.

In order to fit a model to data it is necessary to understand the type of weighting required, and this can

only be known by performing replicate observations in order to discover the best statistical model for the

error variance. Program adderr provides many options for simulating experimental error as will now be

summarized.
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Theory

Weighting curve fitting data

Curve fitting is undertaken when = observations H8 have been made in the belief that the true model is known to

be a function of independent variable(s) G and some unknown parametersΘ, but contaminated by experimental

or observational error n8 . The intention is to obtain meaningful estimates for the model parameters in order to

interpret the observations in the light of some basic scientific principles.

A common approach is to appeal to the principle of maximum likelihood and assume that the observations

are the sum of a deterministic model plus random error which is normally distributed with mean zero and

standard deviation f8 as in

H8 = 5 (G8 ,Θ) + n8
n8 ≈ # (0, f2

8 ) .

In this case the maximum likelihood estimate for the parameters Θ is obtained by minimizing the weighted

sum of squares,((& given by

,((& =

=∑
8=1

(
H8 − 5 (G8 ,Θ)

f8

)2

.

This poses a serious problem since the true standard deviations f8 can never be known and must be replaced

by some estimates. The aim of simulating experimental error is to examine the way that the accuracy with

which the parameters Θ can be estimated depends on the choice of approximations B8 to the f8 .

There are essentially four ways to choose B8 values.

1. Set all B8 = 1

This is reasonable if the data are very noisy, or the range of values of the observations is relatively

small.

2. Estimate B8 using replicates

This reasonable if the number of replicates is sufficiently large (say at least 5) to make a sensible estimate

for f8

3. Estimate B8 = 6(H8)
This results in weights not being constant at fixed G.

4. Estimate B8 = 6( 5̂ (G8 , Θ̂))
This results in weights not being constant at fixed G but has the added complication that the weights

change at each iteration.

Method 1 assumes constant variance and uses the value of,((&/#�$� at the solution point to estimate the

variance, where #�$� is the number of degrees of freedom, i.e. number of observations minus the number

of parameters estimated. The other methods assume that the B8 supplied are proportional to the true f8 , then

use the value of,((&/#�$� at the solution point to estimate the square of the proportionality factor. The

choice of function 6(.) is often a variant of

6(C)2
= � + �C_

where �, �, and _ are either fixed or estimated from the data, and C can be taken as equal to the replicates or

the best-fit function value.
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Simulating experimental error

The output files from program makdat contain exact data for H = 5 (G), which are then used to add random

error to simulate experimental error. To do this, the output file then becomes an input file for program adderr.

After adding random error, the input file is left unchanged and a new output file is produced as in this scheme.

Model −→ makdat −→ Exact

data
−→ adderr −→ Simulated

data

There are numerous ways to use program adderr, including generating replicates. If in doubt, pick 7.5%

constant relative error with 5 replicates, as this mimics many situations. Note: constant relative error cannot

be used where H = 0 (which invokes a default value).

The options available with program adderr are as follows.

1. Single measurements: constant relative error

2. Single measurements: fixed constant variance

3. Single measurements: mixed power law error

4. Generate replicates: constant relative error

5. Generate replicates: fixed constant variance

6. Generate replicates: mixed power law error

7. Choose from selection of error distributions

8. Just add outliers to the data set supplied

In options 3 and 6 the model for the variance of observations is the mixed power law

+ (H) = f2
0 + f2

1 H
2,

so that the error resembles constant variance white noise at low response levels with a transition to constant

relative error at high response levels. Constant variance (f1 = 0) fails to account for the way variance always

increases as the signal increases, while constant relative error (f0 = 0) exaggerates the importance of small

response values. Note that using program adderr you can also simulate the effect of outliers or use a variety

of error generating probability density functions, such as the Cauchy distribution which is a often a better

model for experimental error.

When calculating variance + (H) as a function of H it is possible to use the true H as the argument (option 1),

or to use the mean of the simulated observations (option 2) in program adderr, but there are further points to

be made.

• There are some experiments where the observations can never be negative, e.g. the size of a population

or weight of a crop yield. Program adderr draws attention to such events and gives options that always

result in positive simulated observations.

• Outliers are often encountered, that is observations that are not typical observations, and program

adderr also allows this to be simulated. However many would argue that the best way to deal with

outliers is for the experimentalists to view the scatter of observations then de-select extreme values as

required.
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11 Numerical analysis

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

11.1 Introduction

There are numerous occasions in data analysis when it is useful to be able to examine data sets using numerical

techniques in order to perform data transformations, or make calculations relevant to a particular problem.

Typical examples would be to perform a singular value decomposition on a data matrix to estimate the rank,

to locate the positive zeros of the Hessian of a binding polynomial to identify ligand concentrations separating

regions of positive and negative cooperativity, or to calculate the zeros of the derivative of a polynomial used

for data smoothing or calibration so as to locate turning points.

The following techniques are available from the numerical calculations option available from the SimFIT

program simstat.

Item Action

Polynomial Calculate zeros

Matrix Determinant/eigenvalues/inverse

Matrix Singular value decomposition

Matrix Pseudo inverse and rank

Matrix !* factorization/norms/condition number

Matrix &' factorization

Matrix Cholesky factorization of a positive definite matrix

Solve �G = 1 (� nonsingular)

Solve �G = 1 (!1 norm over-determined)

Solve �G = 1 (!2 norm over-determined)

Solve �G = 1 (!∞ norm over-determined)

Calculate H) �H, H) �−1H

Calculate ��, �) �, ��) , �) �)

Calculate �G = _�G (� positive definite)

Rotation Orthomax

Rotation Procrustes

In order to use one of these techniques the following procedure is recommended.

1. Open the [Statistics] option from the main SimFIT menu, or alternatively use the [A/Z] option and open

program simstat

2. Select the [Numerical analysis] option

3. Choose the procedure required

4. Study the default test file(s) provided to appreciate the data format required

5. Perform the calculations and view the results

6. Now try with your own data

Note that many SimFIT test files have further information following on from the data section to help you

understand the nature of the data set required, or to add information to assist in the interpretation of results.
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11.2 Zeros of a polynomial

A polynomial 5 (G) of degree = − 1 has = coefficients, either ?8 defined in ascending order of powers of G, or

� 9 defined in descending order of powers of G. It also has = − 1 zeros, i.e. roots U8 satisfying 5 (U8) = 0, so

it can be expressed in terms of monomials G: for : = 1, 2, . . . , = − 1, or factored into linear terms G − U8 as

follows

5 (G) = ?0 + ?1G + ?2G
2 + · · · + ?=−1G

=−1

= �1G
=−1 + �2G

=−2 + �3G
=−3 + · · · + �=

= ?=−1 (G − U1) (G − U2) . . . (G − U=−1) .

Numerical estimation of the zeros U8 given the coefficients can be done interactively by choosing [Statistics]

from the main SimFIT menu, then [Numerical analysis] followed by selecting the options to estimate the zeros

of a polynomial.

The default parameters are �8 = 8 for 8 = 1, 2, . . . 5 leading to the following results.

Zeros of 5 (G) = �1G
=−1 + �2G

=−2 + · · · + �5

Coefficients Real Part Imaginary Part

�1 = 1.0 -1.49179800

�2 = 2.0 -0.80578647 -1.2229047

�3 = 3.0 -0.80578647 1.2229047

�4 = 4.0 0.55168546 -1.2533489

�5 = 5.0 0.55168546 1.2533489

�6 = 6.0

One of the problems in estimating the roots of polynomials is when either the real or the imaginary parts are

close to zero. For instance with the difficult case

5 (G) = (G − 1)2(G2 + 1)
= G4 − 2G3 + 2G2 − 2G + 1

= (G − 1) (G − 1) (G + 8) (G − 8)

leading to the following results.

Zeros of 5 (G) = �1G
=−1 + �2G

=−2 + · · · + �5

Coefficients Real Part Imaginary Part

�1 = 1.0 1.0

�2 = -2.0 -1.0

�3 = 2.0 1.0

�4 = -2.0 1.0

�5 = 1.0

This example illustrates how the output from the SimFIT routine suppresses values for very small real

or imaginary components to emphasize cases with pure real roots and pure nonreal roots. However, for

completeness, full details of the estimated values for all real and imaginary parts are written to the results file.
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11.3 Determinant, inverse, eigenvalues, and eigenvectors of a matrix

It is often useful to examine the determinant, inverse, eigenvalues, and eigenvectors of a nonsingular square

matrix. To do this from the main SimFIT menu choose [Statistics] then [Numerical analysis] and select the

option to calculate the determinant, etc.

The default test file matrix.tf1 contains an arbitrary 5 by 5 matrix � as follows.

Matrix �

1.20 4.50 6.10 7.20 8.00

3.00 5.60 3.70 9.10 12.5

17.1 23.4 5.50 9.20 3.30

7.15 5.87 9.94 8.82 10.8

12.4 4.30 7.70 8.95 1.60

Analysis of matrix � then yielded the following results for the determinant and inverse.

The estimated determinant = 4.4833699E+04

The estimated inverse matrix �−1

-2.4109851E-01 6.2912193E-02 4.4392110E-04 1.0122985E-01 2.9773962E-02

8.5852748E-02 -4.4069117E-02 5.2547695E-02 -1.9963429E-02 -5.8600243E-02

1.1817858E-01 -1.7354437E-01 -5.5370008E-03 1.1957082E-01 -3.0760472E-02

2.2291097E-01 6.7828265E-02 -1.9731089E-02 -2.5804239E-01 1.3801828E-01

-1.7785844E-01 8.6634195E-02 -7.6447234E-03 1.3711034E-01 -7.2265052E-02

The eigenvalues and eigenvectors of matrix � were also estimated as shown next.

Eigenvalues Real Part Imaginary Part

3.8861300E+01 0.0000000E+00

-8.3436467E+00 0.0000000E+00

-2.7508195E+00 7.2563904E+00

-2.7508195E+00 -7.2563904E+00

-2.2960146E+00 0.0000000E+00

Eigenvector columns (real parts only)

-3.1942365E-01 -3.4409440E-01 -1.3613072E-01 -1.3613072E-01 -3.5397608E-01

-3.7703253E-01 -7.1957517E-02 -5.0496235E-02 -5.0496235E-02 6.2281655E-02

-6.0200219E-01 7.8212108E-01 8.0288388E-01 8.0288388E-01 -1.3074000E-01

-4.8975712E-01 -4.4618971E-01 -2.6270288E-01 -2.6270288E-01 7.8507480E-01

-3.9184988E-01 2.5616894E-01 -2.1155646E-01 -2.1155646E-01 -4.8722330E-01

Eigenvector columns (imaginary parts only)

0.0000000E+00 0.0000000E+00 -7.5604855E-02 7.5604855E-02 0.0000000E+00

0.0000000E+00 0.0000000E+00 3.9888409E-01 -3.9888409E-01 0.0000000E+00

0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00 0.0000000E+00

0.0000000E+00 0.0000000E+00 -1.9106206E-01 1.9106206E-01 0.0000000E+00

0.0000000E+00 0.0000000E+00 -1.3855601E-01 1.3855601E-01 0.0000000E+00

Error messages are output if the matrix supplied for analysis is not square or appears to be singular.
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11.4 Singular value decomposition of a matrix (SVD)

The singular value decomposition of a matrix (SVD) is one of the most useful techniques employed in the

statistical analysis of data matrices, and should always be used to calculate the rank when data sets appear

difficult to analyze unambiguously due to singularity.

A < by = matrix � can always be factored as

� = *Σ+) ,

where * and + are orthogonal, and Σ = diag(f1, . . . , fA ), A = min(<, =), with f1 ≥ · · · ≥ fA ≥ 0. The f8
are the singular values, the first A columns of + are the right singular vectors, and the first A columns of* are

the left singular vectors.

Example 1: m > n

From the main SimFIT menu choose [Statistics], [Numerical analysis], then the singular value decomposition

and analyze data contained in the default test file f08kff.tf1 to obtain the following results for a case with

< > =.

Current matrix: SVD data for f08kff.tf1 with rank = 4

-5.7000000E-01 -1.2800000E+00 -3.9000000E-01 2.5000000E-01

-1.9300000E+00 1.0800000E+00 -3.1000000E-01 -2.1400000E+00

2.3000000E+00 2.4000000E-01 4.0000000E-01 -3.5000000E-01

-1.9300000E+00 6.4000000E-01 -6.6000000E-01 8.0000000E-02

1.5000000E-01 3.0000000E-01 1.5000000E-01 -2.1300000E+00

-2.0000000E-02 1.0300000E+00 -1.4300000E+00 5.0000000E-01

Index f8 Fraction Cumulative f2
8 Fraction Cumulative

1 3.9987197E+00 0.4000 0.4000 1.59898E+01 0.5334 0.5334

2 3.0005164E+00 0.3002 0.7002 9.00310E+00 0.3003 0.8337

3 1.9967125E+00 0.1998 0.9000 3.98686E+00 0.1330 0.9666

4 9.9994082E-01 0.1000 1.0000 9.99882E-01 0.0334 1.0000

Right singular vectors by row (V-transpose)

8.2514556E-01 -2.7935888E-01 2.0479917E-01 4.4626307E-01

-4.5304486E-01 -2.1212912E-01 -2.6220881E-01 8.2522611E-01

-2.8285271E-01 -7.9609569E-01 4.9515860E-01 -2.0259308E-01

1.8406389E-01 -4.9314451E-01 -8.0257199E-01 -2.8072616E-01

Left singular vectors by column (U)

-2.0271367E-02 2.7939484E-01 4.6900514E-01 7.6917561E-01

-7.2841546E-01 -3.4641438E-01 -1.6941649E-02 -3.8290338E-02

4.3926966E-01 -4.9545699E-01 -2.8679802E-01 8.2222482E-02

-4.6784650E-01 3.2584052E-01 -1.5355623E-01 -1.6362605E-01

-2.2003450E-01 -6.4277549E-01 1.1245506E-01 3.5724829E-01

-9.3523390E-02 1.9268002E-01 -8.1318411E-01 4.9572409E-01
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Example 2: m < n

The test file f08kff.tf2 has < < = and yields the following results.

Current matrix: SVD data for f08kff.tf2 with rank = 4

-5.4200000E+00 3.2800000E+00 -3.6800000E+00 2.7000000E-01 2.0600000E+00 4.6000000E-01

-1.6500000E+00 -3.4000000E+00 -3.2000000E+00 -1.0300000E+00 -4.0600000E+00 -1.0000000E-02

-3.7000000E-01 2.3500000E+00 1.9000000E+00 4.3100000E+00 -1.7600000E+00 1.1300000E+00

-3.1500000E+00 -1.1000000E-01 1.9900000E+00 -2.7000000E+00 2.6000000E-01 4.5000000E+00

Index f8 Fraction Cumulative f2
8 Fraction Cumulative

1 7.9987291E+00 0.3077 0.3077 6.39797E+01 0.3677 0.3677

2 7.0059360E+00 0.2695 0.5771 4.90831E+01 0.2821 0.6498

3 5.9952457E+00 0.2306 0.8077 3.59430E+01 0.2066 0.8564

4 4.9988922E+00 0.1923 1.0000 2.49889E+01 0.1436 1.0000

Right singular vectors by row (V-transpose)

-7.9334138E-01 3.1632760E-01 -3.3417094E-01 -1.5140353E-01 2.1421955E-01 3.0010505E-01

1.0023978E-01 6.4422154E-01 4.3706509E-01 4.8903426E-01 3.7714369E-01 5.0128185E-02

1.1079521E-02 1.7244335E-01 -6.3666698E-01 4.3538482E-01 -4.3019579E-02 -6.1105243E-01

2.3606094E-01 2.1558447E-02 -1.0247828E-01 -5.2856734E-01 7.4604456E-01 -3.1199799E-01

Left singular vectors by column (U)

8.8835057E-01 1.2751497E-01 4.3306768E-01 8.3818775E-02

7.3269096E-02 -8.2640879E-01 1.9433222E-01 -5.2336903E-01

-3.6065168E-02 5.4351983E-01 7.5594729E-02 -8.3520712E-01

4.5184534E-01 -7.3311896E-02 -8.7691095E-01 -1.4658902E-01

Fractions and Cumulatives

For an explanation of the tables of fractions and cumulatives displayed and plotted by SimFIT the following

expanded expression for the singular value decomposition of a < by = matrix � with < > = should be noted

� = f1D1E
)
1 + f2D2E

)
2 + · · · + f=D=E)= ,

where D8 are the columns of *, E8 are the columns of + and = is the rank of �. If a < by = matrix � of

rank : < = is required which best approximates � in the least squares sense we need to minimize the sum of

squares ( = (� − �) (� − �)) , i.e.

( =

<∑
8=1

=∑
9=1

(08 9 − 18 9 )2,

and this is satisfied by

� = f1D1E
)
1 + f2D2E

)
2 + · · · + f:D:E): .

It follows from this result that, if � is a mean-centered< by =matrix of rank =with< > =, then the expression

5: =
f2

1
+ · · · + f2

:

f2
1
+ · · · + f2

=

is the fraction of the total variance of � accounted for by approximating � by a matrix � of rank : formed by

evaluating the usual expression for the SVD for matrix � but with all f8 = 0 for 8 > :.
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11.5 Pseudo-inverse (or generalized inverse) of a matrix

The pseudo-inverse (or generalized inverse) of a matrix satisfies many of the properties of the usual inverse

in situations when the matrix itself is not square and of full rank. It is encountered in the solution of many

rank-deficient data analysis situations, and is best calculated using the singular value decomposition (SVD).

From the main SimFIT menu choose [Statistics], then [Numerical analysis], and select the pseudo-inverse

option which provides the default test file f01blf.tf1 containing the following matrix.

7 -2 4 9 1.8

3 8 -4 6 1.3

9 6 1 5 2.1

-8 7 5 2 0.6

4 -1 2 8 1.3

1 6 3 -5 0.5

Using the tolerance factor set at)$! = 1.0�−7, the rank of this matrix was estimated to be 4 and the following

matrix was calculated as the pseudo-inverse.

1.7807132E-02 -1.1826257E-02 4.7156796E-02 -5.6636340E-02 -3.6741218E-03 3.8408070E-02

-2.1564769E-02 4.3417257E-02 2.9445712E-02 2.9132145E-02 -1.3781035E-02 3.4256117E-02

5.2028568E-02 -8.1265321E-02 1.3926152E-02 4.7441829E-02 1.6646584E-02 5.7593532E-02

2.3686052E-02 3.5716849E-02 -1.3808338E-02 3.0477616E-02 3.5665495E-02 -5.7134309E-02

7.1956983E-03 -1.3957472E-03 7.6720321E-03 5.0415250E-03 3.4856923E-03 7.3123409E-03

The estimation of rank is based on the )$! value. The singular values are calculated in descending order and

when a value, say the k’th, becomes less than or equal to )$! multiplied by the first (i.e. largest) singular

value, than all subsequent singular values are set to zero and the rank is recorded as : − 1.

Given the singular value decomposition of a < by = matrix � of rank A

� = *Σ+)

where < ≥ = ≥ A the pseudo-inverse is the = by < matrix �+ satisfying these properties.

1. ��+� = �

2. �+��+ = �+

3. (�+�)) = �+�

4. (��+)) = ��+

5. �+
= +Λ*)

If the singular values are f1 ≥ . . . ≥ fA > 0 and f8 = 0 for 8 > A, then Λ is found to be

Λ =

©­­­­­­­­­
«

1/f1 0 0 . . . . . . . . . 0

0 1/f2 0 . . . . . . . . . 0
...

...
...

...
...

...
...

. . . . . . . . . . . . 1/fA . . . 0
...

...
...

...
...

...
...

0 0 0 . . . . . . . . . 0

ª®®®®®®®®®¬

.
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11.6 LU factorization, norms, and condition numbers of a matrix

The !* factorization of a matrix, the matrix norms, and condition numbers of a matrix are of considerable

value in solving non-singular linear systems.

From the main SimFIT menu choose [Statistics], then [Numerical analysis], and select the option to calculate

the !* decomposition of a matrix, noting that the following arbitrary 5 by 5 matrix � is contained in the

default test file matrix.tf1.

Matrix �

1.20 4.50 6.10 7.20 8.00

3.00 5.60 3.70 9.10 12.5

17.1 23.4 5.50 9.20 3.30

7.15 5.87 9.94 8.82 10.8

12.4 4.30 7.70 8.95 1.60

Proceeding to the analysis of this matrix yields the following results.

!* factorization of matrix �

Matrix 1-norm = 43.67, Condition number = 3.6940420E+01

Matrix ∞-norm = 58.50, Condition number = 2.6184088E+01

Lower triangular/trapezoidal ! where � = %!*

1

7.2514620E-01 1

7.0175439E-02 -2.2559202E-01 1

1.7543860E-01 -1.1798920E-01 4.8433085E-01 1

4.1812865E-01 3.0897383E-01 9.9116389E-01 -6.3185748E-01 1

Upper triangular/trapezoidal* where � = %!*

1.7100000E+01 2.3400000E+01 5.5000000E+00 9.2000000E+00 3.3000000E+00

-1.2668421E+01 3.7116959E+00 2.2786550E+00 -7.9298246E-01

6.5513641E+00 7.0684324E+00 7.5895305E+00

4.3313617E+00 8.1516455E+00

7.2933958E+00

This calculation produces the ! and * factors after the standard pivoting operations, familiar in Gaussian

elimination, so that the matrix equation is not simply � = !* but

� = %!*

where % is a permutation matrix. To appreciate this fact, note that multiplying ! and* together does not give

matrix � directly, but yields the following matrix instead with rows of � permuted.

Matrix !*

17.1 23.4 5.50 9.20 3.30

12.4 4.30 7.70 8.95 1.60

1.20 4.50 6.10 7.20 8.00

3.00 5.60 3.70 9.10 12.5

7.15 5.87 9.94 8.82 10.8

So it is convenient to consider the sequence of pivots applied to matrix � which are contained in the vector

�%�+ = (3, 5, 3, 5, 5) .

This is the sequence of row exchanges applied to matrix � in order to rearrange it as the calculation proceeds.

That is, row 8 of a < by = matrix is interchanged with row �%�+ (8) for 8 = 1, 2, . . . ,min(<, =). Clearly matrix

� was transformed into !* by these pivots, which can therefore be used to calculate the permutation matrix

% needed to represent � directly in terms of ! and* if required.
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As the !* representation is of interest in the solution of linear equations, this procedure also calculates the

matrix norms and condition numbers needed to assess the sensitivity of the solutions to perturbations when

the matrix is square. Given a vector norm ‖.‖, a matrix �, and the set of vectors G where ‖G‖ = 1, the matrix

norm subordinate to the vector norm is

‖�‖ = max
‖G ‖=1

‖�G‖.

For a < by = matrix �, the three most important norms are

‖�‖1 = max
1≤ 9≤=

(
<∑
8=1

|08 9 |)

‖�‖2 = (_max |�) �|)
1
2

‖�‖∞ = max
1≤8≤<

(
=∑
9=1

|08 9 |),

so that the 1-norm is the maximum absolute column sum, the 2-norm is the square root of the largest eigenvalue

of �) �, and the infinity norm is the maximum absolute row sum. The condition numbers estimated are

^1 (�) = ‖�‖1‖�−1‖1

^∞ (�) = ‖�‖∞‖�−1‖∞
= ^1 (�) )

which satisfy ^1 ≥ 1, and ^∞ ≥ 1 and they are included in the tabulated output unless � is in singular, when

they are infinite. For a perturbation X1 to the right hand side of a linear system with < = = we have

�G = 1

�(G + XG) = 1 + X1
‖XG‖
‖G‖ ≤ ^(�) ‖X1‖‖1‖ ,

while a perturbation X� to the matrix � leads to

(� + X�) (G + XG) = 1
‖XG‖

‖G + XG‖ ≤ ^(�) ‖X�‖‖�‖ ,

and, for complete generality,

(� + X�) (G + XG) = 1 + X1
‖XG‖
‖G‖ ≤ ^(�)

1 − ^(�) ‖X�‖/‖�‖

(
‖X�‖
‖�‖ + ‖X1‖

‖1‖

)

provided ^(�) ‖X�‖/‖�‖ < 1. These inequalities estimate bounds for the relative error in computed solutions

of linear equations, so that a small condition number indicates a well-conditioned problem, a large condition

number indicates an ill-conditioned problem, while an infinite condition number indicates a singular matrix

and no solution. To a rough approximation; if the condition number is 10: and computation involves =-digit

precision, then the computed solution will have about (= − :)-digit precision.
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11.7 QR factorization of a matrix

The &' factorization of a matrix is a widely used technique in data analysis, for instance when solving linear

least squares problems.

From the main SimFIT menu choose [Statistics], then [Numerical analysis], and select the option to calculate

the &' decomposition of a matrix, noting that the following arbitrary 7 by 5 matrix � is contained in the

default test file matrix.tf2.

Matrix �

1.20 3.60 1.90 8.50 3.20

4.70 8.85 9.91 2.50 8.06

6.34 8.12 5.56 3.45 7.76

3.65 7.78 3.48 1.15 6.67

3.32 8.83 4.46 7.82 4.49

3.61 7.82 1.08 5.22 6.38

6.12 5.51 8.03 5.61 4.43

Proceeding to the analysis of this matrix yields the following results.

&' factorization of matrix �

The orthogonal matrix &1

-1.0194525E-01 -2.5040780E-01 7.4979981E-02 7.3028426E-01 5.5733913E-01

-3.9928558E-01 -2.1648714E-01 7.2954175E-01 -2.9595704E-01 2.7393825E-01

-5.3861076E-01 2.6379623E-01 -3.2944854E-01 -1.4891526E-01 1.8269264E-01

-3.1008348E-01 -3.0017948E-01 -1.5219943E-01 -4.2044142E-01 6.5037721E-02

-2.8204853E-01 -5.2829344E-01 7.5783253E-02 2.7828157E-01 -6.9912752E-01

-3.0668530E-01 -3.1512480E-01 -5.5196151E-01 3.2818257E-02 1.4906187E-01

-5.1992079E-01 5.9357854E-01 1.4156702E-01 3.1879447E-01 -2.5637022E-01

The lower triangular/trapezoidal matrix '

-1.1771024E+01 -1.8440180E+01 -1.3988503E+01 -1.0802824E+01 -1.5318642E+01

-6.8692395E+00 -1.2916776E-01 -4.5510241E+00 -4.2543105E+00

5.8894908E+00 -3.4486568E-01 -5.7542482E-03

8.6061685E+00 -1.1373065E+00

2.5191361E+00

Note that the factorizing of a < by = matrix depends upon < and = as in

� = &' when < = =

= &1&2

(
'

0

)
when < > =

= &('1'2) when < < =,

where & is a < by < orthogonal matrix and ' is either upper triangular or upper trapezoidal.

When < ≥ = then � = &1' and ' is upper triangular.

When < < = then '1 is upper triangular and '2 is rectangular.

You can display or write to file the matrices &, &1, ', or '1.
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11.8 Cholesky factorization of a matrix

The Cholesky factorization of a positive definite symmetric matrix is widely used in data analysis for evaluation

of quadratic forms and other calculations involving covariance matrices.

From the main SimFIT menu choose [Statistics] followed by [Numerical analysis], and then open the Cholesky

factorization procedure. The default test file is matrix.tf3 and analysis yields the following results.

The current matrix �

4.16 -3.12 0.561 -0.10

-3.12 5.03 -0.83 1.09

0.56 -0.83 0.76 0.34

-0.10 1.09 0.34 1.180

Lower triangular ! where � = !!)

2.0396078E+00

-1.5297059E+00 1.6401219E+00

2.7456259E-01 -2.4998141E-01 7.8874881E-01

-4.9029034E-02 6.1885642E-01 6.4426613E-01 6.1606334E-01

Upper triangular* where � = *)*

2.0396078E+00 -1.5297059E+00 2.7456259E-01 -4.9029034E-02

1.6401219E+00 -2.4998141E-01 6.1885642E-01

7.8874881E-01 6.4426613E-01

6.1606334E-01

Note that an error message will be issued if the matrix supplied is not square, or positive definite to within a

tolerance factor.

Also note that there are two conventions used to define the Cholesky factors for a matrix �, i.e.

� = !!)

= *)*.

You can display or write to file the matrices �, !, or*.

———————————————————————
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11.9 Matrix multiplication

Given two matrices � and �, it is frequently necessary to form the product, or the product of the transposes,
as an < by = matrix �, where < ≥ 1 and = ≥ 1. The options are

� = ��, where � is < × :, and � is : × =,
� = �) �, where � is : × <, and � is : × =,
� = ��) , where � is < × :, and � is = × :,
� = �) �) , where � is : × <, and � is = × :,

as long as : ≥ 1 and the dimensions of � and � are appropriate to form the product, as indicated.

From the main SimFIT menu choose [Statistics] followed by [Numerical analysis], and then open the Cholesky
factorization procedure and save the lower triangular matrix ! to a file. Then use the matrix multiplication
procedure from the SimFIT numerical analysis options to form the product !!) as shown below.

The current matrix �

4.16 -3.12 0.561 -0.10

-3.12 5.03 -0.83 1.09

0.56 -0.83 0.76 0.34

-0.10 1.09 0.34 1.180

Estimated lower triangular !̂ where � = !!)

2.0396078E+00

-1.5297059E+00 1.6401219E+00

2.7456259E-01 -2.4998141E-01 7.8874881E-01

-4.9029034E-02 6.1885642E-01 6.4426613E-01 6.1606334E-01

Estimated product �̂ = !̂ !̂)

4.1600000E+00 -3.1200001E+00 5.6000000E-01 -1.0000000E-01

-3.1200001E+00 5.0300000E+00 -8.3000000E-01 1.0900000E+00

5.6000000E-01 -8.3000000E-01 7.6000001E-01 3.4000000E-01

-1.0000000E-01 1.0900000E+00 3.4000000E-01 1.1800000E+00

Another example using the singular value decomposition routine, followed by multiplying the calculated *,
Σ, and +) matrices for the simple 4 by 3 matrix indicated shows that, while for exact factors

©­­­«

1 0 0

0 1 0

0 0 1

1 0 1

ª®®®
¬
=

©­­­«
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−1/
√
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√
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−2/
√

6 0 0

ª®®®
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«
√

3 0 0

0 1 0

0 0 1

ª®¬
©­
«
−1/

√
2 0 −1/

√
2

0 1 0

1/
√

2 0 −1/
√

2

ª®¬
,

singular value decomposition to yield the calculated factors *̂, Σ̂ and +̂) followed by matrix multiplication
leads to the following matrix.

The product matrix �̂ = *̂Σ̂+̂)

1.0000000E+00 -1.5700925E-16 1.2789252E-08

0.0000000E+00 1.0000000E+00 0.0000000E+00

1.2789252E-08 2.2204460E-16 1.0000000E+00

1.0000000E+00 1.5700925E-16 1.0000000E+00

Numbers colored red in the above results tables can be regarded as correct since any digits less than 10−7 are
due to rounding error and can be taken as zero compared to 1.
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11.10 Evaluation of quadratic forms

Quadratic forms often need to be evaluated in data analysis given a = by 1 vector G and a = by = matrix �.
Frequently the inverse �−1 is required and it is convenient to be able to estimate this interactively.

For instance, in nonlinear optimization or multivariate statistics the following expressions for &1 and/or &2

are frequently required

&1 = G) �G

&2 = G) �−1G.

To evaluate such quadratic forms interactively, open [Statistics] then [Numerical analysis] from the main
SimFIT menu and select the option to evaluate quadratic forms which provides the default test files matrix.tf3
defining matrix � and vector.tf3 defining G as follows

� =

©­­­
«

4.16 −3.12 0.56 −0.10

−3.12 5.03 −0.83 1.09

0.56 −0.83 0.76 0.34

−0.10 1.09 0.34 1.18

ª®®®
¬

G =

©­­­
«

1

2

3

4.

ª®®®¬
The following table illustrates the output from running the SimFIT procedure with these default test files.

Title of matrix �

Test file matrix.tf3: 4 by 4 positive-definite symmetric matrix

Title of vector G

Test file vector.tf3: vector with components 1, 2, 3, 4

G) �G = 55.72

G) �−1G = 20.635258

Using the SimFIT procedure to evaluate quadratic forms allows the matrix � and vector G to be changed but
two facts must be clear.

1. The dimensions of � and G must be consistent, i.e. identical.

2. Calculation of &2 requires that � is nonsingular.

Of course, in many applications, as when estimating a Mahalanobis distance in multivariate statistics, it is
also vital that the matrix � to be used is a symmetric positive definite matrix (e.g. a covariance matrix) and
the vector G has a defined meaning (e.g. a difference vector) if the scalar results from such quadratic forms are
to be interpreted correctly.
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11.11 Solving exact linear equations Ax = b

Linear equations of the form �G = 1 can be solved uniquely only if the matrix is square and nonsingular.

Under such circumstances SimFIT provides a procedure to solve the following system

�G = 1

G = �−11

to high accuracy, i.e. given a = by = full rank matrix � and a = by 1 vector 1, to calculate an = by 1 vector G
satisfying the above equations.

From the main SimFIT menu choose [Statistics] then [Numerical analysis] and open the procedure to solve
a full rank linear system. The default test files provided to demonstrate the procedure are matrix.tf1 and
vector.tf1 containing the following data.

� =

©­­­­­«

1.20 4.50 6.10 7.20 8.00

3.00 5.60 3.70 9.10 12.5

17.1 23.4 5.50 9.20 3.30

7.15 5.87 9.94 8.82 10.8

12.4 4.30 7.70 8.95 1.60

ª®®®®®
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1 =
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3

4
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The following table will be output giving the results.

Solution to �G = 1 where the square matrix � is:

Test file matrix.tf1: arbitrary 5 by 5 matrix

and the vector 1 is:

Test file vector.tf1: Vector with components 1, 2, 3, 4, 5

RHS vector 1 Solution G

1.0000000E+00 4.3984686E-01

2.0000000E+00 -2.1749733E-01

3.0000000E+00 7.8959766E-02

4.0000000E+00 -4.2703888E-02

5.0000000E+00 1.5959190E-01

The data set consisting of � and 1 can be varied interactively but error messages will be output under the
following conditions.

1. � and 1 have inconsistent dimensions

2. � is singular

3. The !* factorization failed

4. The system is very ill-conditioned

Under these circumstances a meaningful unique solution cannot be obtained although various other approaches
using the pseudo inverse or other techniques may be used to obtain more insight.
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11.12 Solving overdetermined linear equations Ax = b

Overdetermined linear equations of the form �G = 1, where the number of rows of matrix � exceeds the
number of columns, can often be solved by optimization techniques, although solutions may not be unique.

Such a linear system consisting of a < by = matrix � where < > =, and a < by 1 vector 1 as in �G = 1 cannot
be solved uniquely, but often solutions can be found by minimizing some !? norm of the residuals A8 such as

!? =

(
<∑
8=1

|A8 |?
)1/?

where typically ? can be 1, 2, or ∞. In some cases starting estimates will be required.

From the main SimFIT menu choose [Statistics] then [Numerical analysis] and run the three options for ?
using the default test files matrix.tf2 defining the 7 by 5 matrix � and vector.tf2 containing the 7 by 1
vector 1) = (1, 2, 3, 4, 5, 6, 7) as follows.

� =

©­­­­­­­­­
«

1.20 3.60 1.90 8.50 3.20

4.70 8.85 9.91 2.50 8.06

6.34 8.12 5.56 3.45 7.76

3.65 7.78 3.48 1.15 6.67

3.32 8.83 4.46 7.82 4.49

3.61 7.82 1.08 5.22 6.38

6.12 5.51 8.03 5.61 4.43

ª®®®®®®®®®
¬

!1 norm solution to �G = 1

1.9514418E+00

4.2111129E-01

-5.6336298E-01

4.3037848E-02

-6.7286341E-01

objective function = 4.9251750E+00

!2 norm solution to �G = 1

1.2955430E+00

7.7602676E-01

-3.3656942E-01

8.2383926E-02

-9.8542254E-01

The rank of � (from (+�) = 5

objective function = 1.0961673E+01

!∞ norm solution to �G = 1

1.0529866E+00

7.4896175E-01

-2.7683128E-01

2.6138630E-01

-9.7904715E-01

objective function = 1.5226995E+00
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11.13 Solving symmetric eigenvalue problems

Symmetric eigenvalue problems of the form �G = _�G can be solved uniquely if � and � are symmetric and
� is positive definite, as long as appropriate scaling conventions are understood.

From the SimFIT main menu choose [Statistics] then [Numerical analysis] and open the procedure to solve
symmetric eigenvalue problems. From this control you are given the options to solve any of the following
three problems.

�G = _�G

��G = _G

��G = _G

The SimFIT default test files are matrix.tf4 containing matrix �, and matrix.tf3 containing matrix � as
now displayed.

Matrix A

0.24 0.39 0.42 -0.16

0.39 -0.11 0.79 0.63

0.42 0.79 -0.25 0.48

-0.16 0.63 0.48 -0.03

Matrix B

4.16 -3.12 0.56 -0.10

-3.12 5.03 -0.83 1.09

0.56 -0.83 0.76 0.34

-0.10 1.09 0.34 1.18

The results from analyzing the standard problem �G = _�G are then as follows.

Eigenvalues...Case: �G = _�G

-2.2254476E+00

-4.5475588E-01

1.0007648E-01

1.1270387E+00

Eigenvectors by column ...Case: �G = _�G

-6.9005765E-02 3.0795498E-01 -4.4694499E-01 -5.5278790E-01

-5.7401486E-01 5.3285741E-01 -3.7084023E-02 -6.7660179E-01

-1.5427579E+00 -3.4964452E-01 5.0476980E-02 -9.2759211E-01

1.4004070E+00 -6.2110938E-01 4.7425180E-01 2.5095480E-01

It should be noted that the eigenvectors are the columns of a matrix - that is normalized so that

-) �- = � , for �G = _�G, and ��G = _G,

-) �−1- = � , for ��G = _G.

where � is the identity matrix.

Warnings will be issued if there is a clash of dimensions, or � and � are not symmetric, or � is not positive
definite.
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11.14 Trapezoidal estimate of area under a curve

Trapezoidal estimates for the area under a curve (AUC) or average function value for a set of data points over
a range can be used when the data are noisy, or the spacing is too sparse or irregular to fit a deterministic
equation or to use data smoothing techniques.

From the SimFIT main menu select [A/Z], open program averageand inspect the default test file average.tf1
which contains this data set.

G H

1 1

2 2

3 3

4 4

5 5

6 5

7 4

8 3

9 4

10 5

11 8

12 10

13 5

14 9

15 4

Note that program average creates a continuous model for the data by joining adjacent points by straight line
segments then using the intersection of this model with the .2A8C threshold to determine the range of - values
where the function lies above or below this threshold.

So, proceeding to analyze these data leads to the following results for the default state and the changes resulting
from altering the . threshold from .C4BC = 1 to .C4BC = 3.5.

-<8= -<0G .<8= .<0G
1 15 1 10

�468= = G1 �=3 = G2 Above ( as %) Below (as %) .C4BC .0A40 .<40=
1 15 14 100 0 0 1.0 69.5 4.96

1 15 10.5 75 3.5 25 3.5 69.5 4.96

The results displayed in this table have the following interpretations.

1. The minimum and maximum data values -<8=, -<0G , .<8= , .<0G .

2. The range G1, G2 of G selected where -<8= ≤ G1 ≤ G ≤ G2 ≤ -<0G .

3. The trapezoidal area estimate .0A40 over the range G1, G2.

4. The average function value .<40= = .0A40/(G2 − G1) over the range G1, G2.

5. The critical threshold H value .C4BC where .<8= ≤ .C4BC ≤ .<0G .

6. The percentage of the range G1, G2 where the piecewise linear model lies above the critical threshold.

7. The percentage of the range G1, G2 where the piecewise linear model lies below the critical threshold.

To understand the effect of changing.C4BC as are emphasized in red in the above table, consider the next graph.
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Further details are now provided to compare and contrast the use of program average with some alternative
SimFIT programs.

Estimating AUC using deterministic equations

Observations H8 are often made at settings of a variable G8 as for a regression, but where the main aim is to
determine the area under a best fit theoretical curve �*� rather than any best fit parameters. Frequently also
H8 > 0, which is the case we now consider, so that there can be no ambiguity concerning the definition of the
area under the curve. One example would be to determine the average value 5average of a function 5 (G) for
U ≤ G ≤ V defined as

5average =
1

V − U

∫ V

U

5 (D) 3D.

Another example is motivated by the practise of fitting an exponential curve in order to determine an elimination
constant : by extrapolation, since ∫ ∞

0

exp(−:C) 3C = 1

:
.

Yet again, given any arbitrary function 6(G), where 6(G) ≥ 0 for U ≤ G ≤ V, a probability density function 5)
can always be constructed for a random variable ) using

5) (C) =
6(C)∫ V

U

6(D) 3D

which can then be used to model residence times, etc.
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If the data do have a known form, then fitting an appropriate equation is probably the best way to estimate
slopes and areas.

For instance, in pharmacokinetics you can use program exfit to fit sums of exponentials and also estimate
areas over the data range and AUC by extrapolation from zero to infinity since

∫ ∞

0

=∑
8=1

�8 exp(−:8C) 3C =
=∑
8=1

�8

:8

which is calculated as a derived parameter with associated standard error and confidence limits. Other
deterministic equations can be fitted using program qnfit since, after this program has fitted the requested
equation from the library or your own user-supplied model, you have the option to estimate slopes and areas
using the current best-fit curve.

Estimating AUC using splines

The SimFIT spline fitting programs compare and spline can also be used if the data are extensive enough to
fit a meaningful cubic spline reference curve.

Estimating AUC using program average

The main objection to using a deterministic equation to estimate the �*� stems from the fact that, if a badly
fitting model is fitted, biased estimates for the areas will result. For this reason, it is frequently better to
consider the observations H8 , or the average value of the observations if there are replicates, as knots with
coordinates G8 , H8 defining a linear piecewise function. This can then be used to calculate the area for any sub
range G1, G2 where -<8= ≤ G1 ≤ G ≤ G2 ≤ -<0G .

Another use for the trapezoidal technique is to calculate areas above or below a baseline, or fractions of the G
range above and below a threshold, for example, to record the fraction of a certain time interval that a patients
blood pressure was above a baseline value.

Note that, in the previous figure, the base line was set at H = 3.5, and program average calculates the points
of intersection of the horizontal threshold with the linear spline in order to work out fractions of the G range
above and below the baseline threshold. For further versatility, you can select the end points of interest, but
of course it is not possible to extrapolate beyond the data range to estimate �*� from zero to infinity.

Another feature of program average is that the parameters G1, G2, .C4BC that are set for the first data set can be
preserved instead of being re-set for each data set. This is intended for a scheme where the first set is intended
to be a reference data set. Of course, if these parameters are not consistent with subsequent data sets, warning
messages will be issued, and the parameters will be re-set to the normal defaults.

G1 = -<8=

G2 = -<0G

.C4BC = .<8=
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11.15 Zeros of 1 function of 1 variable

Given a function of one variable it is possible to estimate zeros as long as two values of the independent
variable are provided where the function has opposite signs.

The steps involved are as now detailed.

1. Select a model 5 (Θ, G), i.e. a function of one variable, and possibly some parameters Θ.

2. Adjust the parameters Θ if required.

3. Input a constant term � to define the function 6(G) = 5 (Θ, G) − �.

4. Just set � = 0 if a root of 6(G) = 5 (Θ, G) = 0 is required.

5. Plot the function 5 (Θ, G) to locate two values �, � such that 6(�)6(�) < 0.

6. Input the proposed limits �, � then solve 6(G) = 0.

7. If this fails, adjust the limits �, � or tolerance factor 4?BA4; and try again.

As an example, the procedure required to input a user-defined model will be described.

From the main SimFIT menu select [A/Z], open program usermod then read in the SimFIT model-defining
test file usermods_e.tf1 which has the following form.

%

phi(x) = normal cdf

%

1 equation

1 variable

0 parameters

%

begin{expression}

f(1) = phi(x)

end{expression}

%

This is a model file for special functions for which the normal cdf function Φ(G) has been selected, that is

Φ(G) = 1
√

2c

∫ G

−∞
exp

(
− C

2

2

)
3C

and it will now be available to program usermod for calculations such as root finding or plotting.

The steps necessary to find a root of the equation 6(G) = 0 where 6(G) is defined as

6(G) = Φ(G) − �

for some constant � will now be described.

Users must supply a relative error accuracy factor 4?BA4;, two values � and �, and a constant � such that, for
6(G) = Φ(G) − �, then 6(�)6(�) < 0.

If the values supplied are such that 6(�)6(�) > 0, the program will attempt to enlarge the interval in order to
bracket a zero, but it will not change the sign of � or �.

Users must do this if necessary by editing the starting estimates � and �.
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The program returns the root as - if successful, where - and . have been located such that

|- − . | ≤ 2.0 × 4?BA4; × |/ |

and |6(/) | is the smallest known function value, as described for NAG routine C05AZF.

For instance, input � = 0.975 so the routine is required to estimate G such that

0.975 =
1

√
2c

∫ G

−∞
exp

(
− C

2

2

)
3C

and, after setting some reasonable starting estimates, e.g., the defaults (-1,1), the following message will be
printed

Success : Root = 1.96 (EPSREL = 0.001)

giving the root estimated by the SimFIT implementation of C05AZF.

In other words, this calculation has located the upper 2.5% point of the standard normal distribution as
illustrated by the following plot.

0.0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

Normal Distribution: µ = 0, σ2 = 1

X

pd
f a

nd
 c

df

Area = 0.025 Area = 0.025



632 Numerical analysis

11.16 Zeros of n functions of n variables

Given = functions of = variables in a user-defined model file it is sometimes possible to estimate zeros as long
as good starting estimates are input, and a reasonable tolerance factor is provided.

The model file must define a system of = equations 58 in = variables G8 and the SimFIT program usermod will
attempt to locate G1, G2, . . . , G= such that

58 (G1, G2, . . . , G=) = 0, for 8 = 1, 2, . . . , =.

Users must supply good starting estimates by editing the default starting estimates H1, H2, . . . , H=, or installing
a new H vector from a file, and the accuracy can be controlled by varying GC>;, since the program attempts to
ensure that

| |G − Ĝ | | ≤ GC>; × ||Ĝ | |,

where Ĝ is the true solution, as described for NAG routine C05NBF. Failure to converge will lead to nonzero
����! values, requiring a re-run with new starting estimates.

From the main SimFIT menu choose [A/Z] then open program usermod and input the test file usermodn.tf4
which defines 9 equations in 9 variables for the following tridiagonal system.

(3 − 2G1)G1 − 2G2 + 1 = 0

−G8−1 + (3 − 2G8)G8 − 2G8+1 + 1 = 0, 8 = 2, 3, . . . , 8

−G8 + (3 − 2G9)G9 + 1 = 0.

After setting the starting estimates H(8) = 0 for 8 = 1, 2, . . . , 9 proceed to locate zeros of = equations in =
variables when the following table will result.

����! = 0, �#$'" = 7.448E-10, GC>; = 1.000E-03

Variable Value Function Value

G(1) -5.7065289E-01 5 E42(1) 2.5267933E-06

G(2) -6.8162532E-01 5 E42(2) 1.5688139E-05

G(3) -7.0173246E-01 5 E42(3) 2.8357029E-07

G(4) -7.0421463E-01 5 E42(4) -1.3083878E-05

G(5) -7.0136741E-01 5 E42(5) 9.8768418E-06

G(6) -6.9186497E-01 5 E42(6) 6.5557114E-06

G(7) -6.6579418E-01 5 E42(7) -1.3053615E-05

G(8) -5.9603414E-01 5 E42(8) 1.1777047E-06

G(9) -4.1641142E-01 5 E42(9) 2.9510981E-06

The values displayed at the solution point are as follows.

����! IFAIL = 0, otherwise re-run.

�#$'" final 2-norm of the residuals.

GC>; Tolerance factor.

G(8) Estimates for G8 .

5 E42(8) 58 (G) values.

As values less than about 10−7 are effectively zero compared to 1, this represents a satisfactory outcome since
58 (G) ≈ 0 for 8 = 1, 2, . . . , = at the solution point.

For reference, the model is as follows.
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%

Example: 9 functions of 9 variables as in NAG C05NBF

set y(1) to y(9) = ­1 or 0 for good starting estimates

f(1)=(3­2x(1))x(1)­2x(2)+1, &, f9=­x(8)+(3­2x(9))x(9)+1

%

9 equations

9 variables

0 parameters

%

begin{expression}

f(1) = (3 ­ 2y(1))y(1) + 1 ­ 2y(2)

f(2) = (3 ­ 2y(2))y(2) + 1 ­ y(1) ­ 2y(3)

f(3) = (3 ­ 2y(3))y(3) + 1 ­ y(2) ­ 2y(4)

f(4) = (3 ­ 2y(4))y(4) + 1 ­ y(3) ­ 2y(5)

f(5) = (3 ­ 2y(5))y(5) + 1 ­ y(4) ­ 2y(6)

f(6) = (3 ­ 2y(6))y(6) + 1 ­ y(5) ­ 2y(7)

f(7) = (3 ­ 2y(7))y(7) + 1 ­ y(6) ­ 2y(8)

f(8) = (3 ­ 2y(8))y(8) + 1 ­ y(7) ­ 2y(9)

f(9) = (3 ­ 2y(9))y(9) + 1 ­ y(8)

end{expression}
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11.17 Integration of 1 function of 1 variable

The Simpson method for estimating an area between two end points is satisfactory for smooth well-behaved
functions. However, for complicated functions, adaptive numerical quadrature is required where the method
used takes account of the rate of change of the function.

So, to integrate a function, it is necessary to define the function along with the range of integration and
parameters to control the number of Simpson rule divisions as well as a tolerance factor for numerical
quadrature, as demonstrated in the next worked example.

From the main SimFIT menu select [A/Z] then open the SimFIT program usermod, choose to integrate a
function of one variable and read in the test file d01ajf.mod which defines the following function.

5 (G) = G sin(30G)√(
1 −

( G
2c

)2
)

The next plot for this function over the range 0 to 6.283153 (i.e. < 2c) indicates that this will be a very
difficult function integrate and that adaptive quadrature will be required. Note that the range of plotting and
integration must not actually include the pole at G = 2c.
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Integration by the Simpson rule

Number of Simpson divisions 100

Area by the Simpson rule -2.2143991

Integration by adaptive quadrature

IFAIL (from D01AJF) 0

EPSABS 0.000001

EPSREL 0.001

ABSERR 0.001926

Area by adaptive integration -2.5432599

The definition of the function contained in test file d01ajf.mod now follows.

%

Example: function for d01ajf

...................................

x*sin(30*x)/sqrt{1 ­ (x/2pi)^2}

Note: ­2pi < x < 2pi to avoid poles

...................................

Usage as follows

Select simulation and open program usermod

Select 1 function of 1 variable then read in this file

Set tolerances and limits (0 to just less than 2pi)

Select integrate 1 function of 1 variable and integrate

NAG reports ­2.54326 for A=0,B=6.2832,epsabs=0,epsrel=1.e­4

Simfit agrees but with B=6.28318 to avoid the discontinuity

%

1 equation

1 variable

0 parameters

%

begin{expression}

f(1) = x*sin(30x)/sqrt[1.0 ­ (x/{2pi})^2]

end{expression}

%
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11.18 Integration of 1 function of m variables

Given a model defining one or more equations in one or more variables, the integral(s) can be estimated over
a hyper-rectangular region defined by fixed limits.

The following procedure is required for just one function of < ≥ 1 variables, although = ≥ 1 functions of
< ≥ 1 variables can be analyzed in exactly the same way.

1. Create a file defining the function of < variables to be integrated.

2. Open program usermod and input the file defining one function of < variables.

3. It is necessary to explicitly indicate that one function is required and < must be input correctly.

4. Program usermod then checks that the function is defined correctly.

5. The range of integration required must be defined by editing the vectors �!�" and )!�" to specify
the < lower and upper limits for the corresponding variables.

6. The absolute error �%(��( and relative error �%('�! parameters required must be set.

7. Integration can then be requested but the result should only accepted if ����! = 0 on completion.

8. If |����! | > 0 some of the previous parameters will have to be adjusted.

From the main SimFIT menu, choose [A/Z], open program usermod, then read in the test file d01fcf.mod

which defines the the integrand used to evaluate the following integral

� =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

4D1D
2
3

exp(2D1D3)
(1 + D2 + D4)2

3D4 3D3 3D2 3D1

and the results are listed in the next table.

����! 0 (from �01���)

�%(��( 1.000E-06

�%('�! 1.000E-03

Number �!�" )!�"

1 0.0 1.0

2 0.0 1.0

3 0.0 1.0

4 0.0 1.0

Number �#)��'�! ��(�()

1 0.57533267 1.0782E-04

Note that in order to perform the integration it may be necessary to re-define the limits, absolute, and relative
tolerances, which can be done interactively.

Exit with IFAIL = 0 indicates that the absolute error estimate ��(�() satisfies

|��(�() | ≤ max(�%(��(, ��('�! × |�#)��'�! |)

as defined for NAG routine D01EAF.

The model equation file d01fcf_e.mod is as follows.
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%

f(y) = {4y(1)y(3)^2[exp(2y(1)y(3))]}/{1 + y(2) + y(4)}^2

%

1 equation

4 variables

0 parameters

%

begin{expression}

f(1) = 4y(1)y(3)^2[exp(2y(1)y(3))]/[1.0 + y(2) + y(4)]^2

end{expression}

%
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11.19 Integration of n functions of m variables

Given a model defining several equations in one or more variables, the integrals can be estimated over a
hyper-rectangular region defined by fixed limits.

The following procedure is required for = ≥ 1 functions of < ≥ 1 variables.

1. Create a file defining the = functions of < variables to be integrated.

2. Open program usermod and input the file defining = function of < variables.

3. It is necessary to explicitly indicate that = functions of < variables are required and the values for = and
< must be specified correctly.

4. Program usermod then checks that the function is defined correctly.

5. The range of integration required must be defined by editing the vectors �!�" and )!�" to specify
the < lower and upper limits for the corresponding variables.

6. The absolute error �%(��( and relative error �%('�! parameters required must be set.

7. Integration can then be requested but the result should only accepted if ����! = 0 on completion.

8. If ����! = 1 on exit, then re-entry for continued iterations will be offered, otherwise some of the
previous parameters will have to be adjusted and the integration repeated.

From the main SimFIT menu, choose [A/Z], open program usermod, then read in the test file d01eaf.mod

which defines the the integrand used to evaluate the following integral The program accepts a user defined
model for = functions of < variables and estimates the = integrals

�8 =

∫ �1

�1

∫ �2

�2

. . .

∫ �<

�<

58 (G1, G2, . . . , G<) 3G< . . . 3G2 3G1

for 8 = 1, 2, . . . , =, where the limits are taken from the arrays �8 = 1;8<(8) and �8 = C;8<(8). The procedure
only returns IFAIL = 0 when

max
8

(��(�() (8)) ≤ max(�%(��(, �%('�! × max
8

|��#�() (8) |),

where ��(�() (8) is the estimated absolute error in ��#�() (8), the final estimate for integral 8, as described
for NAG routine D01EAF.

The = functions defined by SimFIT test file d01eaf_e.mod are

5 9 = log(G1 + 2G2 + 3G3 + 4G4) sin( 9 + G1 + 2G2 + 3G3 + 4G4) for 9 = 1, 2, . . . , 10

while the results from integration are listed in the following tables.

Results from the integration of d01eaf_e.mod

����! 0 (from D01EAF)

�%(��( 1.000E-06

�%('�! 1.000E-03

"�#�!( 459 (Function evaluations)

)�()�' 4.417E-04 (Error threshold: * where exceeded)
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Variable �!�" )!�"

1 0.0 1.0

2 0.0 1.0

3 0.0 1.0

4 0.0 1.0

Function �#)��'�! ��(�()

1 3.8352146E-02 1.8779E-04

2 4.0118447E-01 2.3766E-04

3 3.9516964E-01 1.6379E-04

4 2.5837668E-02 1.7314E-04

5 -3.6724934E-01 2.3574E-04

6 -4.2268900E-01 1.5493E-04

7 -8.9510341E-02 1.5503E-04

8 3.2596371E-01 2.2910E-04

9 4.4174823E-01 4.5854E-03 *

10 1.5139146E-01 5.1370E-04 *

The other parameters in these tables that have not already been defined have the following meanings.

MINCLS Number of calls to the subroutine for function evaluations.
TESTER Maximum error estimate acceptable so that items larger than this (if any) are

indicated by the symbol * in the listing (as for functions 9 and 10).
There can be a few * symbols and still have IFAIL = 0 on exit as a slightly
weaker test than this is performed by the numerical integrator.

INTEGRAL Integral for listed function.
ABSEST Error estimate for listed function.

The SimFIT test file defining these 10 functions of 4 variables is now listed.

%

...

model for the 10 functions in 4 variables required to demonstrate D01EAF

f_j = log(x_1 + 2x_2 + 3x_3 + 4x_4)(sin(j + x_1 + 2x_2 + 3x_3 + 4x_4)

for j = 1, 2, ..., 10

...

%

10 equations

4 variables

0 parameters

%

begin{expression}

A = y(1) + 2y(2) + 3y(3) + 4y(4)

B = log(A)

f(1) = B*sin(1 + A)

f(2) = B*sin(2 + A)

f(3) = B*sin(3 + A)

f(4) = B*sin(4 + A)

f(5) = B*sin(5 + A)

f(6) = B*sin(6 + A)

f(7) = B*sin(7 + A)

f(8) = B*sin(8 + A)
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f(9) = B*sin(9 + A)

f(10) = B*sin(10 + A)

end{expression}

%

Note the use of A and B dummy variable commands to avoid re-calculations.
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11.20 Bound-constrained quasi-Newton optimization

Bound-constrained quasi-Newton optimization by LBFGSB can be used to minimize a user-defined model,
but for this procedure it requires starting estimates and the partial derivatives to be provided as well as the
function to be minimized.

So the user supplied model must define = + 1 functions of = variables as follows

5 (1) = � (G1, G2, . . . , G=)
5 (2) = m�/mG1

5 (3) = m�/mG2

. . .

5 (= + 1) = m�/mG=.

The limited memory quasi-Newton optimization procedure also requires several other parameters, as now
listed.

• "��(( is the number of limited memory corrections to the Hessian that are stored. The value of 5 is
recommended but, for difficult problems, this can be varied in the range 4 to 17.

• ���)' should be about 1.0e+12 for low precision, 1.0e+07 for medium precision, and 1.0e+01 for
high precision. Convergence is controlled by ���)' and %�)$! and will be accepted if

|�: − �:+1 |/max(|�: |, |�:+1 |, 1) ≤ ���)' ∗ �%("��

at iteration : + 1, where �%("�� is machine precision, or if

max
8

(Projected Gradient(8)) ≤ %�)$!.

• Starting estimates and bounds on the variables can be set by editing the defaults or by installing from a
data file.

• The parameter �%'�#) allows intermediate output every �%'�#) iterations, and the final gradient
vector can also be printed if required.

• The program opens two files at the start of each optimization session, w_usermod.err stores interme-
diate output every �%'�#) iterations plus any error messages, while iterate.dat stores all iteration
details, as for SimFIT programs qnfit and deqsol when they use the LBFGSB suite for optimization.

• Note that, when �%'�#) > 100 full output, including intermediate coordinates, is written tow_usermod.err
at each iteration.

As an example, input the model file optimum.mod defining Rosenbruck’s two dimensional test function

� (G, H) = 100(H − G2)2 + (1 − G)2

which has a unique minimum at G = 1, H = 1 and is represented as follows.
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%

f(1) = 100(y ­ x^2)^2 + (1 ­ x)^2

f(2) = ­400x(y ­ x^2) ­ 2(1 ­ x)

f(3) = 200(y ­ x^2)

%

3 equations

2 variables

0 parameters

%

begin{expression}

A = y ­ x^2

B = 1 ­ x

f(1) = 100*A^2 + B^2

f(2) = ­400A*x ­ 2B

f(3) = 200A

end{expression}

%

In order to locate a minimum of this function it is necessary to specify the starting estimates along with
parameters controlling the optimization and the output.

For example, the iteration using the default optimization parameters and good starting estimates, in particular

−10 ≤ G ≤ 10, GBC0AC = 0

−10 ≤ H ≤ 10, HBC0AC = 0

with IPRINT = 5 for output at every fifth iteration proceeds as in the next table.

Iterate � (G) |?A 9 .6A3.| )0B:

1 6.9219E-01 5.0534E+00 #�,_-

6 2.1146E-01 3.1782E+00 #�,_-

11 1.7938E-02 3.5920E-01 #�,_-

16 1.7768E-04 4.4729E-02 #�,_-

20 5.5951E-13 7.2120E-06 �$#+�'��#�� :

#$'" $� %'$���)��

�'����#) ≤ %�)$!

Solution Derivatives

G = 1 m�/mG 7.21198E-06

H = 1 m�/mH -2.87189E-06

The parameter )0B: informs users of the action required after each intermediate iteration, then finally it
records the reason for termination of the optimization.

As this type of minimization can only locate a local minimum and success depends critically on scaling the
problems and choosing good starting estimates, it will usually be necessary to experiment with alternative
settings until a reliable convergence has been achieved.

Actually program usermod opens two files iterate.dat and w_usermod.err in the user folder which can
be consulted retrospectively to follow the iterations.

In particular, choosing the maximum value of IPRINT = 101 causes output to w_usermod.err for every
iteration as well as error reports, and these data can be used retrospectively to create contour maps with the
optimization trajectory overlaid. This will be discussed in another tutorial.
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11.21 Optimization contours with trajectory

It is often useful to be able to plot contours for a function of two variables around the minimum of an objective
function, with the other variables fixed if there are more two, and then to overlay the optimization trajectory.

Plotting the 3D surface

As an example, from the main SimFIT menu choose [A/Z], open program usermod and read in the model
file optimum.mod defining Rosenbrock’s two dimensional test function

5 (G, H) = 100(H − G2)2 + (1 − G)2

which has a unique minimum at G = 1, H = 1. Note that this model file also defines the two partial derivatives
that are required for optimization.

To begin with we can simply plot the 3D surface as follows.

Rosenbrock’s Function 100(y - x2)2 + (1 - x)2

XY

Z

1.5

-1.5

1.5

-1.5

0.073637

1412.5

Overlaying a trajectory on the contours

This necessitates obtaining a set of coordinates for the progress of optimization from a starting point and
several other actions. The next plot is followed by details of how it was constructed.



644 Numerical analysis

Contours for Rosenbrock Optimization Trajectory

X

Y

-1.500

1.500

1.500-1.500

Key Contour
  1 1.425
  2 2.838
  3 5.663
  4 11.313
  5 22.613
  6 45.212
  7 90.412
  8 1.808×102

  9 3.616×102

 10 7.232×102

1

2

2

3

3

4

4

5

5
6

6

7

7

8

8

9 9

10 10

1. The optimization step

An optimization was performed, starting at G = −1.2, H = 1 with �%'�#) = 101, which created the
file w_usermod.err in the results folder containing optimization details.

2. Creating an iteration file

The coordinates for the iterations from the file w_usermod.err in the results folder were copied into
a file, rosenbruck_iterations.txt, with G in column 1 and H in column 2 which were eventually
plotted as the red polyline.

3. Creating a user-defined spacing file

A file rosenbruck_proportions.txt with a column of 10 proportions 1/2, 1/4, 1/8, etc. was created
to space the contour values sensibly as proportions of the maximum function value.

4. Plotting the contours

The Rosenbruck model was plotted over the range −1.5 ≥ G ≤ 1.5, −1.5 ≥ H ≤ 1.5 using 100 divisions
for the G and H axes in order to create smooth contours.

5. Spacing the contours

To complete the diagram as illustrated above, the file rosenbruck_proportions.txt was installed to
display the contours in geometric progression up to half the maximum functions value.

6. Adding the trajectory and end points

A file was created with the starting coordinates −1.2, 1 and final coordinates 1, 1 that are plotted as red
solid circles, then the contours were overlayed using the coordinate file rosenbruck_iterations.txt.
Alternatively, the start and end coordinates could have been added as graphical objects.
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11.22 Evaluation of convolution integrals for plotting or fitting

The evaluation of convolution integrals is frequently required in simulation or data analysis, e.g., where such
integrals occur as output functions from the response of some device to an input function.

For instance, fitting convolution integrals involves parameter estimation in model functions 5 (C), 6(C), and
their convolution ( 5 ∗ 6) (C), where

( 5 ∗ 6) (C) =
∫ C

0

5 (D)6(C − D) 3D.

Sometimes the input function can be controlled independently so that, from sampling the output function,
parameters of the response function can be estimated, and frequently the functions may be normalized, e.g.
the response function may be modeled as a function integrating to unity as a result of a unit impulse at zero
time. However, any one, two or even all three of the functions may have to be fitted. The next figure illustrates
fitting data in convolv.tfl using the model convolv3.mod, i.e.

5 (C) = exp(−UC)
6(C) = V2C exp(−VC)

1 =

∫ ∞

0

6(C) 3C

with SimFIT program qnfit.

0.00

0.50

1.00

0 1 2 3 4 5

Fitting a Convolution Integral f*g

Time t

f(
t)

, g
(t

) 
an

d 
f*

g

f(t) = exp(-αt)

g(t) = β2 t exp(-βt)

f*g
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In some cases a convolution integral can be performed explicitly, say by Laplace transforms, but SimFIT
provides a method to evaluate two arbitrary functions 5 (Θ, G), 6(Θ, G) and the convolution integral 5 ∗6 at the
same time so that plotting and estimation of parameters Θ can be performed on any combination of the two
functions and the convolution integral. The next example shows how the test file convolv3.mod is formatted.
Note the following special commands.

• ?DC?0A

This ensures that parameters are global, i.e., available to all models.

• DB4A1(G, <)
This reads < then G off the stack and adds submodel < evaluated at argument G.

• 1468= <>34; (<), and 4=3 <>34; (<)
These define the start and completion of code to define model <.

In the results displayed above, the library file for the data was convolv3.tfl as follows.

Convolution data

%

%

convolv3.data

Percentage signs indicate that only output data was supplied in data file convolv3.data so only the convolution
was fitted to the data, and plots for the input and transformation functions were for information.

%

This demonstrates how to define 2 equations as sub­models, using

the command putpar to communicate parameters to the sub­models,

and the command convolute(1,2) to integrate sub­models 1 and 2

(by adaptive quadrature) from blim(1) = 0 to t = tlim(1) = x.

Precision of D01AJF quadrature is controlled by epsabs and epsrel

and blim(1) and tlim(1) must be used for the convolution limits

which, in this case are 0 to x, where x > 0 by assumption.

.................................................................

convolution integral: from 0 to x of f(u)*g(x ­ u) du, where

f1(t) = f(t) = exp(­p(1)*t)

f2(t) = g(t) = [p(2)^2]*t*exp(­p(2)*t)

f3(t) = f*g = f1*f2

.................................................................

Note that usually extra parameters must be supplied if it wished

to normalise so that the integral of f or g or f*g is specified

(e.g.,equals 1) over the total range of possible integration.

This must often be done, e.g., if g(.) is a density function.

The gamma distribution normalising factor p(2)**2 is stored in

this example to avoid unnecessary re­calculation.

%

3 equations

1 variable

2 parameters

%

putpar

p(2)

p(2)

multiply

put(1)

1

x
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user1(x,m)

f(1)

2

x

user1(x,m)

f(2)

0.0001

epsabs

0.001

epsrel

0

blim(1)

x

tlim(1)

convolute(1,2)

f(3)

%

begin{model(1)}

%

Example: exponential decay, exp(­p(1)*x)

%

1 equation

1 variable

1 parameter

%

p(1)

x

multiply

negative

exponential

f(1)

%

end{model(1)}

begin{model(2)}

%

Example: gamma density of order 2

%

1 equation

1 variable

2 parameters

%

p(2)

x

multiply

negative

exponential

x

multiply

get(1)

multiply

f(1)

%

end{model(2)}
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12 Simulating and fitting differential equations

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

12.1 introduction

To simulate theoretical models or to fit deterministic models to experimental data it is frequently necessary
to solve an ordinary nonlinear differential equation, or a system of ordinary nonlinear differential equations.
This usually cannot be done by formal integration but is often possible using numerical methods under the
following conditions.

1. The independent variable, say G, is nonnegative so that the system is parameterized for G ≥ 0.

2. The model can be expressed naturally as a system of = nonlinear equations. Alternatively, there is one
equation of order = where the highest order derivative can be expressed as a function of the independent
variable, the dependent variable, and all the other derivatives, so that this can be transformed into a
system of = equations.

3. The initial conditions at G = 0 are known, i.e., it is an initial value problem (IVP).

4. The range of integration and the number of intermediate independent variable points are defined.

5. An appropriate method is selected.

Definitions

The system of = equations must be expressed in the following form

H′1 = 51(G, H1, H2, . . . , H=)
H′2 = 52(G, H1, H2, . . . , H=)
. . .

H′= = 5= (G, H1, H2, . . . , H=)

where H′8 = 3H8/3G for components H1, H2, . . . , H=.

For example, consider the Lotka-Volterra predator-prey differential equations where H1 are numbers of prey,
say rabbits, while H2 are numbers of predators, say foxes, so that

3H1

3G
= ?1H1 − ?2H1H2

3H2

3G
= −?3H2 + ?4H1H2.

Here the model is expressed, using four fixed or variable parameters ?1, ?2, ?3, and ?4, as a system of two
autonomous differential equations, i.e., G does not appear on the right hand sides of the defining equations.

However, the Van der Pol oscillator is the second order differential equation

32I

3G2
+ `(I2 − 1) 3I

3G
+ I = 0
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which can be expressed as the following autonomous set of two equations using H1 = I, H2 = 3H1/3G = 3I/3G,
and 3H2/3G = 32I/3G2

3H1

3G
= H2

3H2

3G
= −H1 − `(H2

1 − 1)H2.

Of course the differential equations must be supplied along with the range of independent variable, initial con-
ditions, and tolerance settings, but also the numerical method must be chosen subject to these considerations.

• For non-stiff problems where all components have similar relaxation times, the standard methods due
to Runge-Kutta, or Adams etc. should be used.

• For stiff problems, where components have widely differing relaxation times, i.e., the condition number
of the Jacobian matrix is large, it will be necessary to use the backward differentiation method (BDF)
due to Gear. In this case the Jacobian �8 9 = m 58/mH 9 is used and there are two possibilities.

1. The Jacobian matrix can be supplied along with the differential equations. This is the best
technique to use, but has the great disadvantage that if the Jacobian matrix is not coded accurately
the convergence may be slow or lead to an erroneous solution.

2. To avoid this happening the Jacobian can be approximated at run time by finite differences. This
is not so good as supplying an accurate explicit Jacobian, but will avoid the problem of having to
supply an accurate explicit Jacobian.

• The recommended procedure is to experiment with the methods and tolerances interactively until a
satisfactory outcome has been achieved.

• Usually a system of = equations will involve : ≥ 0 parameters ?8 that are to be fixed at known values
or estimated by curve fitting a given data set. The rule used by SimFIT is that there must be : + =
parameters, as the last = parameters i.e., ?:+1, ?:+2, . . . , ?:+= are the initial conditions.

Simulation

A single differential equation can be simulated using SimFIT program makdat,which is dedicated to generating
data intended to be used by program adderr in order to add random error to mimic experimental data.

Systems of differential equations can be simulated by program deqsol which offers several options as follows.

• Use equations from a supplied library or user-defined model file.

• Change the method and tolerance factor in order to identify optimum conditions.

• Plot or tabulate selected components.

• Store orbits to be collected together for plotting.

• Plot phase diagrams for autonomous systems.

• Change the equations, parameter values, initial conditions, or range of integration interactively.

Simulation would normally be used to explore the outcome of changing parameters or initial conditions,
especially to estimate starting parameters for subsequent curve-fitting.
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Curve fitting differential equations

The SimFIT program qnfit can be used to fit a single differential equation to data, and it is preferred for this
purpose as it offers very extensive options for goodness of fit, parameter reliability, and model discrimination.

However, program deqsol has additional options making it more suitable for fitting systems of equations.
This program provides options for overlaying multiple trajectories on data points before and after fitting in
order to visualize the progress of optimization to a solution point.

It should be emphasized that curve fitting differential equations to experimental data is an extremely difficult
subject requiring considerable expertise, and the following facts should be considered.

• The data should be supplied using the library file approach.

• The data points must be supplied in nondecreasing order with respect to the independent variable. This
is to facilitate the ability to integrate methodically between fixed levels of the independent variable, but
also to ensure that only the first integral for the model is calculated for groups of replicates.

• The system should be simulated before fitting in order to ensure that starting estimates and parameter
limits are reasonable.

• There are two options available concerning initial conditions, i.e., the last = parameters.

1. The initial conditions can be set at known fixed values.

2. Some or all of the initial conditions can be estimated.

Wherever possible the first of these methods should be used because many serious problems can be
encountered when attempting to estimate initial conditions along with other model parameters.

To summarize: fitting differential equations to data will only be satisfactory when these conditions are met.

1. The model proposed can simulate the data and makes sense theoretically.

2. The data are accurate with a high signal to noise ratio.

3. The range of independent variable is sufficiently extensive to expose the influence of all the parameters
to be estimated.

4. The starting estimates are close to the parameters expected at the eventual solution point, and parameter
limits prevent excessive movement of parameters away from those expected at the solution point.

Note that programs qnfit and deqsol are designed to terminate with fixed values for system components as a
warning if these conditions are not met.
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12.2 The Von Bertalanffy allometric differential equation

The Von Bertalanffy differential equation arose in allometric studies in order to represent growth as the result
of a balance between anabolic and catabolic processes.

For instance, a spherical bacterium of radius A has a rate of absorbtion of nutrients proportional to the surface
area 4cA2 but a rate of metabolism proportional to the volume 4cA3/3, so the ratio of surface area to bulk
decreases as 3/A and it would be anticipated that the rate of change in size H as a function of time G, say 3H/3G,
would increase rapidly for small H but slow down as H increases. This leads to the expression

3H

3G
= ?1H

?2 − ?3H
?4 , H(0) = ?5

for some exponents ?2 and ?4 with ?4 > ?2 ≥ 0, where to model a growth process H and the parameters ?8
would be nonnegative. For certain special parameter values formal integral is possible and leads to some of
the classical growth equations as follows.

Exponential model 3(/3C = :(
((C) = � exp(:C), where � = (0

Monomolecular model 3(/3C = : (� − ()
((C) = �[1 − � exp(−:C)], where � = 1 − (0/�

Logistic model 3(/3C = :((� − ()/�
((C) = �/[1 + � exp(−:C)], where B = �/(0 − 1

Von Bertalanffy 2/3 model 3(/3C = [(2/3 − ^(
((C) = [�1/3 − � exp(−:C)]3,

where �1/3
= [/^, � = [/^ − (1/3

0
, : = ^/3

However the Von Bertalanffy differential equation will be used to illustrate the methods available using SimFIT
to study the properties of a differential equation, followed by simulation and curve fitting.

To examine this differential equation requires choosing the fixed parameters and the initial condition so the
following values will be used for this purpose.

?1 = 1

?2 = 2/3
?3 = 1

?4 = 1

?5 = 0.01

Of course this is the original case where a formal integral exists and it is an interesting exercise to consider
the alternative H(G) profiles that result as these parameters are varied. However, with these parameter values
the following observations can be made.

1. The slope is zero when H is zero and when H is 1

2. As G does not appear on the right hand side the slope is fixed given any H for 0 ≤ H ≤ 1

3. The H(G) curve is monotonically increasing for G > 0
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Initial conditions

Here, for example, is a series of plots illustrating how increasing the initial condition H(0) from ?5 = 0.01 to
?5 = 0.4 simply slides the profiles to the left.

0.0
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0.8

1.0

0.0 2.0 4.0 6.0 8.0 10.0

von Bertalanffy Integrals

x

y

y(0) = 0.01

y(0) = 0.1

y(0) = 0.2

y(0) = 0.3

y(0) = 0.4

To make composite plots of H(G) profiles such as this for any differential equations use the following protocol.

1. Open program deqsol from the [A/Z] option on the main SimFIT menu and select the differential
equation required from the library of pre-compiled models, or by reading in a user-defined model.

2. Edit the parameters as required, which in this example using the library model is just ?5.

3. Plot the H(G) data between the end points selected (in this case 100 points for 0 ≤ G ≤ 10) and use
the [Advanced] option to save the coordinates to file. Note that, after doing this, the files saved can be
added to your graph plotting archive for retrospective plotting as part of a group.

4. Input the group of coordinate files into program simplot either individually, from your project archive,
or best of all from a library file created using program maklib, then edit as required.

Simulating and fitting

As we are dealing with a single differential equation, it is best to proceed as follows

• Use program makdat to simulate a H(G) profile.

• Use program adderr to add random error.

• Finally fit using program qnfit.

That is because these programs provide more options than are available with program deqsol, which is
really designed to work with systems of differential equations. Using program qnfit to fit the default data set
qnfit_ode.tf2 results in the following outcome. First the overlay before fitting, then the overlay after fitting,
and finally the results.
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Best-fit parameters for curve-fit 1 using LBFGSB/DVODE

Number Low-Limit High-Limit Value Std. Error Lower95%cl Upper95%cl ?

1 0.50 1.50 0.887160 0.0029641 0.88126 0.89306 0.0000

2 0.25 0.75 0.616683 0.0009505 0.61479 0.61858 0.0000

3 0.50 1.50 0.875717 0.0021387 0.87146 0.87998 0.0000

4 0.75 1.25 0.943496 0.0026182 0.93828 0.94871 0.0000

5 0.0001 0.05 0.010133 0.0000739 0.00999 0.00103 0.0000
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Of course this is an artificial data set over an extended range using a model defined in the SimFIT library, and
the fitting included the initial condition for purposes of illustration, which should be avoided at all costs with
actual data.

The von Bertalannffy user defined model

For information, the corresponding default user-defined model file is deqmod1_e.tf6 which is now listed.

%

model: von Bertalannfy growth model

differential equation: f(1) = dy(1)/dx

= p(1)*y(1)^p(2) ­ p(3)*y(1)^p(4)

Jacobian: j(1) = df(1)/dy(1)

= p(1)*p(2)*y(1)^(p(2) ­ 1.0)

­p(3)*p(4) y(1)^(p(4) ­ 1.0)

initial condition: y0(1) = p(5)

%

1 equation

differential equation

5 parameters

%

begin{expression}

f(1) = p(1)y(1)^p(2) ­ p(3)y(1)^p(4)

end{expression}

%

begin{expression}

A = p(2) ­ 1.0

B = p(4) ­ 1.0

j(1) = p(1)p(2)y(1)^A ­ p(3)p(4)y(1)^B

end{expression}

%

begin{limits}

0 1.0 3

0 0.6666667 3

0 1.0 3

0 1.0 3

0 0.01 1

end{limits}

begin{range}

121

0

10

end{range}
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12.3 The Lotka-Volterra predator-prey equations

The Lotka-Volterra predator-prey system of two differential equations is justly famous. Given a prey species
H1, e.g. rabbits, and a predator species H2, e.g. foxes, as functions of time, G say, then a plausible simple system
is the following.

3H1

3G
= ?1H1 − ?2H1H2

3H2

3G
= −?3H2 + ?4H1H2

Starting in a situation where the population of foxes is at a low ebb then the rabbit population will grow almost
exponentially until they provide ample food for the foxes to multiply, and so on.

It is assumed that the parameters ?1, ?2, ?3, and ?4 and also the populations H1 and H2 are nonnegative so
there are clearly the two stable states

H1 = 0

H2 = 0, and

H1 = ?3/?4

H2 = ?1/?2

of which only the second is of interest.

As the system is autonomous, i.e., with no independent variable on the right hand sides then, apart for the
meaningful singular stable state referred to, it is possible to eliminate G and consider the derivative

3H1

3H2

=
?1H1 − ?2H1H2

−?3H2 + ?4H1H2

.

In other words, given an initial point H1 (0) = U and H2 (0) = V in H1, H2 phase space, then the shape of the
plot of 5 (G, H1, H2 |U, V) = 0 is determined uniquely as a pseudo-elliptical type of orbit around the singularity
at the center (?3/?4, ?1/?2).

This provides two ways to study the qualitative behavior of this system of equations.

1. A vector field

A grid of points is selected and at each point an arrow is drawn to indicate the direction of 3H2/3H1.
Such a vector field is easy to create, and can be further enhanced by coloring the arrows to indicate
direction, as well as altering the size of the stem of the arrows in proportion to the size of the derivatives.

2. A collection of orbits

A set of initial conditions is chosen then the orbits are plotted and subsequently collected together to
form a composite graph. This can be more tedious to do, but perhaps the result is easier to understand
in terms of the way that the populations fluctuate depending on the initial conditions.

Vector field representation of the phase plane

The next graph is the default phase portrait diagram using colour to emphasize changes in direction while
the following one demonstrates the option to increase arrow length in proportion to the absolute size of the
derivative.
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Note that the base of the arrow is at coordinates H1, H2 but, because the tips of the arrows will exceed the
range set by these coordinates it is easiest to use ranges that will allow for sensible labels for the axes. In this
case the range selected for the portrait was 0.1 ≤ H1 ≤ 1.9 and 0.1 ≤ H2 ≤ 1.9 resulting in a plot with integer
labels. Also the density of arrows must be considered when plotting arrows with sizes proportional to the
length of the derivative vectors as well as the proportionality factor which, in this case, was 0.1.



Lotka-Volterra predator-prey equations 657

Plotting orbits

Once a model has been selected and parameters defined then clearly the trajectory will depend on the initial
conditions. In the case of the Lotka-Volterra equations there is a point of stable equilibrium, and the equations
are autonomous so the orbits will surround this critical point as shown in the next plot.
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In order to compose a graph with several orbits as an alternative to the simple vector-field phase portrait the
following actions are required.

1. Fix the parameter values that do not represent initial conditions. In this case these would be
?1, ?2, ?3, and ?4.

2. Alter the initial conditions, that is parameters ?5 and ?6.

3. When a satisfactory orbit has been constructed where a complete circuit of the equilibrium point has
been completed the orbit can be archived.

4. These orbit files will be f$orbits.001, f$orbits.002, etc. created in the folder
\User\Documents\simfit\res

5. These can be retrieved as required to create a composite graph.

To illustrate this a set of orbits was created by maintaining H1(0) = 1.0 then varying H2 (0) over the range
0.25, 0.5, 1.0, 1.25 archiving the orbits each time then using the facility to import stored orbits. The resulting
collection of archived orbits is displayed in the next figure.
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Curve fitting

In order to fit data sets using systems of differential equations the following steps are required.

1. Data sets must be prepared in one of two formats, that is
Column 1 = G(8), Column 2 = H 9 (8), or
Column 1 = G(8), Column 2 = H 9 (8), Column 3 = B 9 (8), 8 = 1, 2, . . . , = 9 for 9 = 1, 2

2. Each data set must have G(8) in nondecreasing order for 8 = 1, 2, . . . , = 9 and standard errors B 9 (8) must
be accurate estimates if weighting is to be used.

3. Ideally the collected data file should be referenced by a library file if possible where it is understood
that if data sets are missing for a component this will be indicated by a percentage sign %.

4. Starting estimates and limits should be appended to the first data file.

Here, for example is the default library file deqsol.tfl for the SimFIT program deqsol.

deqsol (library file) to fit Lotka­Volterra eqns. (2­eqns/menu item 2)

lv1.tf1

lv2.tf1

Note that, in general, the two filenames supplied in such a library file must be fully qualified filenames. This
exception is because SimFIT recognizes the two files lv1.tf1 and lv2.tf1 as default test files.

The next two graphs illustrate first overlaying the starting curve on the data, and then the best-fit curves
resulting from fitting the system of differential equations, followed by the parameter estimates, then goodness
of fit analysis.
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Best-fit parameters for Lotka-Volterra model

Number Low-Limit High-Limit Parameter Std. Error Lower95%cl Upper95%cl p

1 0.0 2.0 1.08447 0.129892 0.809116 1.35983 0.0000

2 0.0 2.0 1.08901 0.123310 0.827608 1.35042 0.0000

3 0.0 2.0 0.93975 0.115146 0.695649 1.18384 0.0000

4 0.0 2.0 0.94854 0.108451 0.718635 1.17845 0.0000

5 0.0 2.0 0.89979 0.055012 0.783168 1.01641 0.0000

6 0.0 2.0 0.53189 0.043215 0.440273 0.62350 0.0000

Analysis of residuals: ((& 0.18589

Average % coefficient of variation 10.33%

'2, i.e. correlation coefficient(Cℎ4>AH, 30C0)2 0.9547

Largest Absolute relative residual 18.81%

Smallest Absolute relative residual 1.10%

Average Absolute relative residual 8.11%

Absolute relative residual in range 0.1-0.2 40.91%

Absolute relative residual in range 0.2-0.4 0.00%

Absolute relative residual in range 0.4-0.8 0.00%

Absolute relative residual > 0.8 0.00%

Number of negative residuals (<) 13

Number of positive residuals (=) 9

Number of runs observed (A) 14

%(runs ≤ A : given < and =) 0.9031

5% lower tail point 7

1% lower tail point 6

%(runs ≤ A : given < plus =) 0.9054

%(signs ≤ least number observed) 0.5235

Durbin-Watson test statistic 2.6043 >2.5, -ve serial correlation?

Shapiro-Wilks, statistic 0.9515

Significance level of, 0.3385

Akaike ��� statistic -93.020

Schwarz (� statistic -86.474

Verdict on goodness of fit very good

User-defined models

Model files have three mandatory sections separated by the escape character % followed an optional section
which is very important when constructing models for differential equations, summarized as follows.

%
Title section

Arbitrary text used to describe the equations but must not exceed 24 lines
%
2) Summary section

The number of equations, type of equations, and number of parameters
%
3) Equation section

The equations and Jacobian if required
%
4) Optional additional information

The SimFIT default test file deqmod2_e.tf2 for the Lotka-Volterra scheme is displayed next.
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%

Example of a user supplied pair of differential equations

file: deqmod2_e.tf2 (with appended parameter limits data)

model: Lotka­Volterra predator­prey equations

differential equations: f(1) = dy(1)/dx

= p(1)*y(1) ­ p(2)*y(1)*y(2)

f(2) = dy(2)/dx

= ­p(3)*y(2) + p(4)*y(1)*y(2)

jacobian: j(1) = df(1)/dy(1)

= p(1) ­ p(2)*y(2)

j(2) = df(2)/dy(1)

= p(4)*y(2)

j(3) = df(1)/dy(2)

= ­p(2)*y(1)

j(4) = df(2)/dy(2)

= ­p(3) + p(4)*y(1)

initial condition: y0(1) = p(5), y0(2) = p(6)

Note: the last parameters must be y0(i) in differential equations

%

2 equations

differential equation

6 parameters

%

begin{expression}

f(1) = p(1)y(1) ­ p(2)y(1)y(2)

f(2) = ­p(3)y(2) + p(4)y(1)y(2)

end{expression}

%

begin{expression}

j(1) = p(1) ­ p(2)y(2)

j(2) = p(4)y(2)

j(3) = ­p(2)y(1)

j(4) = ­p(3) + p(4)y(1)

end{expression}

%

begin{limits}

0 1.0 3

0 1.0 3

0 1.0 3

0 1.0 3

0 1.0 3

0 0.5 3

end{limits}

begin{range}

121

0

10

end{range}
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12.4 The epidemic differential equations

The standard epidemic differential equation model considers the interaction between susceptible, infected,
and resistant individuals as a development of a Lotka-Volterra type of interaction.

For H1 (G) susceptible, H2(G) infected, and H3 (G) resistant individuals in the population as functions of time G
the scheme is as follows

51 =
3H1

3G
= −?1H1H2

52 =
3H2

3G
= ?1H1H2 − ?2H2

53 =
3H3

3G
= ?2H2

where ?1 and ?2 are positive parameters, and the additional parameters ?3 = H1 (0), ?4 = H2 (0) and ?5 = H3 (0)
are the initial conditions. Here the number of susceptible individuals declines as a result of contact between
themselves and those already infected, the number of infected individuals increases as a result of such contacts
but declines resulting from the development of resistance, while resistance increases in proportion to the
number of those infected. Note that the overall population. (G) = H1 (G) + H2 (G) + H3 (G) remains static as will
be obvious from the conservation equation

3.

3G
=
3H1

3G
+ 3H2

3G
+ 3H2

3G

= 0

while the Jacobian matrix required for stiff systems is defined as follows.

m 58

mH 9
=

©­«
−?1H2 −?1H1 0

?1H2 ?1H1 − ?2 0

0 ?2 0

ª®
¬

Using SimFIT program deqsol to fit the data contained in the default library file epidemic.tfl leads to the
following results.

Best-fit parameters for the epidemic model

Number Low-Limit High-Limit Parameter Std. Error Lower95%cl Upper95%cl p

1 0 1 0.00389 0.00036 0.00355 0.00460 0.0000

2 0 2 0.30718 0.00919 0.28800 0.32558 0.0000

3 400 1400 1008.14 12.9747 982.169 1034.11 0.0000

4 0 50 10.2413 4.48755 1.25851 19.2241 0.0262

5 0 50 0.09828 0.09758 -0.09705 0.29361 0.3180 *

Note that the initial conditions were also fitted, and the nonzero ? values for the corresponding estimates
?̂4 and ?̂5 indicates the unreliable nature of the fit to these parameters. The overlay before fitting, and then
the final best-fit curve are displayed next, followed by the code for this model contained in the model file
deqmod3.tf1.
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%

differential equations: f(1) = dy(1)/dx = ­p(1)y(1)y(2)

f(2) = dy(2)/dx = p(1)y(1)y(2) ­ p(2)y(2)

f(3) = dy(3)/dx = p(2)y(2)

y(1) = Susceptible, y(2) = Infected, y(3) = Resistant

Jacobian: j(1) = df(1)/dy(1) = ­p(1)y(2)

j(2) = df(2)/dy(1) = p(1)y(2)

j(3) = df(3)/dy(1) = 0

j(4) = df(1)/dy(2) = ­p(1)y(1)

j(5) = df(2)/dy(2) = p(1)y(1) ­ p(2)

j(6) = df(3)/dy(2) = p(2)

j(7) = df(1)/dy(3) = 0

j(8) = df(2)/dy(3) = 0

j(9) = df(3)/dy(3) = 0

initial condition: y0(1) = p(3), y0(2) = p(4), y0(3) = p(5)

%

3 equations

differential equation

5 parameters

%

begin{expression}

A = p(1)y(1)y(2)

B = p(2)y(2)

f(1) = ­A

f(2) = A ­ B

f(3) = B

end{expression}

%

begin{expression}

C = p(1)y(2)

D = p(1)y(1)

j(1) = ­C

j(2) = C

j(3) = 0

j(4) = ­D

j(5) = D ­ p(2)

j(6) = p(2)

j(7) = 0

j(8) = 0

j(9) = 0

end{expression}

%

begin{limits}

0 0.0025 1

0 0.5 2

400 900 1400

0 10 50

0 0.1 50

end{limits}

begin{range}

121

0

10

end{range}
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12.5 The recurrent epidemic differential equations

The standard SIR epidemic differential equation model considers the interaction between susceptible, infected,
and resistant individuals as a development of a Lotka-Volterra type of interaction. This system of equations
can be extended in many ways to include censoring by birth, death, immigration, or emigration as well as
including additional covariates and other complicating factors such as seasonal effects and vaccination.

For instance, a simple extension to include incomplete resistance after infection can be included by similar
mass action reasoning but, in order to preserve a constant conservation equation, the simple addition of a third
parameter ?3 can model births adding to the susceptible sub–population and loss by death from the resistant
sub–population according to the following scheme.

For H1 (G) susceptible, H2(G) infected, and H3 (G) resistant individuals in the population as functions of time G
we would then have

51 =
3H1

3G
= −?1H1H2 + ?3

52 =
3H2

3G
= ?1H1H2 − ?2H2

53 =
3H3

3G
= ?2H2 − ?3

where ?1, ?2 and ?3 are positive parameters, and the additional parameters ?4 = H1 (0), ?5 = H2 (0) and
?6 = H3 (0) are the initial conditions. Here the number of susceptible individuals declines as a result of
contact between themselves and those already infected, the number of infected individuals increases as a
result of such contacts but declines resulting from the development of resistance, while resistance increases
in proportion to the number of those infected. Note that the overall population . (G) = H1 (G) + H2 (G) + H3 (G)
remains static as will be obvious from the derivative of the conservation equation

3.

3G
=
3H1

3G
+ 3H2

3G
+ 3H2

3G

= 0

while the Jacobian matrix required for stiff systems is defined as follows.

m 58

mH 9
=

©­«
−?1H2 −?1H1 0

?1H2 ?1H1 − ?2 0

0 ?2 0

ª®
¬

When ?3 > 0 it can be shown that if ?1?3/?2
2
< 4 there is light damping to an equilibrium points with the

system converging as follows

H1 ≈ ?2

?1

H2 ≈ ?3

?2

at large time values, i.e., the endemic state of partial herd immunity.

The next two figures illustrate the non–oscillating behaviour when ?3 = 0 compared to the damped oscillations
when ?3 > 0 and so establishing this set of equations being a model for a recurrent epidemic, i.e. where
acquired resistance does not preclude subsequent re–infection.
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These figures were generated using SimFIT program deqsol with the built–in defaults and initial conditions
for ?(8) where 8 = 1, 6.
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A convenient way to display this oscillatory property of the recurrent epidemic model is to plot the phase
plane as shown next as it is more convincing when visualized such a plot than staring at mere algebra.
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Such phase plane diagrams are easily constructed using the SimFIT program deqsol using the following steps.

1. Fix parameters ?8, 8 = 1, 6 and also the starting and ending points for the integration and number of
points required then integrate.

2. Plot the orbit then choose the option to store the orbit.

3. Repeat the process keeping the parameters ?8 , 8 = 1, 3 fixed but varying the initial conditions ?8 , 8 = 4, 6

then storing the orbits for each choice of initial conditions.

4. Choose the option to plot the archived orbits that will have been temporarily stored then select the
archived orbits required to form a composite phase plane diagram like the above figure.

5. Proceed to sculpture the graph then save

Now we consider fitting the recurrent epidemic data. Here the next two figures illustrate that before fitting was
attempted the starting estimates gave profiles far away from the data. However, after constrained nonlinear
optimization, a good fit was eventually located.

Actually, after several abortive attempts from numerous starting estimates for the six parameters made no
progress, the curve fitting had to make extensive use of the SimFIT procedures to vary the starting estimates
randomly over a range specified by the upper and lower parameter limits until eventually convergence was
achieved. It must be emphasized that this use of several random starts using a uniform or normal distribution
to sequentially perturb the starting estimates within the limits of constraint is frequently required when the
final solution is far removed from the starting estimates and the process of optimization is stalled so that the
WSSQ does not change appreciably until the perturbation generates a sensible descent vector.
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The next table lists the best fit parameters and confidence limits and it will be clear from the ? values that the
parameters are well determined.

Number Parameter Std.Error Lower95%cl Upper95%cl p

1 0.00101 0.00012 0.00099 0.00103 0.0000

2 0.49581 0.00615 0.48348 0.50815 0.0000

3 19.7314 0.17848 19.3736 20.0893 0.0000

4 1089.28 6.91486 1075.42 1103.15 0.0000

5 9.85414 0.19370 9.46580 10.2425 0.0000

6 90.7113 1.08120 88.5436 92.8790 0.0000

Some technical details follow giving more information to assist users who want to develop their own equations
for simulating and fitting.

1. To state the obvious: the model to be fitted must be appropriate, the data must be extensive and
reasonably accurate, the starting estimates and parameter limits must be sensible, and attention must be
paid to any weighting that may be required. The copious goodness of fit tables, residuals analysis, and
advice output by SimFIT must be read and appreciated because simulating and fitting nonlinear models
is extremely difficult. Usually several runs using randomised starting estimates will be required.

2. SimFIT uses the Open Source programs DVODE to simulate the differential equations using the BDF
method by default and the constrained nonlinear optimisation quasi Newton routine LBFGSB. These are
bundled as part of the SimFIT package which uses a built–in reverse communication procedure during
the optimisation in an attempt to maintain the parameters of order unity at the start each iteration.

3. For those who have a license to access the numerical algorithms group routines (NAG), SimFIT has an
interface to the NAG library that can be used instead of the built in SimFIT routines. This is extremely
valuable as being able to switch at will between different simulation and particularly optimisation codes
can often improve the success of data fitting.

4. The SimFIT built–in interface to the NAG library supports the following tried and tested routines.

D02CJF, D02EJF for solving systems of nonlinear differential equations and E04KZF, E04YJF,
E04UEF, E04UFF for constrained nonlinear optimisation

However there are documents available on the website showing how SimFIT can be programmed to call
any NAG library routine.

5. It must be emphasised that to simulate and fit differential equations users do need to configure the
methods used by specifying values to be used to to control step length and convergence criteria.

6. The SimFIT test library file recurrent.TFL contains the data described in this document and the model
required to simulate and fit the recurrent epidemic is built into program deqsol. However it should be
pointed out that if a method to integrate stiff systems is required instead of the Runge–Kutta or Adams
methods a user–defined Jacobian can be supplied if possible or a Jacobian can be estimated. Note that
an incorrect explicit user–supplied Jacobean is much worse than one estimated.

7. SimFIT users can write their own equations for simulation and fitting by just using a text editor. This
involves a method whereby the equations can be written using standard mathematical expressions
because there is a built–in routine to transform them into reverse Polish. To facilitate the models being
used in iterative procedures SimFIT scans the ASCII text file just once then creates a temporary internal
stack so the program does not have to re–read the model file again.

8. The file deqmod3_e.tf3 used to simulate and fit the recurrent epidemic equations as described in this
document is listed next.
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%

Example of a user supplied set of 3 differential equations

file: deqmod3_e.tf1

model: coupled equations for a recurrent epidemic

differential equations: f(1) = dy(1)/dx = ­p(1)y(1)y(2) + p(3)

f(2) = dy(2)/dx = p(1)y(1)y(2) ­ p(2)y(2)

f(3) = dy(3)/dx = p(2)y(2) ­ p(3)

y(1) = Susceptible, y(2) = Infected, y(3) = Resistant

jacobian: j(1) = df(1)/dy(1) = ­p(1)y(2)

j(2) = df(2)/dy(1) = p(1)y(2)

j(3) = df(3)/dy(1) = 0

j(4) = df(1)/dy(2) = ­p(1)y(1)

j(5) = df(2)/dy(2) = p(1)y(1) ­ p(2)

j(6) = df(3)/dy(2) = p(2)

j(7) = df(1)/dy(3) = 0

j(8) = df(2)/dy(3) = 0

j(9) = df(3)/dy(3) = 0

initial condition: y0(1) = p(3), y0(2) = p(4), y0(3) = p(5)

Note: the last parameters must be y0(i) in differential equations

%

3 equations

differential equation

6 parameters

%

begin{expression}

A = p(1)y(1)y(2)

B = p(2)y(2)

f(1) = ­A + p(3)

f(2) = A ­ B

f(3) = B ­ p(3)

end{expression}

%

begin{expression}

C = p(1)y(2)

D = p(1)y(1)

j(1) = ­C

j(2) = C

j(3) = 0

j(4) = ­D

j(5) = D ­ p(2)

j(6) = p(2)

j(7) = 0

j(8) = 0

j(9) = 0

end{expression}

%

begin{limits}

0.0 0.001 1.0

0.0 0.5 2.0

0.0 30.0 100.0

400.0 900.0 1400.0

0.0 10.0 50.0

0.0 90.0 150.0

end{limits}

begin{range}

121

0

200

end{range}
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13 Graph plotting

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

13.1 Introduction

To create plots you must supply SimFIT graphical routines with coordinates in one of the following ways.

Method 1

Data are transferred directly by the program you are using.

Method 2

Data are pasted in from the clipboard, or input as a file with a table of coordinates.

Method 3

Data are input as multiple coordinate files by a library file, from your graphics project archive, or by multiple file
selection.

Method 4

Data are input as a previously generated metafile to resume editing.

Note that SimFIT program simplot provides test data files to demonstrate most of the available plotting options as well as
worked examples.

After editing to change symbols, line-types, titles, legends, colours, etc., you can proceed as follows.

Print directly

Print the current display as a high resolution bit map.

Save Windows quality hardcopy

Choose either *.svg, *.png, *.jpg, or *.emf, but not *.tif, or *.bmp.

Save PostScript quality hardcopy

Archive encapsulated PostScript files (*.eps) then, when required, print from your PS-viewer, or generate
*.pdf,*.png, etc., retrospectively. Note that this is the superior way to use SimFIT graphics, especially for LATEX
users, and it offers numerous additional options. However it requires you to have GhostScript and (optionally) a
PS-viewer such as GSview installed.

There are actually four distinct levels of SimFIT graphics.

1. Simple graphics

This is when data are displayed as a simple plot with limited editing options.

2. Advanced graphics

This allows very extensive editing and numerous additional features such as adding graphical objects, e.g. as
extra text, arrows, rectangles, or plotting symbols. In addition metafiles can be created which can be entered
retrospectively into program simplot to resume editing.

3. 3D graphics

Space curves can be plotted and surfaces as wire-nets, skyscrapers, cylinders, or contours.

4. PostScript graphics

This is for experienced users who require the highest quality industry standard graphics as well as additional
features such as retrospective editing in a text editor, adding whitespace to stretch graphs without changing the
aspect ratio of symbols and text, overlaying graphs, or creating collages.
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13.2 Simple graphs

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

13.2.1 Lines, symbols, and text

Symbols

The collage below illustrates the following features of SimFIT graphics.
a) There are 22 plotting symbols plus some outline-only symbols.
b) The size and line thickness used to plot symbols can be varied.
c) There are 10 alternative fill styles for bars in addition to colors.
d) The bar width and line thickness used to plot bars can be varied.

Plotting Symbols Size and Line Thickness

Bar Fill Styles Bar Width and Thickness
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Lines: standard types

There are four standard SimFIT line types, normal, dashed, dotted and dot-dashed, and error bars can terminate with or
without end caps if required, as shown in the collage below.

Line Types Error Bars

Steps and Vectors

Line Thickness

Special effects can be created using stair step lines, which can be used to plot cdfs for statistical distributions, or survival
curves from survivor functions, and vector type lines, which can be used to plot orbits of differential equations. Note that
steps can be first H then G, or first G then H, while vector arrows can point in the direction of increasing or decreasing C,
and lines can have variable thickness.

Program simplot reads in default options for the sequence of line types, symbol types, colors, barchart styles, piechart
styles and labels which will then correspond to the sequence of data files. Changes can be made interactively and stored
as graphics configuration templates if required. However, to make permanent changes to the defaults, you configure the
defaults from the main SimFIT configuration option, or from program simplot.
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Lines: extending to boundaries

The collage below illustrates the alternative techniques available in SimFIT when the data to be plotted are clipped to
boundaries so as to eliminate points that are identified by symbols and also joined by lines.
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The first graph shows what happens when the test file zigzag.tf1 was plotted with dots for symbols and lines connecting
the points, but with all the data within the boundaries. The second graph illustrates how the lines can be extended to the
clipping boundary to indicate the direction in which the next undisplayed symbol is located, while the third figure shows
what happens when the facility to extend lines to boundaries is suppressed.

Note that these plots were first generated as .ps files using the flat-shape plotting option, then a PostScript G stretch factor
of 2 was selected, followed by the use of GSview to transform to .eps and so recalculate the BoundingBox parameters.
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Text

The next collage shows how fonts can be used in any size or rotation and with many nonstandard accents, e.g., \̂.

Fonts
Times-Roman
Times-Italic
Times-Bold
Times-BoldItalic
Helvetica
Helvetica-Oblique
Helvetica-Bold
Helvetica-BoldOblique
Courier
Courier-Oblique
Courier-Bold

Courier-BoldOblique
Symbol
αβχδεφγηιϕκλµνοπθρστυϖωξψζ
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Maths and Accents
⊥  ℜ  ∞ £ ℵ  ⊕  ♠  ♥  ♣
× ± ◊ ≈ •  ÷
√ ƒ ∂ ∇  ∫ ∏ ∑ → ← ↑
↓  ↔ ≤ ≡ ≥ ≠ °
ΑΒΓ∆ΕΖΗΘΙΚΛΜΝΞΟΠΡΣΤϒΦΧΨΩ∂∈
αβγδεζηϑικλµνξοπρστυϕχψωθφ
⊗    ^ ∪  ⊃  ⊂  ∃  ∋
π = X̄ = (1/ñ)∑X(i)
T = 21°C
[Ca++] = 1.2×10-9M
∂φ/∂t = ∇ 2φ
Γ(α) = ∫tα-1e-tdt
      α1x + α2x2

1 + β1x + β2x2

IsoLatin1Encoding Vector
         0 1 2 3 4 5 6 7

220-227: ı ` ´ ˆ ˜ ¯ ˘ ˙
230-237: ¨   ˚ ¸   ˝ ˛ ˇ
240-247:   ¡ ¢ £ ¤ ¥ ¦ §
250-257: ¨ © ª « ¬ - ® ¯
260-267: ° ± ² ³ ´ µ ¶ ·
270-277: ¸ ¹ º » ¼ ½ ¾ ¿
300-307: À Á Â Ã Ä Å Æ Ç

310-317: È É Ê Ë Ì Í Î Ï
320-327: Ð Ñ Ò Ó Ô Õ Ö ×
330-337: Ø Ù Ú Û Ü Ý Þ ß

340-347: à á â ã ä å æ ç
350-357: è é ê ë ì í î ï

360-367: ð ñ ò ó ô õ ö ÷

370-377: ø ù ú û ü ý þ ÿ

Special effects can be created using graphics fonts such as ZapfDingbats, or user-supplied dedicated special effect
functions, as described elsewhere. Scientific symbols and simple mathematical equations can be generated, but the best
way to get complicated equations, chemical formulas, photographs or other bitmaps into SimFIT graphs is to use PSfrag
or editps.

The collage also demonstrates several possibilities for displaying mathematical formulae directly in SimFIT graphs, and it
also lists the octal codes for some commonly required characters from the IsoLatin1 encoding. Actually, octal codes can
be typed in directly (e.g., \361 instead of ñ), but note that text strings in SimFIT plots can be edited at two levels: at the
simple level only standard characters can be typed in, but at the advanced level nonstandard symbols and maths characters
can be selected from a font table. Note that, while accents can be added individually to any standard character, they will
not be placed so accurately as when using the corresponding hard-wired characters e.g., from the IsoLatin1 encoding.
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Fonts, character sizes and line thicknesses

The fonts, letter sizes, and line thicknesses used in SimFIT graphics are those chosen from the PostScript menu, so,
whenever a font or line thickness is changed, the new details are written to the PostScript configuration file w_ps.cfg.
If the size or thickness selected is not too extreme, it will then be stored as the default to be used next time. However, it
should be noted that, when the default sizes are changed, the titles, legends, labels, etc. may not be positioned correctly.
You can, of course, always make a title, legend, or label fit correctly by moving it about, but, if this is necessary, you
may find that the defaults are restored next time you use SimFIT graphics. If you insist on using an extremely small or
extremely large font size or line thickness and SimFIT keeps restoring the defaults, then you can overcome this by editing
the PostScript configuration file w_ps.cfg and making it read-only. Users who know PostScript will prefer to use the
advanced PostScript option, whereby the users own header file can be automatically added to the PostScript file after the
SimFIT dictionary has been defined, in order to re-define the fonts, line thicknesses or introduce new definitions, logos
plotting symbols, etc.

Arrows

The next figures show that arrows can be of three types: line, hollow or solid and these can be of any size.

Arrow Types

Line Arrow

Outline  Arrow

Solid Arrow

Transparent Box

Opaque Box

Arrows and Boxes

K = 1

However use can be made of headless arrows to create special effects. From this point of view a headless line arrow is
simply a line which can be solid, dashed, dotted or dash-dotted. These are useful for adding arbitrary lines. A headless
outline arrow is essentially a box which can be of two types: transparent or opaque. Note that the order of priority in
plotting is

Extra Text > Graphical Objects > Data plotted, titles and legends

and this allows boxes to be used to simply obliterate plotted data or to surround extra text allowing the background to
show through.

Transparent boxes, are useful for surrounding information panels, opaque boxes are required for chemical formulae or
mathematical equations, while background colored solid boxes can be used to blank out features as shown in the above
figures. To surround a text string by a rectangular box for emphasis, position the string, generate a transparent rectangular
box, then drag the opposing corners to the required coordinates.
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Example of plotting without data: Venn diagram

It is possible to use program simplot as a generalized diagram drawing program without any data points, as illustrated in
the next figure.

A

A∩B̄

A∩B

B∩Ā

B

Venn Diagram for the Addition Rule

P{A∪ B} = P{A} + P{B} - P{A∩B}

The procedure used to create such graphs using any of the SimFIT graphical objects will be clear from the details now
given for this particular Venn diagram.

❍ Program simplot was opened using an arbitrary dummy graphics coordinate file.

❍ The [Data] option was selected and it was made sure that the dummy data would not be plotted as lines or symbols,
by suppressing the lines and symbols for this dummy data set.

❍ This transformed program simplot into an arbitrary diagram creation mode and the display became completely
blank, with no title, legends, or axes.

❍ The circles were chosen (as objects) to be outline circle symbols, the box was selected (as an arrow-line-box) to be
a horizontal transparent box, the text strings were composed (as text objects), and finally the arrow was chosen (as
an arrow-line-box) to be a solid script arrow.

❍ The diagram was then completed by editing the text strings (in the expert mode) to introduce the mathematical
symbols.
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Polygons

Program simplot allows filled polygons as an optional linetype. So this means that any set of = coordinates (G8 , H8) can
be joined up sequentially to form a polygon, which can be empty if a normal line is selected, or filled with a chosen color
if the filled polygon option is selected. If the last (G=, H=) coordinate pair is not the same as the first (G1, H1), the polygon
will be closed automatically. This technique allows the creation of arbitrary plotting objects of any shape, as will be
evident from the sawtooth plot and stars in the next figure.
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Plotting Polygons
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The sawtooth graph above was generated from a set of (G, H) points in the usual way, by suppressing the plotting symbol
but then requesting a filled polygon linetype, colored light gray. The open star was generated from coordinates that formed
a closed set, but then suppressing the plotting symbol and requesting a normal, i.e. solid linetype. The filled star was
created from a similar set, but selecting a filled polygon linetype, colored black.

If you create a set of ASCII text plotting coordinates files containing arbitrary polygons, such as logos or special plotting
symbols, these can be added to any graph. However, since the files will simply be sets of coordinates, the position and
aspect ratio of the resulting objects plotted on your graph will be determined by the ranges you have chosen for the G
and H axes, and the aspect ratio chosen for the plot. Clearly, objects created in this way cannot be dragged and dropped
or re-scaled interactively. The general rule is that the axes, title, plot legends, and displayed data exist in a space that
is determined by the range of data selected for the coordinate axes. However, extra text, symbols, arrows, information
panels, etc. occupy a fixed space that does not depend on the magnitude of data plotted. So, selecting an interactive data
transformation will alter the position of data dependent structures, but will not move any extra text, lines, or symbols.
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13.2.2 Basic plotting styles

SimFIT offers a large choice of options to present data and results from model fitting and, to illustrate the basic plotting
styles, an example from fitting three epidemic differential equations to data using program deqsol will be presented in
the next collage.
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Figure 1: Standard Axes
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Figure 2: Offset Axes
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Figure 3: Offset and Box
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Figure 4: Grid Lines
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Figure 1 Perhaps the usual style for scientific graphics, i.e., to simply display the data and axes with tick marks pointing
inwards and no additional features as in the Standard Axes plot in Figure 1 above.

Figure 2 However, the tick marks pointing inwards coupled with overlaying the data and fitted curve on top of the - axis
suggests that offset axes with tick marks pointing outwards, as in the Offset Axes plot of Figure 2 above, could be
an improvement.

Figure 3 Again, some regard a box round the data plotted, as in the Offset and Box plot of Figure 3 above, to be visually
pleasing.

Figure 4 Often grid lines, as in the Grid Lines example of Figure 4 above, help to establish coordinates, especially in
calibration curves.
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Alternative axes and labels

It is useful to move axes to make plots more meaningful, and it is sometimes necessary to hide labels, as with the plot of
H = G3 in the next figure, where the second G and third H label are suppressed. The figure also illustrates moving an axis
in barcharts with bars above and below a baseline.
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Alternative sizes, shapes, and clipping

Plots can have horizontal, square or vertical format as in the next figure, and user-defined clipping schemes can be used.
After clipping, SimFIT adds a standard BoundingBox so all plots with the same clipping scheme will have the same
absolute size but, when GSview/Ghostscript transforms ps into eps, it clips individual files to the boundary of white space
and the desirable property of equal dimensions will be lost.
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There is also a stretched format for long horizontal ribbon type graphs and a PostScript option to stretch white space
without altering symbols and fonts, which is very useful with dense data sets such as dendrograms.

Rotated and re-scaled graphs

PostScript files can be read into editps which has options for re-sizing, re-scaling, editing, rotating, making collages,
etc. In the next figure the box and whisker plot was turned on its side to generate a side-on barchart. To do this sort of
thing you should learn how to browse a SimFIT PostScript file in the SimFIT viewer to read BoundingBox coordinates, in
PostScript units of 72 to one inch, and calculate how much to translate, scale, rotate, etc.
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PostScript users should be warned that the special structure of SimFIT PostScript files that allows extensive retrospective
editing using editps, or more easily if you know how using a simple text editor like notepad, is lost if you read such
graphs into a graphics editor program like Adobe Illustrator. Such programs start off by redrawing vector graphics files
into their own conventions which are only machine readable.
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Changed aspect ratios and shear transformations

The barchart in the figure below was scaled to make the X-axis longer than the Y-axis and vice-versa, but note how this
type of differential scaling changes the aspect ratio as illustrated. Since rotation and scaling do not commute, the effect
created depends on the order of concatenation of the transformation matrices. For instance, scaling then rotation cause
shearing which can be used to generate 3-dimensional perspective effects as in the last sub-figure.
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Reduced or enlarged graphs
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It is always valuable to be able to edit a graph retrospectively, to change line or symbol types, eliminate unwanted data,
suppress error bars, change the title, and so on. SimFIT PostScript files are designed for just this sort of thing, and a
typical example would be altering line widths and font sizes as a figure is re-sized.

In the figure above the upper sub-figures are derived from the large figure by reduction, so the text becomes progressively
more difficult to read as the figures scale down.

In the lower sub-figures, however, line thicknesses and font sizes have been increased as the figure is reduced, maintaining
legibility. Such editing can be done interactively, but SimFIT PostScript files are designed to make such retrospective
editing easy as described in the w_readme.* files and now summarized.

• Line thickness: Changing 11.00 setlinewidth to 22 setlinewidth doubles, while, e.g. 5.5 setlinewidth halves all line
thicknesses, etc. Relative thicknesses are set by simplot.

• Fonts: Times-Roman, Times-Bold, Helvetica, Helvetica-Bold (set by simplot), or, in fact, any of the fonts installed
on your printer.

• Texts: ti(title), xl(G legend), yl(H legend), tc(centered for G axis numbers), tl(left to right), tr(right to left), td(rotated
down), ty(centered for H axis numbers).

• Lines: pl(polyline), li(line), da(dashed line), do(dotted line), dd(dashed dotted).

• Symbols: ce(i.e. circle-empty), ch(circle-half- filled), cf(circle-filled), and similarly for triangles(te, th, tf),
squares(se, sh, sf) and diamonds(de, dh, df). Coordinates and sizes are next to the abbreviations to move,
enlarge, etc.

If files do not print after editing you have probably added text to a string without padding out the key. Find the fault using
the GSview/Ghostscript package then try again.
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Split axes

Sometimes split axes can show data in a more illuminating manner as in the figures below. The options are to delete the
zero time point and use a log scale to compress the sparse asymptotic section, or to cut out the uninformative part of the
best fit curve between 10 and 30 days.
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Windows users can do such things with enhanced metafiles (*.emf), but there is a particularly powerful way for PostScript
users to split SimFIT graphs in this way. When the SimFIT PostScript file is being created there is a menu selectable
shape option that allows users to chop out, re-scale, and clip arbitrary pieces of graphs, but in such a way that the absolute
position, aspect ratio, and size of text strings does not change. In this way a master graph can be decomposed into
any number of appropriately scaled slave sub-graphs. Then editps can be used to compose a graph consisting of the
sub-graphs rearranged, repositioned, and resized in any configuration. The lower figure was created in this way after first
adding the extra lines shown at the splitting point.
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Stepping over intermediate data points

Sometimes it is advantageous to step over intermediate data points and, for clarity, only plot points at intervals through
the data set. For instance, there may be a large number of machine generated data points, far more than is required to
define a curve by the usual technique of joining joining up successive points by straight lines. Plotting all the points in
such cases would slow down the graphics display and, more importantly, could lead to very large PostScript output files.
Again, there would be times when a continuous curve is required to illustrate a function defined by a reasonable number
of closely spaced data points, but symbols at all points would obscure the curve, or might only be required for labeling
purposes.

The next figure illustrates a case in point.
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Here even small symbols, like dots in the bottom figure where no points are omitted, would obscure the plot and the
middle plot with intermediate groups of five suppressed, could also be regarded as too crowded, while the upper plot has
sufficient symbols even with twenty points stepped over to identify the plot, say in an information panel.

Of course such graphs can easily be created by pre-processing the data files before submitting for plotting. However,
SimFIT has a special facility to do this interactively. The technique required to create plots like the above figures is to
submit two files with identical data, one to be plotted as a line joining up data to create the impression of a continuous
curve, the other to be plotted as symbols. Then, from the [Data] menu when the plot is displayed, a parameter #()�%
can be defined, where #()�% is the number of intermediate points in each group to be stepped over.

Observe that, when using this technique, the first and last data points are always plotted to avoid misunderstanding.



686 Graph plotting

13.2.3 Pie charts

The simplest way to create a pie chart is to input a vector of positive numbers into SimFIT program simplot. For instance
the vector

1

2

1

2

1

generates the following pie chart with default fill styles, colours, labels, and panel labels, and where the volume of
segments is proportional to the number in the vector.

label 1

label 2

label 3

label 4

label 5

Pie Chart :  x = {1, 2, 1, 2, 1}

panel 1

panel 2

panel 3

panel 4

panel 5

As it can be tedious to input a vector and then have to edit the title, segment details, panel labels, etc. There are two ways
to simplify this process.

1. Save a configuration file from program simplot and read it in after supplying the numeric vector to use special
defaults.

2. Prepare a special file like piechart.tf1 containing 4 columns to input the data along with all the details for colors,
segment displacements, and labels. The format can be appreciated by examining this file in a text editor.

Then next three plots illustrate piecharts created using piechart.tf1, piechart.tf2, and piechart.tf31, followed by
two further examples illustrating special features.
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Data Preparation
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13.2.4 Bar charts

The simplest way to plot a bar chart is to prepare a data table with rows representing groups and columns for bars within
groups. For example the test file matrix.tf1 has the following values

� =

©­­­­­
«

1.20 4.50 6.10 7.20 8.00

3.00 5.60 3.70 9.10 12.5

17.1 23.4 5.50 9.20 3.30

7.15 5.87 9.94 8.82 10.8

12.4 4.30 7.70 8.95 1.60

ª®®®®®
¬

and from the exhaustive analysis procedure in program simstat these plots can be displayed.
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The next plots illustrate the effects created by several test files using program simplot.
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The way that SimFIT creates bar charts is as follows.

1. If the data matrix input does not have precisely 9 columns then a special advanced barchart file is created with
exactly 9 columns, where the value in each column represents a graphical feature.

2. In case you want to plot a data matrix with 9 columns, simply add an extra column 10 containing all values equal
to 0 and simplot will display the barchart correctly.

3. The format for such files can be seen from examining the barchart test files then checking the features as displayed
previously.

4. It will be appreciated from the explanations added after the data sections in the test files that this method allows
tremendous possibilities to sculpture barcharts with almost every possible variation concerning upper and lower
error bars, fill styles, colors, labels, sizes and positions.

5. Once a matrix or advanced barchart file has been input, program simplot allows other data files to be input, for
instance to represent error bars, or another curve to be overlayed as in the previous plot where the curve from
barchart.tf7 is overlayed on the barchart from barchart.tf6.

Some features that are possible with advanced barcharts are illustrated by the following figure.

Bar Chart Features

Overlapping Group

Normal Group

Stack

Hanging Group

Box/Whisker

55%

0%

-35%

Adding error bars to the barchart from matrix.tf1, and further editing that is possible after program simplot has
displayed the default barchart are demonstrated in the next plots.
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13.2.5 Box and whisker plots

For a box and whisker plot you can use the exhaustive analysis of a matrix or 1-way ANOVA options from program
simstat, or the simple and statistical plotting using program simplot. The case to be considered is where there are 5

groups of sizes 5, 8, 6, 8, and 8 using the library file anova1.tfl.

23 29 38 30 31

27 25 31 27 33

26 33 28 28 31

19 36 35 22 28

30 32 33 33 30

28 36 34 24

30 34 29

31 32 30

If sample sizes differ, data can be entered as an incomplete matrix with missing values, e.g., incomplete.tf1, individual
column vectors, from a project archive, or as a library file referencing data files for each of the columns. Results from
1-way ANOVA are as follows.

1-Way Analysis of Variance: Grand Mean 29.89

Transformation: x (untransformed data)

Source SSQ NDOF MSQ F p

Between Groups 202.0 4 50.51 3.931 0.0111

Residual 385.5 30 12.85

Total 587.5 34

The the next plot shows sample ranges with medians and quartiles as a box and whisker plot.
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The results suggest rejecting the null hypothesis of equal means at the 5% significance level as ? < 0.05, but not the 1%

significance level as ? > 0.01.
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The data can also be shown with error bars or as scattered points or even points scattered on the box and whisker plot as
shown below.
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Another way to display the data is a range and percentiles plot as illustrated next. Here the lowest line segments join the
lowest sample value for the corresponding groups, the upper line segments join the largest sample values, while between
them the line segments join the points corresponding to the 25%, 50%, and 75% levels.

15

20

25

30

35

40

1 2 3 4 5

Range and Percentiles

Samples

P
er

ce
nt

ile
s

0%

25%

50%

75%100%

Actually box and whisker plots can be created using advanced bar chart files like barchart.tf1 which has the following
format, derived from the data in anova.tfl.

Box and whisker plot

5 9

1 -2 -1 0 2 3 1 1 15

3 -1 0 2 4 5 1 1 15

5 1 2 3 5 6 1 1 15

7 0 1 2 4 5 1 1 15

9 1 3 5 6 7 1 1 15

7

begin{labels}

January

February

March

April

May

end{labels}

Note that, by constructing such advanced bar chart files, it is possible to create a great number of specialized plots, for
instance: plots with overlapping bars, bars with error bars, mixed bars and box and whiskers, hanging bars, etc.

An explanation of the above three sections of data values follows.

1. Header: line 1: title, line 2: < = number of rows, = = number of columns

2. Data: line 3 onwards. Each line of data looks like this:-
G, H1, H2, H3, H4, H5, 5 , F, 2, and has the following interpretation:
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• G = G coordinate for the bar (x in nondecreasing order)

• H1 = H for bottom of range (i.e. bottom error bar)

• H2 = H for lower quartile (i.e. bottom of box)

• H3 = H for median of data (i.e. divider for box)

• H4 = H for upper quartile (i.e. top of box)

• H5 = H for top of range (i.e. top error bar)

• 5 = fill-style (between 0 and 10)

• F = width (between 0 and 1)

• 2 = colour (between 0 and 71)

3. Labels: line < + 3: number of important trailing text lines, the first < + 2 of these being

• a) first of all begin{labels} to indicate the start of the labels,

• b) then the consecutive labels for data rows 1 to <,

• c) then finally end{labels} to indicate the end of the labels.

For example, reading barchart.tf1 into program simplot followed by minor editing then installing a PostScript special
created the next plot.
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13.2.6 Standard plots

The easiest way to plot a simple graph is to open a text editor such as notepad, type in a two column data table with G in
column 1 and H in column 2, copy to the clipboard, then input into program simplot. For instance, to plot the parabola
H = G2, you could type in this table to create the following default graph.
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However, the following with 100 data points is probably more like what you had in mind.
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Of course you can copy and paste larger data sets from a spreadsheet program, but the superior way is to create SimFIT
data files. These can be input in collections using library files, as in the next example created by reading the library test
file simfig1.tfl into program simplot leading to this default graph.
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Since this was previously edited and the settings saved as the configuration file w_simfig1.cfg, this can now be input
resulting in the next figure.
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Alternatively the configuration file w_simfig2.cfg creates this figure.
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This is simply the original data plotted in new coordinates and with additional features. Editing can then resume with this
re-configured data in the same way as after reading in a SimFIT metafile, as demonstrated in the next figure,
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Advice

1. Plotting a model equation

This is best achieved using program makdat with a model from the SimFIT library or a user-supplied model file,
as the range and number of points can be chosen interactively.

2. Simple Graphics

During data analysis SimFIT often displays a standard graph in simple graphics mode which only offers limited
editing options and hardcopy possibilities. If there is reason to dedicate time and effort to make a superior
graphics presentation, there is a [Advanced] option which allows users to to transfer to advanced graphics, or to
add coordinate files to your project archive for retrospective use.

3. Advanced graphics

From this interface extensive editing can be carried out before saving as a graphics file.

4. Plotting multiple data sets

Groups of files for plotting are best collected into library files using coordinate files saved into your graphics project
archive, as then they are certain to have the correct format.

5. Saving a SimFIT metafile

Once a graph has been edited you can store a configuration file, which is a template containing the editing details
that can be input retrospectively to over-write the standard default parameters. Alternatively the editing details and
the data can be saved to a SimFIT metafile. Such metafiles can be input into program simplot to resume editing.

6. Saving Windows quality hardcopy

The recommended order of preference is as follows.

*.svg >> *.png > *.jpg > *.emf > *.tif >> *.bmp

Use *.svg vector files for internet graphics and *.png for including into documents. Enhanced metafiles (*.emf)
can also be included in documents, but care must be taken not to change the aspect ratio.

7. Saving PostScript quality hardcopy

By far the superior way is to archive SimFIT encapsulated PostScript files *.eps, because they are very compact,
the resolution is device independent, they can be transformed into *.pdf and other graphics files, they can be edited
in a text editor such as notepad, and there are many additional graphics procedures available. However, to get the
most out of SimFIT *.eps files you should have GhostScript installed and possibly a PostScript display program
like Gsview.

8. Using GhostScript

This wonderful free package can be used to transform SimFIT *.eps files into *.pdf, *.png, and *.jpg that are much
higher quality than anything you can get from Windows hardcopy. However *.svg files saved directly using the
Windows hardcopy option are true vector graphics created by SimFIT and are actually superior to the *.svg files
created from *.eps by Ghostscript.
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13.2.7 Double plots

Frequently different scales are required for the G or H axes and it is convenient to make a plot with, say two H axes. For
instance, in column chromatography, with absorbance at 280=< representing protein concentration, at the same time as
enzyme activity eluted, and the pH gradient. The following table is typical where absorbance could require a scale of zero
to unity, while enzyme activity uses a scale of zero to eight, and pH could be on a scale of six to eight.

Fraction Number Absorbance Enzyme Activity Buffer pH

1 0.0 0.1 6.0

2 0.1 0.3 6.0

3 1.0 0.2 6.0

4 0.9 0.6 6.0

5 0.5 0.1 6.2

6 0.3 0.8 6.7

7 0.1 1.5 7.0

8 0.3 6.3 7.0

9 0.4 8.0 7.0

10 0.2 5.5 7.0

11 0.1 2.0 7.2

12 0.1 1.5 7.5

13 0.3 0.5 7.5

14 0.6 1.0 7.5

15 0.9 0.5 7.5

If absorbance and activity were plotted on the same scale the plot would be dominated by activity, so you could change the
units of enzyme activity to be compatible with the absorbance scale. However, to illustrate how to create a double graph, a
plot with absorbance on the left hand axis and enzyme activity and pH together on the right hand axis will be constructed.
Obviously this requires three separate objects, i.e., files for program simplot, and information to indicate which H axis is
to be used for the individual files. For instance, you could create the following files using program makmat, and the data
in the above table.
File 1: The first column together with the second column (as in test file plot2.tf1)
File 2: The first column together with the third column (as in test file plot2.tf2)
File 3: The first column together with the fourth column (as in test file plot2.tf3)

Then select program simplot and choose to make a double graph. Input the first file (absorbance against fraction) scaled
to the left hand axis with the other two scaled to the right hand axis to get the first figure following. To transform the
default simplot plot into the finished product of the second figure following proceed as follows:

a) Edit the overall plot title and both plot legends.

b) Edit the data ranges, notation and offset on the axes.

c) Edit the three symbol and line types corresponding to the three files.

d) Include an information panel and edit the corresponding keys.

e) Create the final PostScript file.
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13.2.8 Plotting error bars

Error bars with barcharts

Barcharts with or without error bars can be created interactively from a table of values. For example, the upper figure
below was generated from matrix.tf1 as a default barchart using program simplot, while the lower figure has twice the
square root of the bar values added.
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If the elements are measurements, the height of the bars would be means, while error bars would be calculated as 95%
confidence limits, i.e., using a C distribution and assuming a normal distribution. Often one standard error of the mean is
used instead of confidence limits to make the data look better, which is dishonest. If the elements are counts, approximate
error bars could be added as twice the square root of the counts, i.e., assuming a Poisson distribution. Note that after
creating barcharts from matrices in program simplot the temporary advanced barchart files generated to plot the bar chart
can be saved.
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Error bars with skyscraper and cylinder plots

Barcharts can be created for tables, I(8, 9) say, where cells are values for plotting as a function of G (rows) and H (columns).
The G, H values are not required, as such plots usually require labels not numbers. The next figure shows the plot generated
by simplot from the test file matrix.tf2.
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11

Simfit Skyscraper Plot with Error Bars

Values

Month 7
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Month 3
Month 2

Month 1

Case 1
Case 2
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Case 5

0

11

Simfit Cylinder Plot with Error Bars

Errors are added from a file, and are calculated according to the distribution assumed. They could be twice square roots
for Poisson counts, binomial errors for proportions or percentages, or they could be calculated from sample standard
deviations using the C distribution for means. As skyscraper plots with errors are dominated by vertical lines, error bars
are plotted with thickened lines, but a better solution is to plot cylinders instead of skyscrapers, as illustrated.
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Slanting and multiple error bars

Error bar files can be created by program editfl after editing curve fitting files with replicates, and such error bars will
be symmetrical, representing central confidence limits in the (G, H) space. But note that these error bars can become
unsymmetrical or slanting as a result of a transformation, e.g., log(H) or Scatchard, using program simplot. Program
binomial will, on the other hand, generate noncentral confidence limits, i.e., unsymmetrical error bars for binomial
parameter confidence limits, and Log-Odds plots.

Sometimes it is necessary to plot asymmetrical error bars, slanting error bars or even multiple error bars. To do this,
note that the error bar test file errorbar.tf1 has four columns with the G coordinate for the plotting symbol, then the
H-coordinates for the lower bar, middle bar and upper bar. However, the error bar test file errorbar.tf2 has six columns
shown in the table below, so that the (G1, H1), (G2, H2), (G3, H3) coordinates specified can create any type of error bar, even
multiple error bars, as will be seen in the next figure.

G1 G2 G3 H1 H2 H3

0.0 0.0 0.0 0.0 0.0 1.0

1.0 1.0 1.0 0.5 1.0 1.5

1.5 2.0 2.5 2.0 2.0 2.0

2.5 3.0 3.5 2.5 3.0 3.5

3.5 4.0 4.5 4.0 4.0 4.0

4.0 4.0 4.0 3.5 4.0 4.5

5.0 5.0 5.0 4.5 5.0 5.5

4.5 5.0 5.5 5.0 5.0 5.0

4.5 5.0 5.5 4.5 5.0 5.5

4.5 5.0 5.5 5.5 5.0 4.5

6.0 6.0 6.0 6.0 6.0 5.0

0
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Calculating error bars interactively

The next figure shows the best fit curve estimated by qnfit when fitting a sum of three Gaussians to the test file gauss3.tf1.
Note that all the data must be used for fitting, not means. Programs editfl and simplot can generate error bar plotting files
from such data files with replicates, as illustrated for 95% confidence limits.
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Plotting binomial error bars

The plot below shows binomial parameter estimates for H successes in # trials. The error bars represent exact, unsym-
metrical confidence limits, not those calculated using the normal approximation.
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Plotting Log-Odds error bars

Binomial error bars can also be manipulated by transforming the estimates ?̂ = H/# and confidence limits. For instance,
the ratio of success to failure (i.e. Odds H/(# − H)) or the logarithm (i.e. Log Odds) can be used, as in the next figure,
to emphasize deviation from a fixed ? value, e.g. ? = 0.5 with a log-odds of 0. This figure was created from a simple
log-odds plot by using the [Advanced] option to transfer the G, ?̂/(1 − ?̂) data into simplot, then selecting a reverse
H-semilog transform.
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It is often useful to plot Log-Odds-Ratios, so the creation of
the adjacent figure will be outlined.

(1) The data

Test files meta.tf1, meta.tf2, and meta.tf3 were ana-
lyzed in sequence using the SimFIT Meta Analysis proce-
dure. Note that, in these files, column 3 contains spacing
coordinates so that data will be plotted consecutively.

(2) The ASCII coordinate files

During Meta Analysis, 100(1 − U)% confidence limits on
the Log-Odds-Ratio resulting from a 2 by 2 contingency
tables with cell frequencies =8 9 can be constructed from the
approximation 4̂ where

4̂ = /U/2

√
1

=11
+ 1

=12
+ 1

=21
+ 1

=22
.

When Log-Odds-Ratios with error bars are displayed, the
overall values (shown as filled symbols) with error bars are
also plotted with a G coordinate one less than smallest G value
on the input file. For this figure, error bar coordinates were
transferred into the project archive using the [Advanced]
option to save ASCII coordinate files.

(3) Creating the composite plot

Program simplot was opened and the six error bar coordi-
nate files were retrieved from the project archive. Experi-
enced users would do this more easily using a library file
of course. Reverse H-semilog transformation was selected,
symbols were chosen, axes, title, and legends were edited,
then half bracket hooks identifying the data were added as
arrows and extra text.

(4) Creating the PostScript file

Vertical format was chosen then, using the option to stretch
PostScript files, the H coordinate was stretched by a factor of
two.

(5) Editing the PostScript file

To create the final PostScript file for LATEX a tighter bound-
ing box was calculated using gsview then, using notepad,
clipping coordinates at the top of the file were set equal
to the BoundingBox coordinates, to suppress excess white
space. This can also be done using the [Style] option to omit
painting a white background, so that PostScript files are cre-
ated with transparent backgrounds, i.e., no white space, and
clipping is irrelevant.
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13.2.9 Plotting labels

No plot is complete without labels to identify the data in a title, with specific information in the legends, and possibly
additional text within the data plotting range to identify special features. However, the labels may not be simple character
strings but may contain subscripts, superscripts, or mathematical symbols, which require an associated template to indicate
such additional enhancements, as discussed next.

Labels and corresponding templates

Consider the titles, legends, and additional text in the next figures from fitting a two site binding model displayed in
standard space and Scatchard transformed space.
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To appreciate how to edit labels and associate template keys to introduce subscripts, superscripts, maths, etc. consider the
title, G legend and H legend in the standard plot are as follows

Binding Curve for the a2b2 isoform at 21@C

000000000000000000000061610000000000000060

Concentration of Free Ligand(lM)

00000000000000000000000000000300

Ligand Bound per Mole of Protein

00000000000000000000000000000000

while the additional text and templates for the Scatchard plot are as shown next.

T = 21@C

00000030

[Ca++] = 1.3*10­7M

000220000000300220

Clearly a 0 indicates a normal character, a template value 1 indicates a subscript while a value 2 indicates a superscript,
and these changes would be made by altering the template key interactively.

However the keys equal to 3 for maths or 6 for bold maths are done automatically by selecting the required character from
a SimFIT symbol or maths character substitution table.
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Labels in plots

Labels in SimFIT plots are text strings (with associated template strings) that do not have arbitrary positions, but are
plotted at default coordinates to identify the data. Some examples would be as follows.

• Labels adjacent to segments in a pie chart.

• Labels on the - axis to indicate groups in bar charts.

• Labels on the - axis to identify clusters in dendrograms.

• Labels plotted alongside symbols in 2D plots, such as principal components.

Test files such as cluster.tf1 illustrate the usual way to supply labels appended to data files in order to over-ride the
defaults set from the configuration options, but sometimes it is convenient to supply labels interactively from a file, or
from the clipboard, and not all procedures in SimFIT use the labels supplied appended to data files. The next figures
illustrate this.
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Test file cluster.tf1 was input into the procedure for exhaustive analysis of a matrix in simstat, and the option to plot
columns as an advanced 2D plot was selected. This created the left hand figure, where default integer labels indicate
row coordinates. Then the option to add labels from a file was chosen, and test file labels.txt was input. This is
just lines of characters in alphabetical order to overwrite the default integers. Then the option to read in a template was
selected, and test file templates.txt was input. This just contains a succession of lines containing 6, indicating that
alphabetical characters are to be plotted as bold maths symbols, resulting in the right hand figure. The recommended
procedure follows.

1. Write the column of case labels, or row of variable labels, from your data-base or spread-sheet program into an
ASCII text file.

2. This file should just consist of one label per line and nothing else (like labels.txt)

3. Paste this file at the end of your SimFIT data matrix file, editing the extra line counter (as in cluster.tf1) as
required.

4. If there are = lines of data, the extra line counter (after the data but before the labels) must be at least = to use this
label providing technique.

5. Alternatively use the more versatile begin{labels} ... end{labels} technique.

6. Archive the labels file if interactive use is anticipated as in the previous figure.

7. If Special symbols or accents are required, a corresponding templates file with character display codes can be
prepared.
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Adjusting the position of labels

As an example, principal components for multivariate data can be explored by plotting scree diagrams and scattergrams
after using the calculations options in program simstat. If labels are appended to the data file, as with cluster.tf2,
they can be plotted, as in the next figures.
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Labels similar to the ones that are usually plotted along the G axis are used to label the points, but displaced to one or
other side of the plotting symbol for legibility. Colors are controlled from the [Colour] options as these are linked to the
color of the symbol plotted, even if the symbol is suppressed. The font is the one that would be used to label the G axis if
labels were plotted instead of numbers. Clearly arbitrary labels cannot be plotted at the same time on the G axis. Often it
is required to move the labels because of clashes, as above. This is done by using the labels editing function, setting labels
that clash equal to blanks, then using the normal mechanism for adding arbitrary text and arrows to label the coordinates
in the principal components scattergram. To facilitate this process, the default text font is the same as the axes numbering
font.

Alternatively, the plotting menus provide the option to displace any labels by defining parameters to shift individual labels
horizontally or vertically. The movement is necessarily limited by a numerical scale or slider control, and some versions
of SimFIT allow label movement by dragging with the red arrow. Clearly, setting the additional G and H displacements to
zero restores the label to the original position adjacent to the symbol being plotted.
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13.2.10 Plotting mathematical equations interactively

Plotting mathematical equations over a range is often required and the programs and techniques available to do this are as
follows.

1. Program makdat

After selecting a model from the compiled library or as a user-defined model, plots can be displayed over a chosen
range.

2. Program deqsol

This is similar to the using program makdat but is preferred if it is wished to plot systems of nonlinear differential
equations, or phase portraits or orbits for autonomous systems.

3. Program usermod

This has similar functionality to program makdat except that it allows users to defines a model or set of models
interactively. Once a model has been developed it can be archived for future use, so this is the only technique that
will be described in this document.

Defining a mathematical model interactively

From the main SimFIT menu use the option [A/Z] to open program usermod and observe that there is an option to define
a model interactively, and when this has been done the mathematical model can be checked for correct syntax, plotted
over a chosen range or archived for retrospective use. Some simple examples to illustrate the functionality of program
usermod will now be given. However note that you will have to be prepared to input the following values.

• The number of equations #�&# ≥ 1

The equations will be defined as 5 (1), 5 (2), . . . , 5 (#�&#).
• The number of variables #+�' ≥ 1 (or differential equations which assumes #+�' = 1)

The variables will be either #+�' = 1 using the symbol G for the independent variable to plot 2 dimensional
curves, or #+�' = 2 using the symbols G and H for the independent variables to display 3 dimensional surfaces.

• The number of parameters #%�' ≥ 0

The parameters will be ?(1), ?(2), . . . , ?(#%�') and these can be defined and varied interactively if it is required
to study the effect of parameter values on the plots.

Example 1: A quadratic equation

The mathematical model will be the quadratic
5 (G) = G2 − 1.

So you have to create a user-defined model with these characteristics:

• One equation #�&# = 1

• One variable #+�' = 1

• No parameters #%�' = 0

then the following unfinished model file will be displayed.
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%

This is a default template for a user­defined­model file.

%

1 equation

1 variable

0 parameters

%

begin{expression}

f(1) =

end{expression}

%

The empty field is then filled in to replace the string f(1) = by f(1) = x^2 ­ 1 as shown below.

%

The model y = x^2 ­ 1 = (x ­ 1)(x + 1).

%

1 equation

1 variable

0 parameters

%

begin{expression}

f(1) = x^2 ­ 1

end{expression}

%

This is then checked for consistency and the option is provided to plot the model as in the next figure.
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Example 2: Four trigonometric functions

Selecting four functions of one variables with four parameters and then choosing

51 (G) = ?1 cos G, 52 (G) = ?2 sin G, 53 (G) = ?3 cos 2G, 54 (G) = ?4 sin 2G

leads to the following model.

%

f(1)=p(1)cos(x), f(2)=p(2)sin(x), f(3)=p(3)cos(2x), f(4)=p(4)sin(2x)

%

4 equations

1 variable

4 parameters

%

begin{expression}

f(1) = p(1)cos(x)

f(2) = p(2)sin(x)

f(3) = p(3)cos(2x)

f(4) = p(4)sin(2x)

end{expression}

%

This is then checked for consistency and the option is provided to plot the model as in the next figure using the default
values of 1 for all the parameters.
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USERMOD plot for Trigonometric Functions
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The border, colors, line thicknesses, and title were added using the Advanced Graphics option and the G labels were plotted
as characters instead of numbers and edited to show the range (0 ≤ G ≤ 2c).
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Example 3: A quadratic surface with contours

Select one function of two variables with two parameters then create the following model.

%

A function of two variables.

%

1 equation

2 variables

2 parameters

%

begin{expression}

f(1) = p(1)x^2 + p(2)y^2

end{expression}

%

Note that the default parameters are

?1 = 1, ?2 = 1

which defines the following convex paraboloid.

p(1) = 1, p(2) = 1: f(x,y) = x2 + y2
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-1.5

0.012465

4.5

However it is possible to edit the parameters using the same model to create a hyperboloid by setting

?1 = 1, ?2 = −1

or a concave paraboloid by using

?1 = −1, ?2 = −1

as demonstrated in the next two plots.
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p(1) = 1, p(2) = -1: f(x,y) = x2 - y2
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Z
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p(1) = -1, p(2) = -1: f(x,y) = - (x2 + y2)
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13.3 Advanced graphics

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

13.3.1 Configuration files, templates, and metafiles

It is often required to sculpture a graph for archive use or publication, and this can prove tiresome if it has to be done
repeatedly.

Consider, for example, the steps needed to generate a logodds plot from the default plot that SimFIT creates.

• Transfer the (G, H) values, i.e. ?̂/(1 − ?̂) as a function of G, into advanced graphics mode, i.e. the indirect simplot

interface.

• Choose the reverse H-semilog plot.

• Change the title and legends.

• Suppress or move the H axis.

• Add labels or similar additional features.

• Save a graphics file.

SimFIT provides the following procedures to facilitate such processes.

1. Create a configuration file.

This will contain all the special features added to the default graph by editing in the advanced simplot interface.
It will include all the extra features added such as arrows, labels, graphical objects, information panel, and any
mathematical or accented text, but it will not contain any of the data plotted. In particular it will contain the ranges
of data, G<8= to G<0G and H<8= to H<0G , that were being plotted.

2. Create a metafile.

This will be a configuration file as just described, but in addition will have all the data added.

3. Read in a configuration file in comprehensive mode.

This will restore all the graphics features stored in the configuration file, including the ranges of data. This means
that a configuration file should only be read in when the data have the same ranges as when the configuration file
was created, otherwise unwanted effects will be created.

4. Read in a configuration file in template mode.

This will re-install all the graphical features saved in the configuration file except for the data ranges. This means
that the template can be used with data sets with different data ranges than those in use when the configuration file
was created.

5. Read in a SimFIT metafile into program simplot.
This will create a complete graph with all features and data that were present when the metafile was created, and
this is the recommended way to interrupt editing a graph in the advanced simplot mode in order to resume later
for retrospective editing.

Note that, if a metafile is read directly into program simplot, it will create the full graph, but if it is read into
advanced graphics mode it will just act as a configuration file.

Advice

If you decide to read in a configuration file then SimFIT will advise you that you can, at that stage, create a configuration
file so that, in the event that the configuration file introduced creates unsatisfactory effects, you can undo these and
return to the previous state. If you do intend to use the configuration file method, you must read in the configuration file
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immediately the advanced interface has been opened, and appreciate the difference between reading in a configuration file
in comprehensive or template mode, as follows.

Using the comprehensive mode should only be contemplated when the data being edited have exactly the same data

ranges as those that were in operation when the configuration file was created and so, in general, it is usually safer to use

the template mode so that the existing data ranges are not changed.
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13.3.2 Log Odds plot

The log odds plot is used to display the ratio of success to failure in a sequence of binomial investigations, using a
logarithmic scale to base 10 in order to facilitate analysis of the differences in orders of magnitude. Frequently the H axis
is moved to a central position, or an additional vertical line is added to indicate the point where success and failure are
equally likely.

Using program simstat in binomial proportions mode with the default data set displays the following graph, which is
followed by the results from transferring to advanced editing.

Log Odds with confidence lims.
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Reading in the configuration file logodds.cfg as a short cut to tedious editing results in the next graph, while creating
the metafile metafile.tf9 allows immediate production of the final graph either by directly reading the metafile into
program simplot, or by reading it in as a configuration file to configure the default graph after transferring to advanced
graphics.
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p̂/(1 - p̂)

10-2 10-1 100 101

p̂/(1 - p̂)

Log Odds Plot for p̂ = y/N

Group 1

Group 2
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Group 4

Group 5

Combined Groups
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13.3.3 Log Odds Ratios Forest plot

The log odds ratios plot is used to display groups of ratios of odds (i.e. successes/failures) in sequences of binomial
investigations, such as in meta analysis. Usually a logarithmic scale to base 10 is used in order to facilitate analysis of
the differences in orders of magnitude. This tutorial also demonstrates an important difference between using graphics
configuration files in template mode and in comprehensive mode.

Using program simstat in meta analysis mode with the test data in meta.tf2 (instead of the default data set meta.tf1)
displays the following graph, which is followed by the results from transferring to advanced editing then reading in the
configuration file logoddsratios.cfg in the template mode.

Log Odds Ratios and con. lims.
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However, reading in the configuration file logoddsratios.cfg in the comprehensive mode as a short cut to tedious
editing results in the next more detailed graph.

-1 0 1 2

log10[Odds-Ratios]

The difference between this plot and the previous one highlights the difference between using a configuration file in
template mode and in comprehensive mode.

In template mode the position and range of axes together with the number of tick marks is calculated from the existing
data and is therefore applicable to any meta analysis data. In meta analysis we have pairs of binomial analyzes in order to
determine if groups of pairs of data sets represent the same ratio of successes to failures, rather than equality of binomial
parameter estimates. For instance, sample 1 would have H1 successes in a sample size of #1 giving the parameter estimate
?̂1 = H1/#1, while sample 2 would generate the estimate ?̂2 = H2/#2.

So the log odds ratios being compared between groups would be

Log Odds Ratio in each group = log10

(
?̂1/(1 − ?̂1)
?̂2/(1 − ?̂2)

)

and this illustrates an important point.

Because the comprehensive mode imposes the coordinate ranges that were current when the configuration file was
created for test data file meta.tf2, it re-imposes the choice that was made to suppress the original dashed line added to
indicate equal odds within groups, i.e. log odds ratios of 0, move the H axis to a value of 0, and in addition to increase the
range covered by the H axis to separate the pooled sample estimate from the G axis.

Another feature of plotting meta analysis data is the intention to display groups of such 2 by 2 contingency tables stacked
vertically so as to emphasize differences an similarities between competing studies, for instance in so-called evidence
based medicine, i.e. clinical trials. An example will now be presented to illustrate how to do this using SimFIT.
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It is often useful to plot Log-Odds-Ratios, so the creation
of the adjacent figure will be outlined.

(1) The data

Test files meta.tf1, meta.tf2, and meta.tf3 were ana-
lyzed in sequence using the SimFIT Meta Analysis proce-
dure. Note that, in these files, column 3 contains spacing
coordinates so that data will be plotted consecutively.

(2) The ASCII coordinate files

During Meta Analysis, 100(1 − U)% confidence limits on
the Log-Odds-Ratio resulting from a 2 by 2 contingency
tables with cell frequencies =8 9 can be constructed from
the approximation 4̂ where

4̂ = /U/2

√
1
=11

+ 1
=12

+ 1
=21

+ 1
=22

.

When Log-Odds-Ratios with error bars are displayed, the
overall values (shown as filled symbols) with error bars
are also plotted with a G coordinate one less than smallest
G value on the input file. For this figure, error bar coor-
dinates were transferred into the project archive using the
[Advanced] option to save ASCII coordinate files.

(3) Creating the composite plot

Program simplot was opened and the six error bar coordi-
nate files were retrieved from the project archive. Experi-
enced users would do this more easily using a library file
of course. Reverse H-semilog transformation was selected,
symbols were chosen, axes, title, and legends were edited,
then half bracket hooks identifying the data were added as
arrows and extra text.

(4) Creating the PostScript file

Vertical format was chosen then, using the option to stretch
PostScript files, the H coordinate was stretched by a factor
of two.

(5) Editing the PostScript file

To create the final PostScript file for LATEX a tighter bound-
ing box was calculated using gsview then, using notepad,
clipping coordinates at the top of the file were set equal
to the BoundingBox coordinates, to suppress excess white
space. This can also be done using the [Style] option to
omit painting a white background, so that PostScript files
are created with transparent backgrounds, i.e. no white
space, and clipping is irrelevant.
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13.3.4 The Scatchard plot

The Scatchard plot was used historically to estimate binding constants by extrapolation, but nowadays parameter estimation
and model discrimination would be performed using nonlinear regression and statistical analysis. However, the plot is still
sometimes used to illustrate deviations from Michaelis-Menten kinetics or one-site binding (Childs,R.E and Bardsley,W.G.
(1976) J. Theor. Biol. 63, 1 – 18). This can be demonstrated by opening program mmfit and fitting first one then a sum of
two Michaelis-Menten functions. Program mmfit provides an option to visualize a Scatchard plot but, to use additional
features, the data would be transferred directly to advanced editing leading to the following plots. The first plot shows all
the data, while the second results from interactive calculation of error bars for 95% confidence limits.
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Selecting the Scatchard transformation then leads to the next graph where the best-fit curve is a conic section.
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For further illustration, the configuration file w_simfig1.cfg was installed, followed by minor editing to create the next
plot.
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13.3.5 The Hill plot

The Hill plot is used to display cooperative effects in ligand binding to a protein or receptor with at least two linked sites.
Sites with no linkage will show one-site binding isotherms and so, to explain how to create Hill plots, use program sffit to
fit a two site model to the test file sffit.tf4. After fitting, a cooperativity analysis interface is presented and, choosing
the Hill plot, generates the next plot with data, best-fit curve, and extreme points needed to plot the asymptotes in Hill
space.
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Choosing a Hill plot with asymptote � = 1 the next plot will be displayed, and this is followed by an introduction to the
principles of cooperativity analysis needed to interpret Hill plots..
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Theory

Ligand binding theory will be presented under the following headings.

1. Historical introduction

2. Binding polynomials

3. Definition of cooperativity

4. Factorability of the binding polynomial

5. Statistical interpretation of saturation functions

6. Cooperativity analysis

Historical Introduction

In 1910 Hill [1] proposed that the sigmoid binding curve for oxygen binding to haemoglobin could be analyzed in terms
of the binding of = ligands in one step with no appreciable intermediates, i.e. the mass action description

�1 + =- ⇋ �1-= .

This leads to the Hill equation describing the fractional saturation H as a function of concentration G, and the Hill plot of
log[H/(1 − H)] as a function of log G as follows

H =
 G=

1 +  G=

log

(
H

1 − H

)
= = log G + log .

It is now realized that the Hill equation is simply an empirical equation that is at best a poor approximation to any real
binding situation since:

1. it is only an appropriate representation for a one-site binding process, i.e. for = = 1 ;

2. when = < 1 it has an infinite slope at the origin and cannot model any realistic binding situation;

3. when = > 1 it has zero slope at the origin and cannot model any realistic binding situation;

4. when = is not a positive integer it is pure nonsense; and

5. using it to discuss the effect of cooperativity on graphical features such as sigmoidicity in the H(G) curve, or
convexity in Lineweaver-Burke or Scatchard space, has resulted in considerable confusion.

Of course, before the days of computers and nonlinear regression, fitting a straight line to a Hill plot to get a non-integer
value for the estimated slope was all that could be done, and this non-integer value was correctly taken to mean that this
was a result of the model being incorrect.

Nowadays no one would dream of discussing cooperative binding in terms of the Hill equation or fitting a straight line to
a Hill plot but, by a serendipitous coincidence, it turns out that the variable slope of the curve obtained by transforming a
saturation curve into Hill space still provides an unambiguous definition of the sign and magnitude of cooperativity that
has got nothing at all to do with the Hill equation. That is because, to use receptor terminology,

H

1 − H =
[Bound]
[Free] .
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Binding polynomials and their Hessians

In 1925 Adair [2] improved the description of binding isotherms by defining binding constants for the individual binding
events, and later it came to be appreciated that these have to be normalized by statistical factors in order to discuss the
affinity of receptor for ligand in adjacent binding events. In 1967 Wyman [3] rationalized the situation by pointing out
that, for a non-aggregating macromolecule with = binding sites and only one ligand G varied, there would be binding
polynomial which would act like a partition function in that successive terms of degree 8 in the polynomial are proportional
to the amount of macromolecule with 8 ligands attached.

So now the binding of ligands to receptors can be defined for all possible cooperative binding schemes in terms of a
binding polynomial ?(G) in the free ligand activity G, as follows

?(G) = 1 +  1G +  2G
2 + · · · +  =G=

= 1 + �1G + �1�2G
2 + · · · +

=∏
8=1

�8G
=

= 1 +
(
=

1

)
�1G +

(
=

2

)
�1�2G

2 + · · · +
(
=

=

) =∏
8=1

�8G
= ,

where the only difference between these alternative expressions concerns the meaning and interpretation of the binding
constants. The fractional saturation is just the scaled derivative of the log of the polynomial with respect to log(G), and
an important auxiliary function is ℎ(G), the Hessian of the binding polynomial defined as follows

H(G) =
(
1
=

)
3 log ?(G)
3 log G

=

(
1
=

)
G?′ (G)
?(G)

ℎ(G) = =??′′ − (= − 1)?′2 .

Definition of cooperativity

Given a binding polynomial of degree = there are = − 1 cooperativity coefficients 28 defined as

28 = �8+1 − �8 for 8 = 1, 2, . . . , = − 1,

or alternatively as log(�8+1/�8), and the interpretation of these is perfectly clear: in a situation where 28 > 0 the
macromolecule has greater affinity for binding the 8 + 1th ligand after the 8th ligand has been bound and it is perfectly
reasonable to describe this as mechanistic positive cooperativity. Hence every binding situation for = ligands can be
summarized by a succession of = − 1 signs and it might be thought that during the actual saturation of macromolecule
with ligand there would be a succession of phases with possibly differing cooperativity. For instance, the sequence + − +
might be supposed to give a saturation curve with positive, then negative, then positive cooperativity. Unfortunately the
cooperativity coefficients cannot be interpreted in this way and they are not a unique indicator of the sign and magnitude
of the type of cooperativity exhibited during the saturation process. The reason for this is simply that binding does not
occur in a succession of isolated steps and at every stage for 0 < G < ∞ every species that is possible is present, that is no
ligands bound, one ligand bound, two ligands bound, etc. up to = ligands bound.

At every point in the range 0 < G < ∞ there is a one site binding curve H0?? with a uniquely defined apparent binding
constant  0?? according to the scheme

[Free sites] + - ⇋ [Occupied sites]

that is

H0?? (G) =
 0??G

1 +  0??G
.

Surely all would agree that the sign and magnitude of cooperativity at that point in the saturation curve would depend on
whether  0?? is increasing or decreasing as a function of G. It turns out that

 0?? =
?′ (G)

=?(G) − G?′ (G) and

3 0??

3G
=

ℎ(G)
(=?(G) − G?′ (G))2



The Hill plot 729

so that increasing affinity (i.e. positive cooperativity) requires ℎ(G) > 0, decreasing affinity (i.e. negative cooperativity)
requires ℎ(G) < 0 while at a point where ℎ(G) = 0 cooperativity changes sign. Bardsley and Wyman [4] emphasized that
the magnitude of the Hill slope with respect to 1 is the unambiguous indicator of cooperativity which also depends on the
sign of the Hessian as follows

3 log[H/(1 − H)]
3 log G

= 1 + Gℎ(G)
?′(G) (=?(G) − G?′ (G)) .

and Wood and Bardsley [5] proved that the Hessian can have at most = − 2 positive zeros.

Zeros of the binding polynomial

If the = zeros of the binding polynomial are U8 then the fractional saturation H can be expressed as

H =
( G
=

) =∑
8=1

1
G − U8

,

but further discussion depends on the nature of the zeros.

First observe that, for a set of < groups of receptors, each with =8 independent binding sites and binding constant :8 , then
the zeros are all real and

?(G) =
<∏
8=1

(1 + :8G)=8 ,

and H =
1∑<
8=1

=8

<∑
8=1

=8 :8G

1 + :8G
,

so H is just the sum of simple binding curves, giving concave down double reciprocal plots, etc.

Actually Bardsley et al [6] and [7] proved that, if a binding polynomial factorizes into < polynomials ?8 with positive
coefficients according to

?(G) = ?1 (G)?2 (G) . . . ?< (G)
then the Hill plot slope cannot exceed that of the Hill plot slope for any of the individual factors. As a binding polynomial
can always be factorized into a product of linear factors with real negative zeros and complex conjugate pairs forming
quadratic factors it might be supposed that the Hill slope can never exceed two. However, if a binding polynomial of
degree > 2 has complex conjugate zeros, the Hill slope may exceed two and there may be evidence of strong positive
cooperativity. That is why Hill plot slopes up to a maximum of the degree of the binding polynomial can be achieved if
there are quadratic factors with negative coefficients, corresponding to a group of at least three linked binding sites.

For instance, the binding polynomial for a four site Monod-Wyman-Changeux model is

?(U) = 1
1 + !

(
(1 + U)4 + ! (1 + 2U)=

)

and this can factorize into the form

@(G) = (1 + 01G + 11G
2) (1 − 02G + 12G

2)

with 01 > 0, 02 > 0, 11 > 0, 12 > 0 under certain constraints so that the meaningless quadratic factor with a negative
term allows Hill slopes greater than two.

Edelstein and Bardsley [8] subsequently explored the relationship between the Hill slope at half-saturation and the Hessian
of the binding polynomial.

Statistical interpretation of saturation functions

The species fractional populations B8 which are defined for 8 = 0, 1, . . . , = as

B8 =
 8G

8

 0 +  1G +  2G
2 + · · · +  =G=
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with  0 = 1, are interpreted as the proportions of the receptors in the various states of ligation as a function of ligand
activity. The species fractions defined as H8 = 8B8/= for 8 = 1, 2, . . . , = are the contributions of the species to the overall
saturation. Note that

=∑
8=0

B8 = 1, , while

=∑
8=1

H8 = (1/=)3 log ?/3 log G.

Such expressions are very useful when analyzing cooperative ligand binding data and they can be generated from the best
fit binding polynomial after fitting binding curves with program sffit, or by interactive input of binding constants into
program simstat. At the same time other important analytical results like factors of the Hessian and minimax Hill slope
are also calculated.

The species fractional populations can be also used in a probability model to interpret ligand binding in several interesting
ways. For this purpose, consider a random variable * representing the probability of a receptor existing in a state with 8
ligands bound. Then the the probability mass function, expected values and variance are

%(* = 8) = B8 (8 = 0, 1, 2, . . . , =),

� (*) =
=∑
8=0

8B8 ,

� (*2) =
=∑
8=0

82B8 ,

+ (*) = � (*2) − [� (*)]2

= G

(
?′ (G) + G?′′ (G)

?(G)

)
−

(
G?′ (G)
?(G)

)2

= =
3H

3 log G
,

as fractional saturation H is � (*)/=. In other words, the slope of a semi-log plot of fractional saturation data indicates
the variance of the number of occupied sites, namely; all unoccupied when G = 0, distribution with variance increasing as
a function of G up to the maximum semi-log plot slope, then finally approaching all sites occupied as G tends to infinity.
You can input binding constants into the statistical calculations procedure to see how they are mapped into all spaces,
cooperativity coefficients are calculated, zeros of the binding polynomial and Hessian are estimated, Hill slope is reported,
and species fractions and binding isotherms are displayed, as is done automatically after every = > 1 fit by program sffit.

Cooperativity analysis

After fitting a model, program sffit outputs the binding constant estimates in all the conventions and, when = > 2 it also
outputs the zeros of the best fit binding polynomial and those of the Hessian of the binding polynomial ℎ(G). The positive
zeros of ℎ(G) indicate points where the theoretical one-site binding curve coinciding with the actual saturation curve at
that G value has the same slope as the higher order saturation curve, which are therefore points of cooperativity change.
The SimFIT cooperativity procedure allows users to input binding constant estimates retrospectively to calculate zeros of
the binding polynomial and Hessian, and also to plot species population fractions.

For instance, for 4 sites with  1 = 100,  2 = 10,  3 = 1, and  4 = 0.1, the Hessian has a positive zero at G = 5.86139,
the minimum Hill slope in the range plotted is 0.0842, at G = 0.28607, the maximum is 1.44479, at G = 17.059, and the
slope at half saturation is 1.0847, at G = 6.5808.

The next graph shows how the Hill plot slope varies with the maximum and minimum slopes indicated along with the
point where the positive zero of the Hessian occurs.
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The following graph shows the sort of complicated Hill plots that can be obtained when there are more than two
cooperatively linked sites. The asymptotes are for the equation

H =
:G

1 + :G
with : =  1/= as G → 0 and : = = =/ =−1 as G → ∞.
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13.3.6 Vector field diagrams

Vector field diagrams are used to indicate the strength and direction of fields as a function of position, where the definition
of a field covers many situations. Consider the phase portrait technique for exploring the Lotka-Volterra predator-prey
equations using program deqsol leading to the following diagram of vector directions.
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Phase Portrait for the Lotka-Voterra Equations
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To improve the interpretation of such portraits, program deqsol also allows the direction of the gradients to be color-coded
as in the next plot, or even to change the size of arrows to be proportional to the magnitude, although this feature has to
be used sparingly.
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SimFIT does provide numerous options for creating 2D and 3D arrow diagrams as shown below, but such graphs are most
easily produced using the SimDEM package linked to the SimFIT DLLs, which provides many extra procedures but does
require programming ability
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13.3.7 Plotting surfaces

Plotting a three-dimensional surface requires four steps as follows.

1. Define a mathematical model.

2. Fix the values of parameters in the model.

3. Choose the ranges of independent variables.

4. Decide on the number of divisions required.

For example, open program makdat and choose a function of two variables, then select a polynomial which will have the
following definition

5 (G, H) = ?1G + ?2H + ?3G
2 + ?4GH + ?5H

2.

In order to plot the function I = G2 − H2 you will have to fix the parameters as follows

?1 = 0, ?2 = 0, ?3 = 1, ?4 = 0, ?(5) = −1

then choose to plot a sensible range, e.g. −1 ≤ G ≤ 1, −1 ≤ H ≤ 1, say 20 divisions which will often be sufficient for a
surface, to obtain the following plot (after some minor editing).

f(x,y) = x2 - y2

XY

1

-1

1

-1

-1

1
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13.3.8 Plotting contours

Plotting a two-dimensional contour diagram of a three-dimensional surface requires four steps as follows.

1. Define a mathematical model.

2. Fix the values of parameters in the model.

3. Choose the ranges of independent variables.

4. Decide on the number of divisions required.

For example, open program makdat and choose a function of two variables, then select a polynomial which will have the
following definition

5 (G, H) = ?1G + ?2H + ?3G
2 + ?4GH + ?5H

2.

In order to plot the function I = G2 − H2 you will have to fix the parameters as follows

?1 = 0, ?2 = 0, ?3 = 1, ?4 = 0, ?(5) = −1

then choose to plot a sensible range, e.g. −1 ≤ G ≤ 1,−1 ≤ H ≤ 1, with say 50 divisions which will often be sufficient for
a contour diagram, to obtain the following plot.

Contour Plot for f(x,y) = x2 - y2
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   8 0.4544

   9 0.6361

  10 0.8178

1

1

2 2

3 3

4 4

5 5

6

6

7

7

8

8

9

9

10

10



Plotting contours 737

There are numerous points to consider when editing such a contour plot as follows.

1. While 20 divisions may be sufficient to plot a surface, a larger number of divisions, say at least 50, will be required
for a contour plot.

2. Warnings will be output if insufficient divisions have been used leading to failure of the contouring algorithm.

3. There are numerous options to apply smoothing techniques with smaller numbers of divisions or complicated
surfaces, but these cannot be expected to substitute for increasing the number of divisions.

4. The numbers indicating the contours and the table of contour values can be suppressed.

5. There are numerous options to choose the number and spacing of the contours. For instance, the default spacing
of contour values in an arithmetic progression can be replaced by a geometric progression or even a user-supplied
vector of proportions.

6. Color schemes can be used and it is possible to add additional features like arrows, extra text, graphical objects, or
even additional curves to highlight trajectories.

7. In some cases it may be useful to plot the three-dimensional surface superimposed on a contour diagram but, when
this is done, some of the editing functions for the contour diagram are not available.

The next plot illustrates the result of adding a trajectory to the contour diagram to illustrate the path taken by a constrained
optimization algorithm.

Contours for Rosenbrock Optimization Trajectory
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13.3.9 Skyscraper and cylinder plots

Plotting a three-dimensional barchart as a skyscraper or cylinder diagram can be done using a mathematical model, or
more conveniently by simply supplying a table of bar heights. Both techniques will be described.

Method 1: Using a mathematical model

The following four steps are required.

1. Define a mathematical model.

2. Fix the values of parameters in the model.

3. Choose the ranges of independent variables.

4. Decide on the number of divisions required.

For example, open program makdat and choose a function of two variables, then select a bivariate normal distribution,
#2 (G, H), scaled and shifted which will have the following definition

5 (G, H) = ?6#2 (G, H) + ?7, where ?1 = `G , ?2 = fG , ?3 = `H , ?4 = fH , ?5 = d.

Choosing ?1 = 0, ?2 = 1, ?3 = 0, ?4 = 1, ?5 = 0, ?6 = 1, ?)7 = 0 with a sensible range, e.g. −3 ≤ G ≤ 3,−3 ≤ H ≤ 3,
and 7 divisions then creates the following diagram.
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Method 2: Reading in a rectangular table of height values

Use the analysis of an arbitrary matrix option in program simstat or in program simplot and input the test file matrix.tf1
which will generate the following default skyscraper diagram.

SIMFIT 3D plot for z = f(x,y)

Z

xlabel  1
xlabel  2

xlabel  3
xlabel  4

xlabel  5

ylabel  1
ylabel  2

ylabel  3
ylabel  4

ylabel  5

0.0

23.4

Alternatively the table of heights can be entered interactively from the console with program simplot. This technique is
particularly valuable if it is wished to create a three dimensional barchart from a = by < matrix where the G and H axes
are arbitrary groupings not coordinate values, and it is also possible to add a further file with a = by < matrix of errors to
plot error bars as in the next figure.

Values

Month 7
Month 6

Month 5
Month 4

Month 3
Month 2

Month 1

Case 1
Case 2

Case 3
Case 4

Case 5

0

11

Simfit Cylinder Plot with Error Bars
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13.3.10 Plotting curves and data in three dimensions

Three dimensional space curves

Sets of G, H, I coordinates can be plotted in three dimensional space to represent either an arbitrary scatter of points, a
surface, or a connected space curve. Arbitrary points are best plotted as symbols such as circles or triangles, surfaces are
usually represented as a mesh of orthogonal space curves, while single space curves can be displayed as symbols or may
be connected by lines. For instance, space curves of the form

G = G(C), H = H(C), I = I(C)

can be plotted by generating G, H, I data for constant increments of C and joining the points together to create a smooth
curve as in the next figure.

x(t), y(t), z(t) curve and projection onto y = - 1

XY

Z

1

-1

1

-1
0

1

Such space curves can be generated quite easily by preparing data files with three columns of G, H, I data values, then
displaying the data using the space curve option in simplot. However users can also generate space curves from
G(C), H(C), I(C) equations, using the option to plot parametric equations in simplot or usermod. The test file helix.mod
shows you how to do this for a three dimensional helix. Note how the rear (G, H) axes have been subdued and truncated
just short of the origin, to improve the three dimensional effect. Also, projections onto planes are generated by setting the
chosen variable to a constant, or by writing model files to generate G, H, I data with chosen coordinates equal to the value
for the plane.
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Projecting space curves onto planes

Sometimes it is useful to project space curves onto planes for purposes of illustration. The next figure shows a simulation
using usermod with the model file twister.mod. The parametric equations are

G = C cos C, H = C sin C, I = C2

and projections are created by fixing one the variables to a constant value.

Twister Curve with Projections onto Planes
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Note the following about the model file twister.mod.

• There are 3 curves so there are 9 functions of 1 variable

• The value of G supplied is used as the parameter C

• Functions 5 (1), 5 (4), 5 (7) are the G(C) profiles

• Functions 5 (2), 5 (5), 5 (8) are the H(C) profiles

• Functions 5 (3), 5 (6), 5 (9) are the I(C) profiles

Also observe that the model parameters fix the values of the projection planes just outside the data range, at

?(1) = 20, ?(2) = 20.
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Three dimensional scatter diagrams

Often it is necessary to plot sets of G, H, I coordinates in three dimensional space where the coordinates are arbitrary and
are not functions of a parameter C. This is the case when it is wished to illustrate scattering by using different symbols for
subsets of data that form clusters according to some distance criteria. For this type of plotting, the sets of G, H, I triples,
say principal components, are collected together as sets of three column matrices, preferably referenced by a library file,
and a default graph is first created. The usual aim would be to create a graph looking something like this.

SIMFIT Three Dimensional Scatter Diagram
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In this graph, the front axes have been removed for clarity, a subdued grid has been displayed on the vertical axes, but not
on the base and perpendiculars have been dropped from the plotting symbols to the base of the plot, in order to assist in
the identification of clusters.

Note that plotting symbols, minus signs in this case, have been added to the foot of the perpendiculars to assist in
visualizing the clustering. Also, note that distinct data sets, requiring individual plotting symbols, are identified by a
simple rule; data values in each data file are regarded as representing the same cluster, i.e. each cluster must be in a
separate file.
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13.3.11 Parametric plots

Plotting models expressed in parametric form is often required,e.g. when the model cannot be expressed in standard form.
SimFIT programs simplot and usermod can plot models in the following forms:
Plane curves as A = A (\), Plane curves as G = G(C), H = H(C), or Space curves as G = G(C), H = H(C), I = I(C).

Plane curves as A = A (\): Example 1

As an example consider the test file rose_e.mod for the eight leaved rose plotted below.

%

Example: Eight leaved rose

r = A*sin(4*theta): where theta = x, r = f(1) and A = p(1)

%

1 equation

1 variable

1 parameter

%

begin{expression}

f(1) = p(1)sin(4x)

end{expression}

%

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

File rose.mod: r = sin(4ϑ)

x

y
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Plane curves as A = A (\): Example 2

The next plot illustrates the logarithmic spiral defined in SimFIT model file camalot_e.mod.

%

Model: Logarithmic Spiral

r = A*exp(theta*cot(p(1))): where theta = x, r = f(1)

A = amplitude scaling factor

p(1) = angle in radians between radius vector and tangent

%

1 equation

1 variable

1 parameter

%

begin{expression}

f(1) = exp{x/tan[p(1)]}

end{expression}

%

-5

0

5

-6 0 6

Logarithmic Spiral and Tangent

x

y

r(θ) Tangent

This profile is used in rock climbing camming devices such as Camalots and Friends to maintain a constant
angle U between the radius vector for the spiral and the tangent to the curve, defined in tangent.mod as

A =
� exp(\0 cotU) [sin \0 − tan(\0 + U) cos \0]

sin \ − tan(\0 + U) cos \
.

The figure above used U = ?(1) = 1.4, \0 = %(2) = 6 and usermod to generate individual figures over the
range 0 ≤ \ = G ≤ 10, then simplot plotted the ASCII text coordinates simultaneously, a technique that can
be used to overlay any number of curves.
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Plane curves as G(C), H(C)

The test file ellipse_e.mod defines an ellipse as now listed, followed by a plot where the eccentricity, which
is evident from the ranges of the axes, is introduced by choosing � = 1 and � = 3.

%

Example: the ellipse

X = A*cos(t), Y = B*sin(t)

where: t = x, A = p(1), B = p(2)

and X(t) = f(1), Y(t) = f(2)

%

2 equations

1 variable

2 parameters

%

begin{expression}

f(1) = p(1)cos(x)

f(2) = p(2)sin(x)

end{expression}

%

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

-1.0 -0.5 0.0 0.5 1.0

File ellipse.mod: x = x(t), y = y(t)

x = A sin t (A = 1)

y 
=

 B
 c

os
 t 

( 
B

 =
 3

)
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Space curves as G(C), H(C), I(C)

Note that, as with all parametric equations, program simplot transforms the parametric curve into sensible
plotting parameters so that, as in this case with helix_e.mod, only minor editing of the data ranges is required.

%

Example: the helix

X = A*cos(t), Y = B*sin(t), Z = C*t

where: t = x, A = p(1), B = p(2), C = p(3)

and X(t) = f(1), Y(t) = f(2), Z(t) = f(3)

%

3 equations

1 variable

3 parameters

%

begin{expression}

f(1) = p(1)cos(x)

f(2) = p(2)sin(x)

f(3) = p(3)x

end{expression}

%

File helix.mod: x = x(t), y = y(y), z = z(t)

XY

Z

1.0

-1.0

1.0

-1.0

0.0

10.0
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Two dimensional families of curves

Users may need to plot families of curves indexed by parameters. For instance, diffusion of a unit mass of
substance from an instantaneous plane source is described by the equation

5 (G) = 1

2
√
c�C

exp

(
−G2

4�C

)

which is, of course, a normal distribution with ` = 0 and f2
= 2�C, where � is the diffusion constant and

C is time, so that 2�C is the mean square distance diffused by molecules in time C. Now it is easy to plot the
concentration 5 (G) predicted by this equation as a function of distance G and time C given a diffusion constant
�, by simulating the equation using makdat, saving the curves to a library file or project archive, then plotting
the collected curves. However, there is a much better way using program usermod which has the important
advantage that families of curves indexed by parameters can be plotted interactively. This is a more powerful
technique which provides numerous advantages and convenient options when simulating systems to observe
the behavior of the profiles as the indexing parameters vary.

The next figure shows the above equation plotted (in arbitrary units) using the model parameters

?8 = 2�C8 , for 8 = 1, 2, 3, 4

to display the diffusion profiles as a function of time. The plot was created using model file family2d.mod,
which simply defines four identical equations corresponding to the diffusion equation but with four different
parameters ?8 . Program usermod was then used to read in the model, simulate it for the parameter values
indicated, then plot the curves simultaneously.
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Three dimensional families of curves

Users may need to plot families of curves indexed by parameters in three dimensions. To show how this is
done, the diffusion equation dealt with previously is reformulated, using H =

√
2�C, as

I(G, H) = 1

H
√

2c
exp

{
−1

2

(
G

H

)2
}

and is plotted in the next figure for the same parameter values used before, but now as sections through the
surface of a function of two variables.

Diffusion From a Plane Source

3

-3

1.25

0.00
-2

-1
0

1
2

0.25
0.50

0.75
1.00

0.0

1.6

0.4

0.8

1.2

Z

XY

This is, of course, a case of a family of parametric space curves projected onto the fixed values of H. Now the
model file family3d.mod was used by program usermod to create this figure, using the option to plot = sets
of parametric space curves, but you should observe a number of important facts about this model file before
attempting to plot your own families of space curves.

• There are 4 curves so there are 12 functions of 1 variable

• Functions 5 (1), 5 (4), 5 (7), 5 (10) are the parameter C, i.e. G

• Functions 5 (2), 5 (5), 5 (8), 5 (11) are the H values, i.e.
√

2�C

• Functions 5 (3), 5 (6), 5 (9), 5 (12) are the I values, i.e. the concentration profiles

Finally, it is clear that = space curves require a model file that specifies 3= equations, but you should also
realize that space curves cannot be plotted if there is insufficient variation in any of the independent variables,
e.g. if all H = :, for some fixed parameter :.
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The model files for diffusion curves

The model file family2d.mod defines two–dimensional curves as follows.

%

Normal pdf with mu = 0, sigma = p(i), i = 1, 2, ..., 4

to be used by program usermod to plot a 2D family of curves

for diffusion from a plane source where p(i) = sqrt(2Dt).

Try p(i) = sqrt(2Dt) = i/4, with ­3 =< x =< 3.

%

4 equations

1 variable

4 parameters

%

1

pi

2

multiply

squareroot

divide

put(1)

x

p(1)

divide

2

power

0.5

multiply

negative

exponential

get(1)

multiply

p(1)

divide

f(1)

x

p(2)

divide

2

power

0.5

multiply

negative

exponential

get(1)

multiply

p(2)

divide

f(2)

x

p(3)

divide

2

power

0.5

multiply

negative

exponential

get(1)
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multiply

p(3)

divide

f(3)

x

p(4)

divide

2

power

0.5

multiply

negative

exponential

get(1)

multiply

p(4)

divide

f(4)

%

The model file family3d.mod defines three–dimensional curves as follows.

%

4 space curves (12 equations) for x(i),y(i),z(i) as f(t).

Defines normal pdfs mu(i) = 0, sigma(i) = p(i), i=1,2,3,4

for program usermod to plot a 3D family of curves showing

diffusion from a plane source, where p(i) = sqrt(2Dt).

Try p(i) = sqrt(2Dt) (e.g. = i/4), with ­3 =< t =< 3.

%

12 equations

1 variable

4 parameters

%

1

pi

2

multiply

squareroot

divide

put(1) store 1/srt(2*pi)

x

f(1) x(t) = x

p(1)

f(2) y(t) = p(1)

x

p(1)

divide

2

power

0.5

multiply

negative

exponential

get(1)

multiply

p(1)

divide

f(3) z(t) = function value

x

f(4) x(t) = x
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p(2)

f(5) y(t) = p(2)

x

p(2)

divide

2

power

0.5

multiply

negative

exponential

get(1)

multiply

p(2)

divide

f(6) z(t) = function value

x

f(7) x(t) = x

p(3)

f(8) y(t) = p(3)

x

p(3)

divide

2

power

0.5

multiply

negative

exponential

get(1)

multiply

p(3)

divide

f(9) z(t) = function value

x

f(10) x(t) = x

p(4)

f(11) y(t) = p(4)

x

p(4)

divide

2

power

0.5

multiply

negative

exponential

get(1)

multiply

p(4)

divide

f(12) z(t) = function value

%
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13.3.12 Adding text, arrows, and objects to graphs

In order to improve the usefulness of plots it is often valuable to be able to add text strings, arrows, and
graphical objects to highlight features, which involves the following steps.

1. Display the plot in advanced graphics mode, then open a new text string using the [Text] button.

2. Type in the text string, then move it into position by dragging the red arrow icon to the coordinates
required and selecting the [Text move] button.

3. Edit the string by selecting the font, size, colour, and orientation, including advanced editing if subscripts
or similar font changes are required.

4. Arrows, lines, or boxes can then be added to remove ambiguities using the [A/L/B] button .

5. Individual graphical objects or an information panel can be added if appropriate.

This can be done for several text strings by treating each one individually.

Here is an example using mmfit to fit a sum of two Michaelis-Menten functions to data in test file mmfit.tf4,
and then choosing the graphical deconvolution control to display the two components that constitute the best
fit curve. Note that the text strings were initially typed in the form

f1 = V1S/(Km1 + S)

followed by selecting the advanced text editing option to introduce subscripts for indices with the expressions
f1, V1, Km1, f2, V2, and Km2, etc. Note that a temporary grid can be drawn to aid the positioning and lining
up of text strings.
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Deconvolution: 2 Michaelis-Mentens

S

v(
S

)

f1(S) = V1S/(Km1 + S)

f2(S) = V2S/(Km2 + S)

v(S) = f1(S) + f2(S)
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Arrows, lines, hooks, and boxes differ from text strings in that they require two coordinates, namely

• first the red arrow icon is used to set the head position,

• then the red arrow icon is used to fix the tail position.

This is shown in the next figure which was derived from the previous one by simply changing the position of
the text strings and adding script arrows.
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1.0

1.5

2.0

0.0 10.0 20.0 30.0 40.0 50.0

Deconvolution: 2 Michaelis-Mentens

S

v(
S

)

f1(S) = V1S/(Km1 + S)

f2(S) = V2S/(Km2 + S)

v(S) = f1(S) + f2(S)

Note that the arrow, line, box options include many useful objects for illustrating graphs such as the following.

• Standard line arrows

• Hollow outline arrows

• Solid filled arrows.

• Script arrows.

• Headless arrows, i.e. lines.

• Oblique or horizontal rectangles.

• Horizontal Boxes for enclosing text.

• Three sided rectangles, i.e. hooks.

These are all positioned in the same way, that is, two coordinates must be set using the red arrow icon for the
head and the tail. However there is a new feature when arrows, lines, or boxes have been selected: they can
be displayed in the background underneath the data and best fit curves, or they can be displayed on top of the
data and best fit curves which will often obscure features. This can be useful. For instance, a solid rectangle
with background colour can be used to define an obscured region of a graph into which descriptive text or
other illustrative material can be placed.
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Graphical objects can be added to graphs in exactly the same way as arrows, but perhaps the most useful
procedure is the ability to supply a panel containing descriptions of the data plotted, as in the next plots which
used the [Panel] buttons.
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Plots of y = λ + µx
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λ=0.0,µ=1.0 λ=1.0,µ=1.1 λ=2.0,µ=1.2 λ=3.0,µ=1.3

λ=4.0,µ=1.4 λ=5.0,µ=1.5 λ=6.0,µ=1.6 λ=7.0,µ=1.7

Note that the panel can be at the bottom, at the side, or moved into the interior of the graph and optionally
highlighted by being enclosed by a horizontal box as shown next.
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14 PostScript graphics (EPS)

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

Figure 1 shows how the effect of plotting a positive 4:4 rational function in semi-logarithmic space can be
enhanced by adding Greek letters, subscripts, and superscripts, and by using powers of ten on the X-legend.
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4:4 Positive Rational Function (semi-log plot)
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1 + β1x + β2x2 + β3x3 + β4x4
y =

Figure 1: Plotting subscripts, superscripts, and math symbols

This document has details about how to use the SimFIT package to create such graphs with special characters
and extra features as follows:

❍ Introduction to SimFIT EPS PostScript files;

❍ Plotting selected characters as subscripts and superscripts;

❍ Adding accents to letters in titles, legends, and labels;

❍ Replacing standard characters by mathematical symbols;

❍ Editing SimFIT PostScript files in a text editor;

❍ Using Postscript specials to add logos etc.; and

❍ Advanced techniques for LATEX and PSFrag users.
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14.1 Introduction to Simfit EPS PostScript files

There are essentially three types of image files as follows.

1. Bitmaps and compressed bitmaps

Raw bitmaps (e.g., .bmp) are used to record the characteristics of every pixel in a display or hardcopy,
typically a digital photograph. They are limited by the resolution of the captured image and are usually
large, also the images break up by pixelation if they are enlarged. They are generally compressed into
alternative formats (e.g., .jpg, or .png) where a certain loss of quality is offset by a great decrease in
size. In scientific work they are mainly used for complicated diagrams, e.g., photographs of microscopic
sections, where there are no distinct objects such as titles, legends, lines, curves, plotting symbols, etc.

2. Vector graphics

Often scientific graphs consist only of lines for axes, curves, plotting symbols, and text for titles and
legends with featureless backgrounds, so that storing a bitmap would be wasteful of space. However
the main advantage of vector formats (e.g., .eps, .svg, or .emf) is that they are device-independent so
they can be displayed or printed at any resolution with no loss of information. They can also be used to
generate compressed bitmap files, but it should be noted that scientific graphs can sometimes generate
vector hardcopy that is even more bulky than the corresponding bitmap if there are very large numbers
of objects being plotted.

3. Embedded bitmaps

Unfortunately vector graphics files can often consist of wrappers containing bitmaps which leads to files
with a vector file extension that are actually no better than bitmaps. Some graphics programs export
supposed .eps files as embedded bitmaps, so losing many of the advantages of true vector files. Also
note that .pdf files created from vector .eps files using GhostScript retain some of the characteristics
of actual vector files, but many programs simply distill graphs into .pdf files as embedded bitmaps.

Users of the SimFIT package are strongly urged to save all graphs as SimFIT .eps files because they have the
following advantages.

• They are true encapsulated PostScript vector files consisting of a single page with a BoundingBox.

• They are structured in such a way that they can be edited using a text editor to change dimensions, line
types, symbols, colours, titles and legends, etc.

• They can be used retrospectively to create alternative types of image files.

• SimFIT provides facilities to edit such files, or make various types of collages.

Although SimFIT can make and edit .eps files with no additional software it will be found that, in order to
make full use of the PostScript opportunities, it is necessary to download and install the GhostScript package,
and also advisable to download and install the GSview package. GhostScript can be used to transform .eps

files into other graphics formats, while GSview can be used to view and print them.

14.1.1 The sections of Simfit eps files

In order to be able to edit SimFIT .eps files it is necessary to appreciate that there are three distinct sections.
The first section contains the BoundingBox coordinates that must be present in .eps files to specify the size
of such one page graphs along with the document structuring comments. The second section is a dictionary
containing the functions that can be used in SimFIT .eps files to draw lines and plotting symbols. The third
section is a list of coordinates and colors where lines, symbols and text strings are to be drawn. This structure
is summarized in the next diagram.
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SIMFIT .eps file structure

HEADER

DSC comments

DICTIONARY

Functions

DATA

Coordinates

When editing SimFIT PostScript files retrospectively the following rules must be obeyed until you become
familiar with the structure.

1. Never change anything in the HEADER or DICTIONARY sections.

2. You can edit the title, legends, colors, and other display features in the DATA section.

3. Perform editing a step at a time and check the effects using GSview.

4. Make sure you save the file at each stage of editing.

Extensive descriptions about editing the DATA section will be found in the SimFIT reference manual
w_manual.pdf available from the SimFIT website, but a number of simple examples will be given in the
succeeding tutorials by way of a more gentle introduction.
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14.1.2 A simple example

As an example consider the following simple default graph which is easily constructed by requesting to plot
the coordinates (1,1), (2,2), and (3,3) using program simplot
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2.0

2.5

3.0

1.0 1.5 2.0 2.5 3.0

Original Axes

x

y

Some of things a user might wish to change retrospectively could be as follows.

• Change the title

• Change the legends

• Change the plotting symbols

• Change the colors

Now SimFIT provides a PostScript editor program editps to perform such tasks but, in actual practise, it is
easier to edit the PostScript file in a text editor such as notepad because of these three special features found
in SimFIT Postscript files.

1. They are ASCII text files and can be edited in any text editor.

2. They are encapsulated PostScript files (.eps) and describe just a single page.

3. They have been uniquely designed to make such editing very easy.

As you will need to view the results of editing you will need a PS viewer such as GSview which requires an
installed copy of GhostScript.
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14.1.3 The header section

The following code is contained in the header.

%!PS­Adobe­3.0 EPSF­3.0

%%BoundingBox: 72 252 520 588

%%Creator: Simfit Version 7.2.8 (simfit.org.uk)

%%Title: colours=72/ISOLatin1Encoding/Accents/special/PSfrag/dict=300

%%CreationDate: Saturday, 15 April 2017

%%EndComments

%

%Start of SIMFIT PostScript file

%

save %save current state before clipping, etc.

70 250 522 250 522 590 70 590%#clipping

newpath moveto lineto lineto lineto closepath clip newpath

72.00 252.00 translate 0.07 0.07 scale 0.00 rotate%#portrait

12.00 setlinewidth 0 setlinecap 1 setlinejoin [] 0 setdash

2.50 setmiterlimit

%

%prolog(1) to (6) can be used by DVIPS as a header

%****cut the invariant prolog/header out from here

It includes the document structuring comments together with some technical instructions, and this section
would only be edited by experienced users.

14.1.4 The dictionary section

This contains definitions for all the plotting functions, colors and fonts required to display the data contained
in the data section, and this section would only be edited by very experienced users.

/SIMFIT 300 dict def SIMFIT begin

%

% prolog(1): definitions

%

/C{copy}def /D{def}def /E{exch}D /F{findfont}D /GR{grestore}D

/GS{gsave}D /M{moveto}D /N{newpath}D /P{pop}D /R{rmoveto}D

/S{scalefont setfont}D /d{dup}D /i{putinterval}D /p{put}D

%

% prolog(2): construct Greek/maths font

%

...

...

...

/ty­font /Helvetica D%text right y­mid

/tz­font /Helvetica D%text left y­mid

/ti­size 204 D /xl­size 187 D /yl­size 187 D /zl­size 187 D

/tc­size 144 D /td­size 144 D /tl­size 144 D /tr­size 144 D

/ty­size 144 D /tz­size 144 D

/sb­size 0.75 D /sp­size 0.75 D%sub/superscript expansion

/y­down ­0.33 sb­size mul D /y­up 0.33 sp­size div D%sub/sup shift

%

foreground thickness setlinewidth

14.1.5 The data section

This is first given in full and then the sections that are most likely to be edited are discussed in detail.
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/background{c15}D

2 setlinecap

1070 671 5959 671 5959 4215 1070 4215 4 pc%#8

/ty­size ty­size 0.900 mul def

/tl­size tl­size 0.900 mul def

1070 671 1118 671 li%#4

5959 671 5911 671 li%#4

(1.0) 974 671 ty%#()2

(000) fx

1070 1557 1118 1557 li%#4

5959 1557 5911 1557 li%#4

(1.5) 974 1557 ty%#()2

(000) fx

1070 2443 1118 2443 li%#4

5959 2443 5911 2443 li%#4

(2.0) 974 2443 ty%#()2

(000) fx

1070 3329 1118 3329 li%#4

5959 3329 5911 3329 li%#4

(2.5) 974 3329 ty%#()2

(000) fx

1070 4215 1118 4215 li%#4

5959 4215 5911 4215 li%#4

(3.0) 974 4215 ty%#()2

(000) fx

/ty­size ty­size 1.111 mul def

/tl­size tl­size 1.111 mul def

/tc­size tc­size 0.900 mul def

/tl­size tl­size 0.900 mul def

1070 671 1070 719 li%#4

1070 4215 1070 4167 li%#4

(1.0) 1070 462 tc %#()2

(000) fx

2292 671 2292 719 li%#4

2292 4215 2292 4167 li%#4

(1.5) 2292 462 tc %#()2

(000) fx

3515 671 3515 719 li%#4

3515 4215 3515 4167 li%#4

(2.0) 3515 462 tc %#()2

(000) fx

4737 671 4737 719 li%#4

4737 4215 4737 4167 li%#4

(2.5) 4737 462 tc %#()2

(000) fx

5959 671 5959 719 li%#4

5959 4215 5959 4167 li%#4

(3.0) 5959 462 tc %#()2

(000) fx

/tc­size tc­size 1.111 mul def

/tl­size tl­size 1.111 mul def

/ti­size ti­size 1.000 mul def

c4

(Original Axes) 3195 4467 ti%#title

(0000000000000) fx

/ti­size ti­size 1.000 mul def

/xl­size xl­size 1.000 mul def

c1

(x) 3515 192 xl%#x legend
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(0) fx

/xl­size xl­size 1.000 mul def

/yl­size yl­size 1.000 mul def

(y) 501 2443 yl%#y legend

(0) fx

/yl­size yl­size 1.000 mul def

0 setlinecap

c0

1070 671 59 ce%#2

3514 2443 59 ce%#2

5959 4215 58 ce%#2

14.1.6 Editing the title and legends

Searching for the key word title locates the next section.

c4

(Original Axes) 3195 4467 ti%#title

(0000000000000) fx

/ti­size ti­size 1.000 mul def

/xl­size xl­size 1.000 mul def

c1

(x) 3515 192 xl%#x legend

(0) fx

/xl­size xl­size 1.000 mul def

/yl­size yl­size 1.000 mul def

(y) 501 2443 yl%#y legend

(0) fx

Interchanging the colors c1(blue) and c4(red) and altering the title and can then be done leading to the
replacement section shown next.

c1

(Title and legends edited) 3195 4467 ti%#title

(000000000000000000000000) fx

/ti­size ti­size 1.000 mul def

/xl­size xl­size 1.000 mul def

c4

(x \(mm\)) 3515 192 xl%#x legend

(00000000) fx

/xl­size xl­size 1.000 mul def

/yl­size yl­size 1.000 mul def

(y \(mm\)) 501 2443 yl%#y legend

(00000000) fx

Two comments are needed in order to understand the results of this editing.

1. When a text string such as a title or legend is edited it is necessary to make sure that the character key
string underneath the text is padded or contracted if required to make sure the key has at least as many
characters (in this case the 0 characters denoting a normal font) as the text string.

2. Since character strings in PostScript are enclosed in round brackets it is necessary to prefix any brackets
introduced inside the string by the backslash escape character.

The edited file is shown next.
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14.1.7 Editing line and symbol types

It is frequently required to change the size, colors, and types of lines and plotting symbols and the code in the
data section defining the black (c0) empty circles (ce) is as follows.

c0

1070 671 59 ce%#2

3514 2443 59 ce%#2

5959 4215 58 ce%#2

For example, using the command c1 and li to add a blue line, altering c0 to c4 to change color to red, then
changing empty circles (ce) into empty triangle (te), half-filled triangle (th), and filled triangle (tf), together
with doubling the size of the symbols from 59 to 118, as in this code

c1

1070 671 5959 4215 li

c4

1070 671 118 te%#2

3514 2443 118 th%#2

5959 4215 118 tf%#2

creates the next graph.
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Clearly users will require much more information to be able to edit all the features of SimFIT PostScript files,
and the necessary details along with numerous worked examples follows.
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14.2 Plotting non-standard characters

The SimFIT assumption is that users will want professional quality hardcopy and not be content with standard
Windows graphics. In other words, if a permanent record is required for a displayed graph, then a *.eps
file will be created for immediate use or retrospective conversion into a *.png or similar file for printing or
incorporating into documents. Since the Windows display and PostScript files use different fonts, then the
following details should be noted, otherwise the PostScript file will not have the same edited text strings as
the Windows display.

The basic problem and the solution to it

As long as the characters to be plotted are from the standard 7-bit ASCII standard set, i.e. characters 32 to 126
then all that is required is to use the Simple editing control to edit text strings for titles, legends, labels, etc.
European accented characters from the ISOLatin1 8-bit set that are entered from the keyboard or font table are
also plotted correctly due to a built in transformation mechanism. However, to plot characters with arbitrary
accents like hats and bars, superscripts, or subscripts, or to plot maths symbols or characters from the Greek
alphabet, then the more advanced techniques have to be used. This is to ensure that what is displayed in the
Windows bitmap will be the same as what is displayed in the PostScript output.

14.2.1 7-bit ASCII characters 33 to 126

These, together with the space character (32), are the standard non-accented characters allowed in the simple
editing control.

! " # $ % & ’ ( ) * + , ­ . /

0 1 2 3 4 5 6 7 8 9

: ; < = > ? @

A B C D E F G H I j K L M N O P Q R S T U V W X Y Z

[ \ ] ^ _ ‘

a b c d e f g h i j k l m n o p q r s t u v w x y z

{ | } ~

14.2.2 The basic character plotting technique

When SimFIT displays a character string in a plot, then associated with every character is a key indicating if
the the character is to be displayed in any special way. For instance in this string key pair

Area in cm2

00000000002

The 0 indicates a normal character while the 2 indicates a superscript, so the string will be displayed as

Area in cm2

where the 2 is now shown as a superscript.

14.2.3 Advanced editing

Fortunately the user does not need to know any of these details as, when Advanced editing is selected, users
can choose to either

❍ Edit the individual characters;

❍ Edit the individual keys, or;
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❍ Select a character together with the associated key from a displayed table.

It is assumed that when users want a non-standard character they will first use the simple editing control to
input a string, then select the advanced editing control to add details.

As another example, consider the numerator of the formula displayed in figure 1. This would first be entered
by simple editing as the character string

a1x + a2x2 + a3x3 + a4x4

then the advanced control would be used to replace the characters by Greek equivalents, say from the Symbol
or maths tables, and the keys would be edited for superscripts and subscripts as shown below

a1x + a2x2 + a3x3 + a4x4

31000031x200031x200031x2

followed by similar editing of the denominator to give

1 + b1x + b2x2 + b3x3 + b4x4

000031000031x200031x200031x2

Finally, adding a horizontal line as a an arow/line type of object would result in the display of a properly
formatted rational function like this

U1G + U2G
2 + U3G

3 + U4G
4

1 + V1G + V2G2 + V3G3 + V4G4
.

The rest of this section is for those who are familiar with the PostScript language and wish to use the powerful
PostScript techniques supported by SimFIT to create special effects.

14.2.4 Octal codes

For users who just want to use the simple editing control without resorting to the advanced editing control
to plot accented characters not on their keyboard, it is possible to enter octal codes directly. For instance
\361 will produce =̃ because the character/key pair will automatically have an 8 placed under the backslash
to indicate that the ISOLatin1 character set should be used instead of the Standard font. Note that users of the
advanced editing mode will sometimes see a question mark ? or a blank instead of a 0 to represent a normal
font, which happens when strings have been shortened or lengthened by the editing process.

The rule is that every character must be paired with a unique identifying key, and the PostScript file will only
plot if this condition is satisfied. However, there is an important exception to this rule. When octal codes are
used it is vital to realise that the back slash followed by three digits represents a single character, i.e. a single
byte, so it only requires one key. As just remarked, a key must be placed under the backslash to indicate the
font set required as below.

This is what n tilde looks like \361

000000000000000000000000000000008

which will plot as

This what n tilde looks like ñ

14.2.5 A detail about PostScript fonts

It has to be emphasized that the Windows bit-map display is using TrueType fonts, while the Postscript file
will use PostScript fonts. Because these are not identical, it is possible that arrows and other graphical
objects added to graphs will not have exactly the same appearance. The objects will have the same starting
coordinates, but the lengths of the character strings will not be exactly equal, which can lead to unwanted
overlap of objects and character strings in the PostScript display. Similarly the colours and line thickness will
not be the same, and so it is vital to check a PostScript visual display in your PostScript viewer before saving
a PostScript file.
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14.3 PostScript procedures

The best way to use SimFIT graphics is to archive standard sized SimFIT PostScript files in portrait orientation
and then, when required, manipulate them, followed by printing hardcopy, or by transforming into other
formats, such as .png, for pasting into documents.

Most simple editing operations can be done using a text editor as described later, but for more extensive
manipulations program editps can be used as now described.

14.3.1 Using editps to manipulate PostScript files

Several points must be mentioned concerning SimFIT EPS files and program editps.

1. An encapsulated PostScript file (*.eps) is a special type of self-contained one page PostScript file
containing a BoundingBox with dimensions, so that the file can be easily manipulated for re-sizing and
inclusion within documents.

2. All PostScript files created by SimFIT adhere to this convention.

3. Program editps will accept any such files, but some features will only work with SimFIT .eps files.

14.3.2 Editing Simfit Postscript files

After a SimFIT file has been loaded into editps it is possible to search for such items as the title, or legends,
etc., and edit as required. However, as described later, it is much easier to do such editing using a simple text
editor.

Further, note that this type of editing is restricted to SimFIT PostScript files which contain special markers to
locate titles, legends, etc.

14.3.3 Rotating, re-sizing, and changing aspect ratios.

In addition program editps can be used to rotate or re-size SimFIT EPS PostScript files and perform shearing
transformations. However, the main use is create various types of collages such as these.

• Simple collages.

Here all the constituent files have identical BoundingBoxes, i.e., they are the same size, and the collage
can be created directly.

• Freestyle collages.

If the constituent files do not have identical BoundingBoxes then hand-crafting is required.

• Adding new files as insets to existing files.

Here it must be realized that there are two cases.

– The inserted child file can have an invisible background, when the parent file will show through.

– The inserted child file can have an opaque background, when the parent graph will be obliterated
where the child overlaps.

14.3.4 Creating simple collages

Figure 14.3.4 illustrates a simple collage created using editps from a set of SimFIT PostScript files assembled
into a library file. If required, titles, labels, and extra text can be added by program editps to identify the
sub-graphs or add further details. To create such collages it is advisable that all the files supplied should have
the same dimensions and orientation, as this facility can only generate collages with fixed cell dimensions.
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Figure 2: Collage 1
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14.3.5 Creating freestyle collages

Plots that are incorporated into simple collages as just described must all have the standard default SimFIT
portrait format, i.e., with identical standard BoundingBoxes. However, users often wish to collect plots of
varying sizes together into an arbitrary pattern, as in figure 3.

This illustrates the value of changing font size and line thickness as graphs are re-sized. In general, it will be
clear from figure 3 that, if a graph is to be reduced in size before building into a freestyle collage, it is a good
idea to increase the size of fonts and thickness of lines.
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Figure 3: Collage 2

In the above figure the upper sub–figures are derived from the large figure by reduction, so the text becomes
progressively more difficult to read as the figures scale down. In the lower sub-figures, however, line
thicknesses and font sizes have been increased as the figure is reduced, maintaining legibility. Such editing
can be done interactively, but SimFIT PostScript files are designed to make such retrospective editing easy.
Clearly, the graphs should be edited individually before assembling into the final collage.

Figure 4 and figure 5 show further examples of how such collages can be assembled using editps in freestyle
mode with a set of graphs that can have arbitrary dimensions and rotations. In addition to being able to move
the sub–graphs into any positions, this procedure also allows interactive differential re-sizing of individual
graphs.

There is an extremely important point to remember when creating freestyle collages: it is possible to create
PostScript files from SimFIT where the background, if white, can be either transparent or opaque. Note that
PostScript files with opaque white backgrounds, as in the above sub–figures, will obscure any graphs they
overlay. Of course, sometimes this is desired, but often a transparent white background may be preferred.
This choice is determined, of course, by the configuration option in use when the PostScript file is created
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Figure 4: Collage 3



770 PostScript procedures

K-Means Clusters

100%

80%

60%

40%

20% 0%

PC1
PC2
PC5
PC8
PC6
HC8
PC3
PC4
PC7
HC7
HC4
24A
33B
76B
30B

100A
34

53A
76

30A
61B
60A
27A
27B

52
37B

68
28A
97A
26A
60B

29
36A
36B
31B
31A
35B
32A
32B
35A
72A
72B
99A
99B
37A

47
100B
33A
53B

73
24B
26B
28B
97B
91A
91B
25A
25B
61A
HC5
HC6

Contours for Rosenbrock Optimization Trajectory

X

Y

-1.500

1.500

1.500-1.500

Key Contour
  1 1.425
  2 2.838
  3 5.663
  4 11.313
  5 22.613
  6 45.212
  7 90.412
  8 1.808×102

  9 3.616×102

 10 7.232×102

1

2

2

3

3

4

4

5

5
6

6

7

7

8

8

9 9

10 10

Diffusion From a Plane Source

3

-3

1.25

0.00
-2

-1
0

1
2

0.25
0.50

0.75
1.00

0.0

1.6

0.4

0.8

1.2

Z

XY

Values

Month 7
Month 6

Month 5
Month 4

Month 3
Month 2

Month 1

Case 1
Case 2

Case 3
Case 4

Case 5

0

11

Simfit Cylinder Plot with Error Bars

0.0

2.0

4.0

6.0

0.0 2.0 4.0 6.0

Slanting and Multiple Error Bars

x

y

Figure 5: Collage 4



PostScript procedures 771

14.3.6 Subsidiary figures as insets

Figure 6 illustrates a special type of freestyle collage where a sub-graph is placed inside a parent graph.
Sometimes it is best to enlarge the fonts and increase the line thicknesses when a sub-graph is going to be
reduced in size in this way, and it is always important to remember the effects of opaque and transparent
backgrounds that SimFIT allows.
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Figure 6: Subsidiary figures as insets

First of all the plots in figure 7 were created using exfit with test file exfit.tf4 after fitting 1 exponential
then 2 exponentials. Note that the line thickness and font size have been increased in the transformed plot
as it is going to be reduced in the inset. Figure 8 was then created by editps using the option to create a
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Figure 7: Insets 1: Exponential fitting and semilog transforms
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freestylecollage. Note how, in the left hand plot the option to plot an opaque background even when white was
selected and the transformed plot obscures the underlying main plot. In the right hand plot the option for a
transparent background was used so that the main plot was not obscured. Both techniques are valuable when
creating insets, and all that is now necessary to create figure 6 is to shrink the transformed plot and translate it
to a more convenient location. A further point to note is that SimFIT plots have a border, which is obscuring
more of the left hand main figure in figure 8 than seems necessary. When subsidary figures are going to be
used in this way it is often advisable to use the option to clip the plot to trim away extra white space, or else
use GsView to calculate a new BoundingBox in a transparent subsidiary plot by transforming ps into eps.
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Figure 8: Insets 2: Opaque and tranparent backgrounds in insets
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14.4 Editing Simfit PostScript files

One of the unique features of SimFIT PostScript files is that the format is designed to make retrospective
editing easy. A typical example of when this could be useful would be when a graph needs to be changed for
some reason. Typically an experimentalist might have many plots stored as .eps files and want to alter one
for publication or presentation. SimFIT users are strongly recommended to save all their plots as .ps or .eps
files, so that they can be altered in the way to be described. Even if you do not have a PostScript printer it
is still best to save as .ps, then use GSview/Ghostscript to print or transform into another graphics format.
Consider these next two figures, showing how a graph can be transformed by simple editing in a text editor,
e.g. NOTEPAD.
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This type of editing should always be done if you want to use one figure as a reduced size inset figure inside
another, or when making a slide, otherwise the SimFIT default line thickness will be too thin. Note that most
of the editing to be described below can actually be done at the stage of creating the file, or by using program
EDITPS. In this hypothetical example, we shall suppose that the experimentalist had realized that the title
referred to the wrong isoform and temperature, and also wanted to add extra detail, but simplify the graph in
order to make a slide using thicker lines and a bolder font. In the following sections the editing required to
transform the SimFIT example file simfig1.ps will be discussed, following a preliminary warning.

14.4.1 Warning about editing PostScript files

In the first place the technique to be described can only be done with SimFIT PostScript files, because the
format was developed to facilitate the sort of editing that scientists frequently need to perform. Secondly, it
must be realized that PostScript files must conform to a very strict set of rules. If you violate these rules, then
GSview/Ghostscript will warn you and indicate the fault. Unfortunately, if you do not understand PostScript,
the warning will be meaningless. So here are some rules that you must keep in mind when editing.

❏ Always keep a backup copy at each successful stage of the editing.

❏ All text after a single percentage sign % to the line end is ignored in PostScript.

❏ Parentheses must always be balanced as in (figure 1(a)) not as in (figure 1(a).

❏ Fonts must be spelled correctly, e.g. Helvetica-Bold and not helveticabold.

❏ Character strings for displaying must have underneath them a vector index string of EXACTLY the
same length.

❏ When introducing non-keyboard characters each octal code represents one byte.

❏ The meaning of symbols and line types depends on the function, e.g. da means dashed line while do

means dotted line.
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A review of the PostScript colours, fonts and conventions is also in the w_readme files. In the next sections
it will be assumed that are running SimFIT and have a renamed copy of simfig1.ps in your text editor (e.g.
notepad), and after each edit you will view the result using GSview/Ghostscript. Any errors reported when
you try to view the edited file will be due to violation of a PostScript convention. The most usual one is to
edit a text string without correctly altering the index below it to have exactly the same number of characters.

14.4.2 The percent-hash escape sequence

Later versions of SimFIT create PostScript files that can be edited by a stretch, clip, slide procedure, which
relies on each line containing coordinates being identified by a comment line starting with %#. All text
extending to the right from the first character of this sequence can safely be ignored and is suppressed for
clarity in the following examples.

14.4.3 Changing line thickness and plot size

The following text will be observed in the original simfig1.ps file.

72.00 252.00 translate 0.07 0.07 scale 0.00 rotate

11.00 setlinewidth 0 setlinecap 0 setlinejoin [] 0 setdash

2.50 setmiterlimit

The postfix argument for setlinewidth alters the line width globally. In other words, altering this number by
a factor will alter all the linewidths in the figure by this factor, irrespective on any changes in relative line
thicknesses set when the file was created. The translate, scale and rotate are obvious, but perhaps best done
by program EDITPS. Here is the same text edited to increase the line thickness by a factor of two and a half.

72.00 252.00 translate 0.07 0.07 scale 0.00 rotate

27.50 setlinewidth 0 setlinecap 0 setlinejoin [] 0 setdash

2.50 setmiterlimit

14.4.4 Changing PostScript fonts

In general the Times-Roman fonts may be preferred for readability in diagrams to be included in books,
while Helvetica may look better in scientific publications. For making slides it is usually preferable to use
Helvetica-Bold. Of course any PostScript fonts can be used, but in the next example we see how to change
the fonts in simfig1.ps to achieve the effect illustrated.

/ti­font /Times­Bold D%plot­title

/xl­font /Times­Roman D%x­legend

/yl­font /Times­Roman D%y­legend

/zl­font /Times­Roman D%z­legend

/tc­font /Times­Roman D%text centred

/td­font /Times­Roman D%text down

/tl­font /Times­Roman D%text left to right

/tr­font /Times­Roman D%text right to left

/ty­font /Times­Roman D%text right y­mid

/tz­font /Times­Roman D%text left y­mid

The notation is obvious, the use indicated being clear from the comment text following the percentage sign %

at each definition, denoted by a D. This is the editing needed to bring about the font substitution.

/ti­font /Helvetica­Bold D%plot­title

/xl­font /Helvetica­Bold D%x­legend

/yl­font /Helvetica­Bold D%y­legend

/zl­font /Helvetica­Bold D%z­legend
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/tc­font /Helvetica­Bold D%text centred

/td­font /Helvetica­Bold D%text down

/tl­font /Helvetica­Bold D%text left to right

/tr­font /Helvetica­Bold D%text right to left

/ty­font /Helvetica­Bold D%text right y­mid

/tz­font /Helvetica­Bold D%text left y­mid

Observing the scheme for colours (just before the fonts in the file) and text sizes (following the font definitions)
will make it obvious how to change colours and text sizes.

14.4.5 Changing title and legends

Observe the declaration for the title and legends in the original file.

(Binding Curve for the a2b2 isoform at 21@C) 3514 4502 ti

(000000000000000000000061610000000000000060) fx

(Concentration of Free Ligand(lM)) 3514 191 xl

(00000000000000000000000000000300) fx

(Ligand Bound per Mole of Protein) 388 2491 yl

(00000000000000000000000000000000) fx

Note that, for each of the text strings displayed, there is a corresponding index of font substitutions. For
example a zero prints the letter in the original font, a one denotes a subscript, while a six denotes bold maths.
Since the allowed number of index keys is open-ended, the number of potential font substitutions is enormous.
You can have any accent on any letter, for instance. This is the editing required to change the text. However,
note that the positions of the text do not need to be changed, the font display functions work out the correct
position to centre the text string.

(Binding for the a4c4 isoform at 25@C) 3514 4502 ti

(000000000000000061610000000000000060) fx

(Concentration/lM) 3514 191 xl

(0000000000000030) fx

(Ligand/Mole Protein) 388 2491 yl

(0000000000000000000) fx

Note that the \ character is an escape character in PostScript so, if you want to have something like an
unbalanced parenthesis, as in Figure 1 a) you would have to write Figure 1a\). When you create a
PostScript file from SimFIT it will prevent you from writing a text string that violates PostScript conventions
but, when you are editing, you must make sure yourself that the conventions are not violated, e.g. use
c:\\simfit instead of c:\simfit.

14.4.6 Deleting graphical objects

It is very easy to delete any text or graphical object by simply inserting a percentage sign % at the start of the
line to be suppressed. In this way an experimental observation can be temporarily suppressed, but it is still in
the file to be restored later if required. Here is the PostScript code for the notation on the left hand vertical,
i.e. H axis in the file simfig1.ps.

910 1581 958 1581 li

6118 1581 6070 1581 li

(0.50) 862 1581 ty

(0000) fx

910 2491 958 2491 li

6118 2491 6070 2491 li

(1.00) 862 2491 ty
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(0000) fx

910 3401 958 3401 li

6118 3401 6070 3401 li

(1.50) 862 3401 ty

(0000) fx

This is the text, after suppressing the tick marks and notation for H = 0.5 and H = 1.5 by inserting a percentage
sign. Note that the index must also be suppressed as well as the text string.

%910 1581 958 1581 li

%6118 1581 6070 1581 li

%(0.50) 862 1581 ty

%(0000) fx

910 2491 958 2491 li

6118 2491 6070 2491 li

(1.00) 862 2491 ty

(0000) fx

%910 3401 958 3401 li

%6118 3401 6070 3401 li

%(1.50) 862 3401 ty

%(0000) fx

14.4.7 Changing line and symbol types

This is simply a matter of substituting the desired line or plotting symbol key.

Lines : li (normal) da (dashed) do (dotted) dd (dashed dotted) pl (polyline)

Circles : ce (empty) ch (half) cf(full)

Triangles: te (empty) th (half) tf (full)

Squares : se (empty) sh (half) sf (full)

Diamonds : de (empty) dh (half) df (full)

Signs : ad (add) mi (minus) cr (cross) as (asterisk)

Here is the original text for the dashed line and empty triangles.

5697 3788 120 da

933 1032 72 te

951 1261 72 te

984 1566 73 te

1045 1916 72 te

1155 2346 72 te

1353 2708 73 te

1714 3125 72 te

2367 3597 72 te

3551 3775 72 te

5697 4033 72 te

Here is the text edited for a dotted line and empty circles.

5697 3788 120 do

933 1032 72 ce

951 1261 72 ce

984 1566 73 ce

1045 1916 72 ce

1155 2346 72 ce

1353 2708 73 ce
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1714 3125 72 ce

2367 3597 72 ce

3551 3775 72 ce

5697 4033 72 ce

14.4.8 Adding extra text

Here is the original extra text section.

/font /Times­Roman D /size 216 D

GS font F size S 4313 2874 M 0 rotate

(1 Site Model)

(000000000000) fx

/font /Times­Roman D /size 216 D

GS font F size S 1597 2035 M 0 rotate

(2 Site Model)

(000000000000) fx

Here is the above text after changing the font.

/font /Helvetica­BoldOblique D /size 216 D

GS font F size S 4313 2874 M 0 rotate

(Model 1)

(0000000) fx

/font /Helvetica­BoldOblique D /size 216 D

GS font F size S 1597 2035 M 0 rotate

(Model 2)

(0000000) fx

Here is the additional code required to add another label to the plot.

/font /Helvetica­BoldOblique D /size 240 D

GS font F size S 2250 1200 M 0 rotate

(Experiment number 3)

(0000000000000000000) fx

14.4.9 Changing colors

The definition of the 72 colors c0 to c71 in terms of red, green, blue components is in the file header and any
color can be edited. Note that the colors c0 and c15 should be defined as black and white respectively, and
perhaps the main editing involved would be to replace all appearances of colors other than c0 (and c15 for the
background) by c0 in order to transform a colored file into a monochrome file, as these tend to look better in
Word documents and Power Point. For instance, changing

c4

(Survival Analysis) 3195 4467 ti%#title

(00000000000000000) fx

into

c0

(Survival Analysis) 3195 4467 ti%#title

(00000000000000000) fx

would change a red title into a black title.
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14.5 Standard fonts

All PostScript printers have a basic set of 35 fonts and it can be safely assumed that graphics using these
fonts will display in GSview/Ghostscript and print on all except the most primitive PostScript printers. Of
course there may be a wealth of other fonts available. The Times and Helvetica fonts are well known, and the
monospaced Courier family of typewriter fonts are sometimes convenient for tables.

Times-Roman
 !"#$%&’()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_‘
abcdefghijklmnopqrstuvwxyz{|}~�

Times-Bold
 !"#$%&’()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_‘
abcdefghijklmnopqrstuvwxyz{|}~�

Times-Italic
 !"#$%&’()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_‘
abcdefghijklmnopqrstuvwxyz{|}~�

Times-BoldItalic
 !"#$%&’()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_‘
abcdefghijklmnopqrstuvwxyz{|}~�

Helvetica
 !"#$%&’()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_‘
abcdefghijklmnopqrstuvwxyz{|}~�

Helvetica-Bold
 !"#$%&’()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_‘
abcdefghijklmnopqrstuvwxyz{|}~�

Helvetica-Oblique
 !"#$%&’()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_‘
abcdefghijklmnopqrstuvwxyz{|}~�

Helvetica-BoldOblique
 !"#$%&’()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_‘
abcdefghijklmnopqrstuvwxyz{|}~�
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14.5.1 Decorative fonts

Sometimes decorative or graphic fonts are required, such as pointing hands or scissors. It is easy to include
such fonts using program Simplot, although the characters will be visible only if the plot is inspected using
GSview/Ghostscript.

Symbol
 !∀#∃%&∋()∗+,−./0123456789:;<=>?≅
ΑΒΧ∆ΕΦΓΗΙϑΚΛΜΝΟΠΘΡΣΤΥςΩΞΨΖ[]⊥_
αβχδεφγηιϕκλµνοπθρστυϖωξψζ{|}∼�

ZapfDingbats
 ✁✂✃✄☎✆✇✈✉☛☞✌✍✎✏✐✑✒✓✔✕✖✗✘✙✚✛✜✝✞✟✠
✡✢✣✤✥✦✧★✩✪✫✬✭✮✯✰✱✲✳✴✵✶✷✸✹✺✻✽✾✿❀
❁❂❃❄❅❆❇❈❉❊❋●❍■❏❐❑❒▲▼◆❖◗❘❙❚❛❜❝❞�

ZapfChancery-MediumItalic
 !"#$%&’()*+,-./0123456789:;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_‘
abcdefghijklmnopqrstuvwxyz{|}~�

Some extra characters in Times, Helvetica, etc.
æ(361)•(267)†(262)‡(263)¡(241)ƒ(246)œ(372)¿(277)˚(312)§(247)£(243)

Some extra characters in Symbol
∠(320)〈(341)〉(361)≈(273)↔(253)⇔(333)⇐(334)⇒(336)←(254)→(256)|(174)
⊗(304)⊕(305)°(260)÷(270)∈(316)…(274)∅(306)≡(272)ƒ(246)∇(321)≥(263)
∞(245)∫(362)≤(243)×(264)≠(271)∏(325)∂(266)±(261)√(326)∑(345)∪(310)

14.5.2 Plotting characters outside the keyboard set

To use characters outside the keyboard set you have to use the corresponding octal codes. Note that these
codes represent just one byte in PostScript so, in this special case, four string characters need only one key
character. For example, such codes as \277 for an upside down question mark in standard encoding, or
\326 for a square root sign in Symbol, only need one index key. You might wonder why, if Simplot can
put any accent on any character and there are maths and bold maths fonts, you would ever want alternative
encodings, like the ISOLatin1Encoding. This is because the ISOLatin1Encoding allows you to use specially
formed accented letters, which are more accurately proportioned than those generated by program Simplot
by adding the accent as a second over-printing character, e.g. using \361 for n tilde is more professional than
overprinting.
All the characters present in the coding vectors to be shown next can be used by program Simplot, as well as a
special Maths/Greek font and a vast number of accented letters and graphical objects, but several points must
be remembered.

All letters can be displayed using GSview/Ghostscript and then Adobe Acrobat after distilling to pdf. Although

substitutions can be made interactively from Simplot, you can also save a .eps file and edit it in a text editor.

When using an octal code to introduce a non-keyboard character, only use one index key for the four character

code. If you do not have a PostScript printer, save plots as .eps files and print from GSview/Ghostscript or

transform into graphics files to include in documents.

Some useful codes follow, then by examples to clarify the subject. You will find it instructive to view
simfonts.ps in the SimFIT viewer and display it in GSview/Ghostcsript.
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14.5.3 The StandardEncoding Vector

octal 0 1 2 3 4 5 6 7

\00x

\01x

\02x

\03x

\04x  ! " # $ % & ’

\05x ( ) * + , - . /

\06x 0 1 2 3 4 5 6 7

\07x 8 9 : ; < = > ?

\10x @ A B C D E F G

\11x H I J K L M N O

\12x P Q R S T U V W

\13x X Y Z [ \ ] ^ _

\14x ‘ a b c d e f g

\15x h i j k l m n o

\16x p q r s t u v w

\17x x y z { | } ~

\20x

\21x

\22x

\23x

\24x  ¡ ¢ £ ⁄ ¥ ƒ §

\25x ¤ ' “ « ‹ › fi fl

\26x  – † ‡ ·  ¶ •

\27x ‚ „ ” » … ‰  ¿

\30x  ` ´ ˆ ˜ ¯ ˘ ˙

\31x ¨  ˚ ¸  ˝ ˛ ˇ

\32x —

\33x

\34x  Æ  ª

\35x Ł Ø Œ º

\36x  æ    ı

\37x ł ø œ ß
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14.5.4 The ISOLatin1Encoding Vector

octal 0 1 2 3 4 5 6 7

\00x

\01x

\02x

\03x

\04x  ! " # $ % & ’

\05x ( ) * + , − . /

\06x 0 1 2 3 4 5 6 7

\07x 8 9 : ; < = > ?

\10x @ A B C D E F G

\11x H I J K L M N O

\12x P Q R S T U V W

\13x X Y Z [ \ ] ^ _

\14x ‘ a b c d e f g

\15x h i j k l m n o

\16x p q r s t u v w

\17x x y z { | } ~

\20x

\21x

\22x ı ` ´ ˆ ˜ ¯ ˘ ˙

\23x ¨  ˚ ¸  ˝ ˛ ˇ

\24x  ¡ ¢ £ ¤ ¥ ¦ §

\25x ¨ © ª « ¬ ­ ® ¯

\26x ° ± ² ³ ´ µ ¶ ·

\27x ¸ ¹ º » ¼ ½ ¾ ¿

\30x À Á Â Ã Ä Å Æ Ç

\31x È É Ê Ë Ì Í Î Ï

\32x Ð Ñ Ò Ó Ô Õ Ö ×

\33x Ø Ù Ú Û Ü Ý Þ ß

\34x à á â ã ä å æ ç

\35x è é ê ë ì í î ï

\36x ð ñ ò ó ô õ ö ÷

\37x ø ù ú û ü ý þ ÿ
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14.5.5 The SymbolEncoding Vector

octal 0 1 2 3 4 5 6 7

\00x

\01x

\02x

\03x

\04x  ! ∀ # ∃ % & ∋
\05x ( ) ∗ + , − . /
\06x 0 1 2 3 4 5 6 7
\07x 8 9 : ; < = > ?
\10x ≅ Α Β Χ ∆ Ε Φ Γ
\11x Η Ι ϑ Κ Λ Μ Ν Ο
\12x Π Θ Ρ Σ Τ Υ ς Ω
\13x Ξ Ψ Ζ [ ∴ ] ⊥ _
\14x  α β χ δ ε φ γ
\15x η ι ϕ κ λ µ ν ο
\16x π θ ρ σ τ υ ϖ ω
\17x ξ ψ ζ { | } ∼
\20x

\21x

\22x

\23x

\24x  ϒ ′ ≤ ⁄ ∞ ƒ ♣
\25x ♦ ♥ ♠ ↔ ← ↑ → ↓
\26x ° ± ″ ≥ × ∝ ∂ •
\27x ÷ ≠ ≡ ≈ …   ↵
\30x ℵ ℑ ℜ ℘ ⊗ ⊕ ∅ ∩
\31x ∪ ⊃ ⊇ ⊄ ⊂ ⊆ ∈ ∉
\32x ∠ ∇    ∏ √ ⋅
\33x ¬ ∧ ∨ ⇔ ⇐ ⇑ ⇒ ⇓
\34x ◊ 〈    ∑  
\35x        
\36x  〉 ∫ ⌠  ⌡  
\37x       
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14.5.6 The ZapfDingbatsEncoding Vector

octal 0 1 2 3 4 5 6 7

\00x � � � � � � � �

\01x � 	 
 � � 
 � �

\02x � � � � � � � �

\03x � � � � � � � �

\04x  ✁ ✂ ✃ ✄ ☎ ✆ ✇

\05x ✈ ✉ ☛ ☞ ✌ ✍ ✎ ✏

\06x ✐ ✑ ✒ ✓ ✔ ✕ ✖ ✗

\07x ✘ ✙ ✚ ✛ ✜ ✝ ✞ ✟

\10x ✠ ✡ ✢ ✣ ✤ ✥ ✦ ✧

\11x ★ ✩ ✪ ✫ ✬ ✭ ✮ ✯

\12x ✰ ✱ ✲ ✳ ✴ ✵ ✶ ✷

\13x ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✿

\14x ❀ ❁ ❂ ❃ ❄ ❅ ❆ ❇

\15x ❈ ❉ ❊ ❋ ● ❍ ■ ❏

\16x ❐ ❑ ❒ ▲ ▼ ◆ ❖ ◗

\17x ❘ ❙ ❚ ❛ ❜ ❝ ❞ �

\20x ❨ ❩ ❪ ❫ ❬ ❭ ❮ ❯

\21x ❰ ❱ ❲ ❳ ❴ ❵ � �

\22x � � � � � � � �

\23x � � � � � � � �

\24x   ❡ ❢ ❣ ❤ ❥ ❦ ❧

\25x ♣ ♦ ♥ ♠ ① ② ③ ④

\26x ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ❶ ❷

\27x ❸ ❹ ❺ ❻ ❼ ❽ ❾ ❿

\30x ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇

\31x ➈ ➉ ➊ ➋ ➌ ➍ ➎ ➏

\32x ➐ ➑ ➒ ➓ ➔ → ↔ ↕

\33x ➘ ➙ ➚ ➛ ➜ ➝ ➞ ➟

\34x ➠ ➡ ➢ ➣ ➤ ➥ ➦ ➧

\35x ➨ ➩ ➪ ➫ ➬ ➭ ➮ ➯

\36x ✐ ➱ ➲ ➳ ➴ ➵ ➶ ➷

\37x ➸ ➹ ➺ ➻ ➼ ➽ ➾ ÿ
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14.6 Simfit character display codes

0 Standard font
1 Standard font subscript
2 Standard font superscript
3 Maths/Greek
4 Maths/Greek subscript
5 Maths/Greek superscript
6 Bold Maths/Greek
7 ZapfDingbats (PostScript) Wingding (Windows)
8 ISOLatin1Encoding (PostScript), Standard (Windows, almost)
9 Special (PostScript) Wingding2 (Windows)
A Grave accent
B Acute accent
C Circumflex/Hat
D Tilde
E Macron/Bar/Overline
F Dieresis
G Maths/Greek-hat
H Maths/Greek-bar
I Bold maths/Greek-hat
J Bold Maths/Greek-bar

K Symbol font
L Bold Symbol font

You will need non-keyboard characters from the standard font for such characters as a double dagger (‡) or
upside down question mark (¿), e.g. typing \277 in a text string would generate the upside down question
mark (¿) in the PostScript output. If you want to include a single backslash in a text string, use \\, and also
cancel any unpaired parentheses using \( and \). Try it in program SIMPLOT and it will then all make
sense. The ISOLatin1Encoding vector is used for special characters, such as \305 for Angstrom (Å), \361
for n-tilde (ñ), or \367 for the division sign (÷), and, apart from a few omissions, the standard Windows font
is the same as the ISOLatin1Encoding. The Symbol and ZapfDingbats fonts are used for including special
graphical characters like scissors or pointing hands in a text string.

A special font is reserved for PostScript experts who want to add their own character function. Note that, in a
document with many graphs, the prologue can be cut out from all the graphs and sent to the printer just once
at the start of the job. This compresses the PostScript file, saves memory and speeds up the printing. Examine
the manuals source code for this technique.

If you type four character octal codes as character strings for plotting non-keyboard characters, you do

not have to worry about adjusting the character display codes, program SIMPLOT will make the necessary

corrections. The only time you have to be careful about the length of character display code vectors is when

editing in a text editor. If in doubt, just pad the character display code vector with question marks until it is

the same length as the character string.
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14.7 editps text formatting commands

Program editps uses the SimFIT convention for text formatting characters within included SimFIT .eps files
but, because this is rather cumbersome, a simplified set of formatting commands is available within editps

whenever you want to add text, or even create PostScript files containing text only. The idea of these
formatting commands is to allow you to introduce superscripts, subscripts, accented letters, maths, dashed
lines or plotting symbols into PostScript text files, or into collage titles, captions, or legends, using only ASCII
text controls. To use a formatting command you simply introduce the command into the text enclosed in curly
brackets as in: {raise}, {lower}, {newline}, and so on. If {anything} is a recognized command then it will
be executed when the .eps file is created. Otherwise the literal string argument, i.e. anything, will be printed
with no inter-word space. Note that no {commands} add interword spaces, so this provides a mechanism to
build up long character strings and also control spacing; use {anything} to print anything with no trailing
inter-word space, or use { } to introduce an inter-word space character. To introduce spaces for tabbing, for
instance, just use {newline}{ }start-of-tabbing, with the number of spaces required inside the { }. Note
that the commands are both spelling and case sensitive, so, for instance, {21}{degree}{C} will indicate the
temperature intended, but {21}{degrees}{C} will print as 21degreesC while {21}{Degree}{C} will produce
21DegreeC.

14.7.1 Special text formatting commands, e.g. left

{left} . . . use {left} to print a {
{right} . . . use {right} to print a }
{%!command} . . . use {%!command} to issue command as raw PostScript

The construction {%!command} should only be used if you understand PostScript. It provides PostScript
programmers with the power to create special effects. For example {%!1 0 0 setrgbcolor}, will change the
font colour to red, and {%!0 0 1 setrgbcolor} will make it blue, while {%!2 setlinewidth} will double line
thickness. In fact, with this feature, it is possible to add almost any conceivable textual or graphical objects
to an existing .eps file.

14.7.2 Coordinate text formatting commands, e.g. raise

{raise} . . . use {raise} to create a superscript or restore after {lower}
{lower} . . . use {lower} to create a subscript or restore after {raise}
{increase} . . . use {increase} to increase font size by 1 point
{decrease}. . . use {decrease} to decrease font size by 1 point
{expand} . . . use {expand} to expand inter-line spacing by 1 point
{contract} . . . use {contract} to contract inter-line spacing by 1 point

14.7.3 Currency text formatting commands, e.g. dollar

{dollar} $ {sterling} £ {yen} Y

14.7.4 Maths text formatting commands, e.g. divide

{divide} ÷ {multiply} × {plusminus} ±

14.7.5 Scientific units text formatting commands, e.g. Angstrom

{Angstrom} Å {degree} ◦ {micron} `

14.7.6 Font text formatting commands, e.g. roman

{roman} {bold} {italic} {helvetica}
{helveticabold} {helveticaoblique} {symbol} {zapfchancery}
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{zapfdingbats} {isolatin1}

Note that you can use octal codes to get extra-keyboard characters, and the character selected will depend
on whether the StandardEncoding or IOSLatin1Encoding is current. For instance, \ 361 will locate an
{ae} character if the StandardEncoding Encoding Vector is current, but it will locate a {ñ} character if the
ISOLatin1Encoding Encoding Vector is current, i.e. the command {isolatin1} has been used previously. The
command {isolatin1} will install the ISOLatin1Encoding Vector as the current Encoding Vector until it is
cancelled by any font command, such as {roman}, or by any shortcut command such as {ntilde} or {alpha}.
For this reason, {isolatin1} should only be used for characters where shortcuts like {ntilde} are not available.

14.7.7 Poor man’s bold text formatting command, e.g. pmb?

The command {pmb?} will use the same technique of overprinting as used by the Knuth TEX macro to render
the argument, that is ? in this case, in bold face font, where ? can be a letter or an octal code. This is most useful
when printing a boldface character from a font that only exists in standard typeface. For example, {pmbb}
will print a boldface letter b in the current font then restore the current font, while {symbol}{pmbb}{roman}
will print a boldface beta then restore roman font. Again, {pmb\ 243} will print a boldface pound sign.

14.7.8 Punctuation text formatting commands, e.g. dagger

{dagger} † {daggerdbl} ‡ {paragraph} ¶ {subsection} §
{questiondown} ¿

14.7.9 Letters and accents text formatting commands, e.g. Aacute

{Aacute} Á {agrave} à {aacute} á {acircumflex} â
{atilde} ã {adieresis} ä {aring} å {ae} æ
{ccedilla} ç {egrave} è {eacute} é {ecircumflex} ê
{edieresis} ë {igrave} ì {iacute} í {icircumflex} î
{idieresis} ï {ntilde} ñ {ograve} ò {oacute} ó
{ocircumflex} ô {otilde} õ {odieresis} ö {ugrave} ù
{uacute} ú {ucircumflex} û {udieresis} ü

All the other special letters can be printed using {isolatin1} (say just once at the start of the text) then using
the octal codes, for instance {isolatin1}{\ 303} will print an upper case ntilde.

14.7.10 Greek text formatting commands, e.g. alpha

{alpha} U {beta} V {chi} j {delta} X
{epsilon} n {phi} q {gamma} W {eta} [
{kappa} ^ {lambda} _ {mu} ` {nu} a
{pi} c {theta} \ {rho} d {sigma} f
{tau} g {omega} l {psi} k

All the other characters in the Symbol font can be printed by installing Symbol font, supplying the octal code,
then restoring the font, as in {symbol}{\ 245}{roman} which will print infinity, then restore Times Roman
font.

14.7.11 Line and Symbol text formatting commands, e.g. ce

{li} = line
{da} = dashed line
{do} = dotted line
{dd} = dashed dotted line
{ce}, {ch}, {cf} = circle (empty, half filled, filled)
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{te}, {th}, {tf} = triangle (empty, half filled, filled)
{se}, {sh}, {sf} = square (empty, half filled, filled)
{de}, {dh}, {df} = diamond (empty, half filled, filled)
These line and symbol formatting commands can be used to add information panels to legends, titles, etc. to
identify plotting symbols.

14.7.12 Examples of text formatting commands

{TGF}{beta}{lower}{1}{raise} is involved
TGFV1 is involved

y = {x}{raise}{2}{lower} + 2
H = G2 + 2

The temperature was {21}{degree}{C}
The temperature was 21◦C

{pi}{r}{raise}{decrease}{2}{increase}{lower} is the area of a circle
cA2 is the area of a circle

The {alpha}{lower}{2}{raise}{beta}{lower}{2}{raise} isoform
The U2V2 isoform

{[Ca}{raise}{decrease}{++}{increase}{lower}{]} = {2}{mu}{M}
[�0++] = 2`"
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14.8 Scaling, rotating, and stretching

One of the features SimFIT provides for EPS PostScript files is the ability to manipulate the metric features of
the files as they are created, or retrospectively using program editps. The following procedures, for instance,
are frequently required.

• Changing the aspect ratio and clipping;

• Scaling, rotating, and shearing;

• Adjusting fonts and line thicknesses if graphs are enlarged or reduced; and

• Stretching the white space between items plotted without altering the aspect ratios of characters or
symbols.

This is possible because of two special features in SimFIT PostScript files.

1. The BoundingBox and clipping coordinates, as in the typical header section shown next.

%!PS­Adobe­3.0 EPSF­3.0

%%BoundingBox: 72 252 520 588

%%Creator: Simfit Version 7.2.8 (simfit.org.uk)

%%Title: colours=72/ISOLatin1Encoding/Accents/special/PSfrag/dict=300

%%CreationDate: Saturday, 15 April 2017

%%EndComments

%

%Start of SIMFIT PostScript file

%

save %save current state before clipping, etc.

70 250 522 250 522 590 70 590%#clipping

newpath moveto lineto lineto lineto closepath clip newpath

72.00 252.00 translate 0.07 0.07 scale 0.00 rotate%#portrait

12.00 setlinewidth 0 setlinecap 1 setlinejoin [] 0 setdash

2.50 setmiterlimit

%

The BoundingBox holds the overall dimensions of the EPS file in PostScript units (1/72 inches) while the rest
defines the clipping and rotating parameters.

2. The special sections indicated by %#, as in the typical data section shown below.

c0

1070 671 59 ce%#2

3514 2443 59 ce%#2

5959 4215 58 ce%#2

Text following any % sign are taken as comments in PostScript files, so the parameters following the %# are
specific SimFIT stretching factors to alter the preceding coordinates. These stretch white space and alter the
starting coordinates for symbols, lines, and character strings but not the inter-word separation, so preserving the
aspect ratio of fonts.

Of course the brave may wish to alter these themselves using a text editor but, as this is very tedious and
error-prone, the SimFIT package provides functions to perform the editing
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14.8.1 Alternative sizes, shapes and clipping

Plots can have horizontal, square or vertical format as in the next figure, and user-defined clipping schemes
can be used. After clipping, SimFIT adds a standard BoundingBox so all plots with the same clipping scheme
will have the same absolute size but, when GSview/Ghostscript transforms ps into eps, it clips individual
files to the boundary of white space and the desirable property of equal dimensions will be lost.
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There is also a stretched format for long horizontal ribbon type graphs and a PostScript option to stretch white
space without altering symbols and fonts, which is very useful with dense data sets such as dendrograms.

14.8.2 Rotated and re-scaled graphs

PostScript files can be read into editps which has options for re-sizing, re-scaling, editing, rotating, making
collages, etc. In the next figure the box and whisker plot was turned on its side to generate a side-on barchart.
To do this sort of thing you should learn how to browse a SimFIT PostScript file in the SimFIT viewer to read
BoundingBox coordinates, in PostScript units of 72 to one inch, and calculate how much to translate, scale,
rotate, etc.
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PostScript users should be warned that the special structure of SimFIT PostScript files that allows extensive
retrospective editing using editps, or more easily if you know how using a simple text editor like notepad, is
lost if you read such graphs into a graphics editor program like Adobe Illustrator. Such programs start off by
redrawing vector graphics files into their own conventions which are only machine readable.
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14.8.3 Changed aspect ratios and shear transformations

The barchart in the figure below was scaled to make the X-axis longer than the Y-axis and vice-versa, but
note how this type of differential scaling changes the aspect ratio as illustrated. Since rotation and scaling do
not commute, the effect created depends on the order of concatenation of the transformation matrices. For
instance, scaling then rotation cause shearing which can be used to generate 3-dimensional perspective effects
as in the last sub-figure.

0.00

2.00

4.00

6.00

Bar Chart Overlaps, Groups and Stacks

V
al

ue
s

Overlap

Group

Stack

0.00

2.00

4.00

6.00

Bar Chart Overlaps, Groups and Stacks

Va
lue

s

Overlap

Group
Stack

0.00

2.00

4.00

6.00

Bar Chart Overlaps, Groups and Stacks

V
a
lu

e
s

O
verlap

G
roup

Stack

0.
00

2.
00

4.
00

6.
00

B
ar

 C
h
ar

t 
O

ve
rl

ap
s,
 G

ro
u
p
s 
an

d
 S

ta
ck

s

Valu
es

Overlap

Group

Stack

0.00

2.00

4.00

6.00

Bar C
hart O

verl
aps, G

roups a
nd Stacks

Valu
es

Overlap

Group

Stack



Scaling, rotating, and stretching 791

14.8.4 Plotting combined meta analysis results
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It is often useful to plot Log-Odds-Ratios, so the
creation of the adjacent figure will be outlined.

(1) The data

Test files meta.tf1, meta.tf2, and meta.tf3 were
analyzed in sequence using the SimFIT Meta Anal-
ysis procedure. Note that, in these files, column
3 contains spacing coordinates so that data will be
plotted consecutively.

(2) The ASCII coordinate files

During Meta Analysis, 100(1−U)% confidence lim-
its on the Log-Odds-Ratio resulting from a 2 by 2
contingency tables with cell frequencies =8 9 can be
constructed from the approximation 4̂ where

4̂ = /U/2

√
1

=11

+ 1

=12

+ 1

=21

+ 1

=22

.

When Log-Odds-Ratios with error bars are dis-
played, the overall values (shown as filled symbols)
with error bars are also plotted with a G coordinate
one less than smallest G value on the input file. For
this figure, error bar coordinates were transferred
into the project archive using the [Advanced] option
to save ASCII coordinate files.

(3) Creating the composite plot

Program simplot was opened and the six error
bar coordinate files were retrieved from the project
archive. Experienced users would do this more eas-
ily using a library file of course. Reverse H-semilog
transformation was selected, symbols were chosen,
axes, title, and legends were edited, then half bracket
hooks identifying the data were added as arrows and
extra text.

(4) Creating the PostScript file

Vertical format was chosen then, using the option
to stretch PostScript files, the H coordinate was
stretched by a factor of two.

(5) Editing the PostScript file

To create the final PostScript file for LATEX a tighter
bounding box was calculated using gsview then,
using notepad, clipping coordinates at the top of the
file were set equal to the BoundingBox coordinates,
to suppress excess white space. This can also be
done using the [Style] option to omit painting a white
background, so that PostScript files are created with
transparent backgrounds, i.e. no white space, and
clipping is irrelevant.
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14.8.5 Plotting dendrograms: standard format

Dendrogram shape is arbitrary in two ways; the G axis order is arbitrary as clusters can be rotated around any
clustering distance leading to 2=−1 different orders, and the distance matrix depends on the settings used. For
instance, a square root transformation, Bray-Curtis similarity, and a group average link generates the second
dendrogram in this figure from the first. The H plotted are dissimilarities, while labels are 100 − H, which
should be remembered when changing the H axis range.

Users should not manipulate dendrogram parameters to create a dendrogram supporting some preconceived
clustering scheme. You can set a label threshold and translation distance from the [--axis] menu so that, if
the number of labels exceeds the threshold, even numbered labels are translated, and font size is decreased.
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14.8.6 Plotting dendrograms: stretched format

Sometimes dendrograms are more readable if the white space is stretched without distorting the labels.
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So SimFIT PostScript graphs have a very useful fea-
ture: you can stretch or compress the white space
between plotted lines and symbols without changing
the line thickness, symbol size, or font size and aspect
ratio. For instance, stretching, clipping and sliding
procedures are valuable in graphs which are crowded
due to overlapping symbols or labels, as in previous
figures. If such dendrograms are stretched retrospec-
tively using editps, the labels will not separate as the
fonts will also be stretched so letters become ugly due
to altered aspect ratios. SimFIT can increase white
space between symbols and labels while maintaining
correct aspect ratios for the fonts in PostScript hard-
copy and, to explain this, the creation of this stretrched
figure will be described.

The title, legend and double G labeling were sup-
pressed, and landscape mode with stretching, clipping
and sliding was selected from the PostScript control
using the [Shape] then [Landscape +] options, with
an G stretching factor of two. Stretching increases
the space between each symbol, or the start of each
character string, arrow or other graphical object, but
does not turn circles into ellipses or distort letters. As
graphs are often stretched to print on several sheets of
paper, sub-sections of the graph can be clipped out,
then the clipped sub-sections can be slid to the start of
the original coordinate system to facilitate printing.

If stretch factors greater than two are used, legends
tend to become detached from axes, and empty white
space round the graph increases. To remedy the former
complication, the default legends should be suppressed
or replaced by more closely positioned legends while,
to cure the later effect, GSview can be used to calculate
new BoundingBox coordinates (by transforming .ps
to .eps). If you select the option to plot an opaque
background even when white (by mistake), you may
then find it necessary to edit the resulting .eps file in a
text editor to adjust the clipping coordinates (identified
by %#clip in the .eps file) and background polygon
filling coordinates (identified by %#pf in the .ps file) to
trim away unwanted white backgroundborders that are
ignored by GSview when calculating BoundingBox
coordinates. Another example of this technique is
with meta analysis plots, where it is also pointed out
that creating transparent backgrounds by suppressing
the painting of a white background obviates the need
to clip away extraneous white space.
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.

14.8.7 Plotting dendrograms: subgroups
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The procedures described can also be used to im-
prove the readability of dendrograms where sub-
groups have been assigned by partial clustering. The
next figure shows a graph from iris.tf1when three
subgroups are requested, or a threshold is set corre-
sponding to the horizontal dotted line. The figure
was created by these steps.
First the title was suppressed, the H-axis range was
changed to (0, 4.25) with 18 tick marks, the (G, H)
offset was canceled as this suppresses axis moving,
the label font size was increased from 1 to 3, and the
G-axis was translated to 0.8.
Then the PostScript stretch/slide/clip procedure was
used with these parameters

Gstretch = 1.5

Hstretch = 2.0

Gclip = 0.15, 0.95

Hclip = 0.10, 0.60.

This generates the following graph.
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Windows users without PostScript printing facilities must create a *.eps file using this technique, then use
the SimFIT procedures to create a graphics file they can use, e.g. *.jpg. Use of a larger font and increased
G-stretching would be required to read the labels, of course.
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14.9 PostScript specials

SimFIT PostScript files are designed to facilitate editing, and one important type of editing is to be able to
specify text files, known as specials, that can modify the graph in an almost unlimited number of ways. This
technique will now be described but, if you want to do it and you are not a PostScript programmer, do not
even think about it; get somebody who has the necessary skill to do what you want. An example showing
how to display a logo will be seen on page 797 and further details follow.

14.9.1 What specials can do

First of all, here are some examples of things you may wish to do with SimFIT PostScript files that would
require specials.

❏ Replace the 35 standard fonts by special user-defined fonts.

❏ Add a logo to plots, e.g. a departmental heading for slides.

❏ Redefine the plotting symbols, line types, colours, fill styles, etc.

❏ Add new features, e.g. outline or shadowed fonts, or clipping to non-rectangular shapes.

When SimFIT PostScript files are created, a header subsection, called a prologue, is placed at the head of
the file which contains all the definitions required to create the SimFIT dictionary. Specials can be added,
as independent text files, to the files after these headings in order to re-define any existing functions, or even
add new PostScript plotting instructions. The idea is is very simple; you can just modify the existing SimFIT
dictionary, or even be ambitious and add completely new and arbitrary graphical objects.

14.9.2 The technique for defining specials

Any SimFIT PostScript file can be taken into a text editor in order to delete the existing header in order to save
space in a large document, as done with the SimFIT manual, or else to paste in a special. However, this can
also be done interactively by using the font option, accessible from the SimFIT PostScript interface. Since
this mechanism is so powerful, and could easily lead to the PostScript graphics being permanently disabled
by an incorrectly formatted special, SimFIT always assumes that no specials are installed. If you want to
use a special, then you simply install the special and it will be active until it is de-selected or replaced by
another special. Further details will be found in the on-line documentation and w_readme files, and examples
of specials are distributed with the SimFIT package to illustrate the technique. You should observe the effect
of the example specials before creating your own. Note that any files created with specials can easily be
restored to the default configuration by cutting out the special. So it makes sense to format your specials like
the SimFIT example specials pspecial.1, etc. to facilitate such retrospective editing. The use of specials is
controlled by the file pspecial.cfg as now described. The first ten lines are Booleans indicating which of
files 1 through 10 are to be included. The next ten lines are the file names containing the special code. There
are ten SimFIT examples supplied, and it is suggested that line 1 of your specials should be in the style of these
examples. You simply edit the file names in pspecial.cfg to install your own specials. The Booleans can
be edited interactively from the advanced graphics PS/Fonts option. Note that any specials currently installed
are flagged by the SimFIT program manager and specials only work in advanced graphics mode. In the event
of problems with PostScript printing caused by specials, just delete pspecial.cfg. To summarise.

❏ Create the special you want to insert.

❏ Edit the file psecial.cfg in the SimFIT folder.

❏ Attach the special using the Postscript Font option.
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14.9.3 Example codes for PostScript specials

To clarify the structure of SimFIT PostScript specials, just consider the code for the first three examples
distributed with the SimFIT package. The file psecial.1 simply adds a monochrome logo, the file psecial.2
shows how to add color, while the file psecial.3 makes more sweeping changes to the color scheme by
reversing the definitions for black and white.

❏ The PostScript special pspecial.1

%file = pspecial.1: add monochrome simfit logo to plot

gsave

/printSIMFIT {0 0 moveto (SIMFIT) show} def

/Times­Italic findfont 300 scalefont setfont

300 4400 translate

.95 ­.05 0

{setgray printSIMFIT ­10 5 translate} for

1 1 1 setrgbcolor printSIMFIT

grestore

%end of pspecial.1

❏ The PostScript special pspecial.2

%file = pspecial.2: add yellow simfit logo to plot

gsave

/printSIMFIT {0 0 moveto (SIMFIT) show} def

/Times­Italic findfont 300 scalefont setfont

300 4400 translate

.95 ­.05 0

{setgray printSIMFIT ­10 5 translate} for

0 0 moveto (SIMFIT) true charpath gsave 1 1 0 setrgbcolor fill grestore

grestore

%end of pspecial.2

❏ The PostScript special pspecial.3

%file = pspecial.3: yellow­logo/blue­background/swap­black­and­white

/background{.5 .5 1 setrgbcolor}def

background

0 0 0 4790 6390 4790 6390 0 4 pf

/c0{1 1 1 setrgbcolor}def

/c15{0 0 0 setrgbcolor}def

/foreground{c0}def

gsave

/printSIMFIT {0 0 moveto (SIMFIT) show} def

/Times­Italic findfont 300 scalefont setfont

300 4400 translate

.95 ­.05 0

{setgray printSIMFIT ­10 5 translate} for

0 0 moveto (SIMFIT) true charpath gsave 1 1 0 setrgbcolor fill grestore

grestore

%end of pspecial.3

Remember, the effects of these specials are only visible in the PostScript files created by SimFIT and not in
any direct Windows quality hardcopy.
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14.9.4 Example plots for PostScript specials

Figure 9 illustrates the end result of adding logos using such PostScript specials.
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Figure 9: Using PostScript specials to add logos to plots
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14.10 LATEX options

14.10.1 Maths

You can add equations to graphs directly, but this will be a compromise, as specialized type setting techniques
are required to display maths correctly. The LATEX system is pre-eminent in the field of maths type-setting and
the PSfrag system, as revised by David Carlisle and others, provides a simple way to add equations to SimFIT
graphs. For figure 10, makdat generated a Normal cdf with ` = 0 and f = 1, then simplot created cdf.eps

with the key phi(x), which was then used by this stand-alone code to generate the figure, where the equation
substitutes for the key. LATEX PostScript users should be aware that SimFIT PostScript file format has been
specially designed to be consistent with the PSfrag package but, if you want to then use GhostScript to create
graphics file, say .png from .eps, the next section should be consulted.

\documentclass[dvips,12pt]{article}

\usepackage{graphicx}

\usepackage{psfrag}

\pagestyle{empty}

\begin{document}

\large

\psfrag{phi(x)}{$\displaystyle

\frac{1}{\sigma \sqrt{2\pi}}

\int_{­\infty}^x \exp\left\{

­\frac{1}{2} \left( \frac{t­\mu}{\sigma} \right)^2 \right\}\,dt$}

\mbox{\includegraphics[width=6.0in]{cdf.eps}}

\end{document}
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Figure 10: Plotting mathematical equations
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14.10.2 Chemical Formulæ

LATEX code, as below, is intended for document preparation and adds white space to the final .ps file. The
easiest way round this complication is to add an outline box to the plot, as in figure 11. Then, after the .png
file has been created, it can be input into, e.g., GIMP, for auto clipping to remove extraneous white space,
followed by deletion of the outline box if required.

\documentclass[dvips,12pt]{article}

\usepackage{graphicx}

\usepackage{psfrag}

\usepackage{carom}

\pagestyle{empty}

\begin{document}

\psfrag{formula}

{\begin{picture}(3000,600)(0,0)

\thicklines

\put(0,0){\bzdrv{1==CH$_{2}$NH$_{2}$;4==CH$_{2}$N(Me)$_{2}$}}

\put(700,450){\vector(1,0){400}}

\put(820,550){[O]}

\put(1000,0){\bzdrv{1==CHO;4==CH$_{2}$N(Me)$_{2}$}}

\put(1650,400){+}

\put(1750,400){NH$_{3}$}

\put(2000,450){\vector(1,0){400}}

\put(2120,550){[O]}

\put(2300,0){\bzdrv{1==CO$_{2}$H;4==CH$_{2}$N(Me)$_{2}$}}

\end{picture}}

\mbox{\includegraphics{chemistry.eps}}

\end{document}
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14.10.3 Composite graphs

The technique used to combine sub-graphs into a composite graph is easy. First use your drawing or painting
program to save the figures of interest in the form of eps files. Then the SimFIT graphs and any component
eps files are read into editps to move them and scale them until the desired effect is achieved. In figure 12,
data were generated using deqsol, error was added using adderr, the simulated experimental data were fitted
using deqsol, the plot was made using simplot, the chemical formulae and mathematical equations were
generated using LATEX and the final graph was composed using editps.
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14.11 Creating collages, overlays, and insets

Sometimes it is useful to collect a numbers of graphics files together in order to create a single graphics file.
This is particularly easy and valuable to do using SimFIT *.eps files since the manipulations are facilitated by
the presence of BoundingBox coordinates in the header sections, also the composite graph will be compact
and device–independent with full resolution for display or printing. The options available are provided by
program editps and are as now listed.

1. Strict collages

Here there must be a set of graphics files, say =, that all have the same size, orientation, and aspect
ratio. For instance, the SimFIT default portrait setting. Because all files have the same dimensions then
all that is required is to decide on the number of columns, say <, required for the collage. Clearly, for
best results = should be a multiple of <, but this is purely for appearance. Once a collage has been
composed there are three other options that can be used.

(a) A label can be added to facilitate reference to the individual graphs.

(b) Such labels would usually be a single number or letter but short labels can also be added, exercising
care to view the resultant collage before finally saving.

(c) A section of text can be added at the bottom of the collage to describe the items. This should
be in simple text and will be transformed into PostScript before adding to the graph. In order
to use subscripts, superscripts, font changes, or mathematical symbols, there is a special syntax
described in the SimFIT reference manual w_manual.pdf, or the tutorial documentpscodes.pdf.

2. Freestyle collages

In this type of collage the graphs can be of any size, orientation, or aspect ratio, because the user is
going to resize the graphs and then move them about individually. After selecting the files to be used, a
display is created where the graphs are represented as numbered and colored rectangles. These can be
selected at will, moved to a new positions, then enlarged or diminished as required. The collage can be
viewed repeatedly during this procedure until a correct assembly has been obtained before saving the
final composite file.

3. Insets

This procedure is used when it is wished to insert one or more child graphs into a parent graph, often the
same data plotted in alternative coordinates. There are three vital things to bear in mind when carrying
out this procedure.

(a) Font size and line thickness.
Because inserted graphs are going to be reduced in size, it is important to consider saving the
original child graphs graphs to be inserted using increased font and symbol size and line thickness.
Otherwise the inserted graphs could be hard to read.

(b) Clipping

It is useful to consider clipping the graphs to be inserted to remove surroundingbackground which,
by default, is added by SimFIT to create a margin. Alternatively, program GSview can be used to
create a new BoundingBox. Actually it is very easy to edit the header of SimFIT PostScript files
to alter the clipping and BoundingBox coordinates. Try it.

(c) Background opacity.

When a SimFIT *.eps file is created there is an option to make white backgrounds transparent or
opaque. It is recommended to consider whether the inset graph is going to obliterate the section
of the master graph it overlies, or if the master graph should remain visible.
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14.11.1 Example 1: Strict collages

The best way to input a collection of files is to create a library file for *.eps files using program maklib, and
this was done to make the test library file images.tfl which contains this information.

Example of a EPS type library file

waves.eps

rosenbrock.eps

dendrogram.eps

trinom.eps

ukmap.eps

diffusion.eps

rose.eps

gauss3.eps

convolution.eps

Note that the first line of a library file is an arbitrary title, while the next lines list the files in the order they
will be used to make the collage. Normally these would be full paths, not local files names, and local file
names are only used in this example because SimFIT recognizes these short file names and can load the files.

Opening program editps, choosing a structured, i.e. strict collage using the [Demo] button on the file opening
control, then requesting three columns gives the collage illustrated below.
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14.11.2 Example 2: Freestyle collages

This figure illustrates a freestyle collage with different file sizes, aspect ratios and orientation.
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14.11.3 Example 3: Insets

Figure 13 illustrates a special type of freestyle collage where a sub-graph is placed inside a parent graph.
Sometimes it is best to enlarge the fonts and increase the line thicknesses when a sub-graph is going to be
reduced in size in this way, and it is always important to remember the effects of opaque and transparent
backgrounds that SimFIT allows.
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Figure 13: Subsidiary figures as insets

First of all the plots in figure 14 were created using exfit with test file exfit.tf4 after fitting 1 exponential
then 2 exponentials. Note that the line thickness and font size have been increased in the transformed plot as
it is going to be reduced in the inset.
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Figure 14: Insets 1: Exponential fitting and semilog transforms
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Figure 15 was then created by editps using the option to create a freestyle collage. Note how, in the left hand
plot the option to plot an opaque background even when white was selected and the transformed plot obscures
the underlying main plot. In the right hand plot the option for a transparent background was used so that the
main plot was not obscured. Both techniques are valuable when creating insets, and all that is now necessary
to create figure 6 is to shrink the transformed plot and translate it to a more convenient location. A further
point to note is that SimFIT plots have a border, which is obscuring more of the left hand main figure in
figure 15 than seems necessary. When subsidiary figures are going to be used in this way it is often advisable
to use the option to clip the plot to trim away extra white space, or else use program GSview to calculate a new
BoundingBox in a transparent subsidiary plot by renaming *.eps as *.ps then transforming *.ps into *.eps.
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Figure 15: Insets 2: Opaque and transparent backgrounds in insets
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14.11.4 Example 4: Adding labels to collages

Sometimes it is useful to add labels to identify sub-graphs in a collage or even to add extra text. Consider the
effect of reading test file editps.tfl into program editps to create Figure 16.
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Figure 16: Adding labels and extra text

Once the collage has been created there are several options for adding the labels and extra text. Of course, as
the composite file is to be created in PostScript then any commands added will have to be in PostScript. As a
matter of fact raw Postscript can be added directly to the output file, but SimFIT also provides an interface to
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define labels, titles, and text in any language except that special commands must be used to change fonts and
introduce features such as maths, superscripts and subscripts. This feature which is demonstrated in Figure 16
will now be explained.
Once the collage has been assembled and the number of columns chosen, the following options are provided.

1. Defining labels as numbers, letters, or user–defined text.

2. Adding a title

3. Adding a text section

For instance, read in the test file editps.tfl into program editps then choose two columns, request to edit
the text and cut and paste the next lines into the SimFIT editor that has been opened.

{newline}

{newline}

{helveticabold}Demonstrating Labels and Additional Text{helvetica}{newline}

{newline}

Figure A. Note maths subscripts in {roman}{alpha}{lower}2{raise}{beta}{lower}2{raise}{newline}

{helvetica}Figure B. Note the slanting error bars{newline}

Figure C. Note the confidence region indicators with no top or bottom bars{newline}

Figure D. Note maths superscript in {roman}N\({mu},{sigma}{raise}2{lower}\)

This text will generate the title and additional text displayed in Figure 16. It uses the following commands
that will be translated into Postscript.

• {newline} new line

• {helveticabold} bold font

• {helvetica} normal font

• {roman} roman font

• {alpha} U

• {lower} subscript

• {raise} superscript

• {beta} V

• {mu} `

• {sigma} f

• {\(} (

• {\)} )

Further details of the options available are described on page 785.
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14.12 Editing PostScript colors

Graphics files for importing into documents, visual display, or printing can code for a large number of colors
by using a color scheme, such as rgb, i.e., defining three values for red green blue intensities. Consider, for
instance, the definition of black, red, green, blue and white, using three integers in the range 0 to 255 in
Windows, the same range in Hexadecimal for the web, and the continuous range 0 to 1 in PostScript.

Colour Windows Hexadecimal Postscript

Black 0, 0, 0 000000 0, 0, 0

Red 255, 0, 0 FF0000 1, 0, 0

Green 0, 255, 0 00FF00 0, 1, 0

Blue 0, 0, 255 0000FF 0, 0, 1

White 255, 255, 255 FFFFFF 1, 1, 1

However, such a wide range of colors can be confusing in scientific graphs where generally only a few
strong colors are required for titles, legends, lines, and symbols, together with some subdued colors for
backgrounds or plot borders. SimFIT allows any possible color to be used for plotting by providing the
following functionality.

1. The color palette

72 colors are defined in w_ps.cfg in the ...Documents\Simfit\cfg folder.

2. Editing the colors

Users can edit any colors in this file to change defaults.

3. The default colors

The SimFIT scheme works as follows.

(a) The first sixteen colors (0 to 15) correspond to the standard colors which would usually be sufficient
for scientific graphs.
It would not normally be necessary to edit these.

(b) The next forty four colors (16 to 59) are variants of this scheme which includes a grey–scale
selection.
It would not normally be necessary to edit these.

(c) The last twelve colors (60 to 71) can be adjusted by selecting the rgb numbers required, or using
slider controls for color mixing available from the SimFIT color palette control. These user-defined
colors are provided so that twelve personally selected colors can be used.

(d) In Windows hardcopy files such as *.png, *.jpg, *.emf, *.pdf, these colors can not be changed
retrospectively.

(e) In SimFIT PostScript *.eps files any color can easily be changed retrospectively using a text editor,
such as notepad.

4. The PostScript header

At the start of a SimFIT *.eps file is a list of all 72 colors defined as c0 to c71 using the PostScript
command x y z setrgbcolor taking the three arguments x y z, which allows easy editing by simply
inserting these color–changing commands at any point in the file.

5. Changing colors in non–PostScript graphics files

It should be noted that, if graphics hardcopy is always archived as SimFIT *.eps files, then the colors
used in other types of files such as *.png, *.jpg, *.pdf, *.xps can be changed retrospectively, as can
other features such as titles, legends, symbols, or line types, by simply editing the *.eps file in a text
editor, followed by creating the type of hardcopy file required from within SimFIT.
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14.12.1 The sixteen standard colors (c0 to c15)

As all 72 colors are defined and can be manipulated in the same way it is enough to describe just the first 16
colors. So the next section shows how the standard colors are defined in the configuration file w_ps.cfg.

0.0000, 0.0000, 0.0000

0.0000, 0.0000, 0.6667

0.0000, 0.6667, 0.0000

0.0000, 0.6667, 0.6667

0.6667, 0.0000, 0.0000

0.6667, 0.0000, 0.6667

0.6667, 0.3333, 0.0000

0.7000, 0.7000, 0.7000

0.4500, 0.4500, 0.4500

0.3333, 0.3333, 1.0000

0.3333, 1.0000, 0.3333

0.3333, 1.0000, 1.0000

1.0000, 0.3333, 0.3333

1.0000, 0.3333, 1.0000

1.0000, 1.0000, 0.3333

1.0000, 1.0000, 1.0000

The closing comment section of w_ps.cfg summarizes the named standard colors as follows.

red green blue

0 0.0000 0.0000 0.0000 black

1 0.0000 0.0000 0.6667 blue

2 0.0000 0.6667 0.0000 green

3 0.0000 0.6667 0.6667 cyan

4 0.6667 0.0000 0.0000 red

5 0.6667 0.0000 0.6667 magenta

6 0.6667 0.3333 0.0000 brown

7 0.6667 0.6667 0.6667 white

8 0.3333 0.3333 0.3333 dark grey

9 0.3333 0.3333 1.0000 light blue

10 0.3333 1.0000 0.3333 light green

11 0.3333 1.0000 1.0000 light cyan

12 1.0000 0.3333 0.3333 light red

13 1.0000 0.3333 1.0000 light magenta

14 1.0000 1.0000 0.3333 light yellow

15 1.0000 1.0000 1.0000 bright white

When a *.eps file is created the current 72 color definitions are read from w_ps.cfg and written to the *.eps
file header section. So finally, here is how these standard colors are defined in the *.eps file headers using rgb
as an abbreviation for setrgbcolor and D for define.

/c0{0.000 0.000 0.000 rgb}D /c1{0.000 0.000 0.667 rgb}D

/c2{0.000 0.667 0.000 rgb}D /c3{0.000 0.667 0.667 rgb}D

/c4{0.667 0.000 0.000 rgb}D /c5{0.667 0.000 0.667 rgb}D

/c6{0.667 0.333 0.000 rgb}D /c7{0.700 0.700 0.700 rgb}D

/c8{0.450 0.450 0.450 rgb}D /c9{0.333 0.333 1.000 rgb}D

/c10{0.333 1.000 0.333 rgb}D /c11{0.333 1.000 1.000 rgb}D

/c12{1.000 0.333 0.333 rgb}D /c13{1.000 0.333 1.000 rgb}D

/c14{1.000 1.000 0.333 rgb}D /c15{1.000 1.000 1.000 rgb}D
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The SimFIT color palette can be opened from the configuration option and is always made available when a
color change is requested. So the next figure shows the first sixteen colors (c0 to c15) from this color palette.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

The sixteen standard Simfit colours (c0 to c15)

Editing PostScript files

Note that, at any stage, you can open a SimFIT *.eps file in a text editor such as notepad and add a new line
to make that color the current color until the next time it is changed. For instance if the next line in a file

...

c4

...

is changed to

...

c12

...

then the current color will become light red instead of red.

Equally the new color command can be made explicitly as in

...

1.000 0.333 0.333 setrgbcolor

...

and, clearly, proceeding in this way any color change can be achieved.

Program editps provides many options for re-sizing and rotating SimFIT *.eps files and has several editing
opportunities. However, in the examples that follow, it is assumed that the procedure will be as follows

1) Save the *.eps as a backup or edit a copy
2) Edit the *.eps file in a text editor
3) View the edited file in, e.g., gsview

4) Save the final result

as, after a bit of practise, this is the easiest way to edit SimFIT *.eps files.
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14.12.2 Example 1: Changing colors in a title and legends

In this example, the *.eps file is opened in a text editor which is then searched for the expression %#title to
move to the code in the file defining the title which is

c4

(Example: straight line plot) 3195 4467 ti%#title

(000000000000000000000000000) fx

/ti­size ti­size 1.000 mul def

/xl­size xl­size 1.000 mul def

c1

(X Values) 3515 192 xl%#x legend

(00000000) fx

/xl­size xl­size 1.000 mul def

/yl­size yl­size 1.000 mul def

(Y values) 501 2443 yl%#y legend

(00000000) fx

/yl­size yl­size 1.000 mul def

and which results in the title being colored red and the legends colored blue, as in the left hand figure below.
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Simply interchanging the code for the red title and blue legend, i.e., replacing c4 (red) and c1 (blue) by c1
(blue) and c4 (red) as shown in the next section

c1

(Example: straight line plot) 3195 4467 ti%#title

(000000000000000000000000000) fx

/ti­size ti­size 1.000 mul def

/xl­size xl­size 1.000 mul def

c4

(X Values) 3515 192 xl%#x legend

(00000000) fx

/xl­size xl­size 1.000 mul def

/yl­size yl­size 1.000 mul def

(Y values) 501 2443 yl%#y legend

(00000000) fx

/yl­size yl­size 1.000 mul def

results in the blue title and red legends shown in the right hand plot.
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14.12.3 Example 2: More extensive editing
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Plotting the straight line y = x

First of all consider the steps that were required to obtain the graph above from the previous plots.

1. A grey border was added to the outside of the data–plotting area.

2. A black frame was added to surround the overall graph.

3. The title was edited.

4. The line and plotting symbols were colored, and the symbol type changed.

5. An information panel was added.

With experience it is easy to perform such operations directly using a text editor. However, the following
procedure could be used to appreciate how to gain such experience.

• Create the original graph in simplot [Advanced Editing] and save as file_1.eps.

• Edit the data in simplot [Advanced Editing] and then save as file_2.eps.

• Open file_1.eps and file_2.eps in a file comparison editor, e.g., notepad++.

• See how to color the line and alter the symbol size and type.

• Copy and paste the new code sections from file_2.eps into file_1.eps.

• Copy the new codes to the clipboard and archive to be re–used as templates.

Here are the new sections that were copied from file_2.eps into file_1.eps, but with comments (following
%) removed for clarity.
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Code for the border using color c22 and pf (polygon filled)

c22

0 0 0 4790 1070 4790 1070 0 4 pf

5959 0 5959 4790 6390 4790 6390 0 4 pf

1070 0 1070 671 5959 671 5959 0 4 pf

1070 4215 1070 4790 5959 4790 5959 4215 4 pf

Code for the black frame using pc (polygon closed)

0 setlinejoin

12 12 6378 12 6378 4778 12 4778 4 pc

1 setlinejoin

Code for ti (title) and fx (character keys)

c4

(Illustrating More Extensive Editing) 3195 4467 ti

(00000000000000000000000000000000000) fx

Code for the pl (polyline) line)

c47

1292 832 2403 1638 3514 2443 4626 3248 5737 4054 5 pl

Code for larger size (80) ch (circle half filled)

c47

1292 832 80 ch

2403 1638 80 ch

3514 2443 81 ch

4626 3248 80 ch

5737 4054 80 ch

Code for the information panel

c1

1420 3426 4205 3426 4205 3872 1420 3872 1420 3426 4205 3426 6 pl

1 setlinejoin

c0

/font /Helvetica D /size 192 D

GS font F size S 1573 3585 M 0 rotate

(Plotting the straight line y = x)

(00000000000000000000000000000000) fx
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14.13 Creating hardcopy from eps files

There are essentially two extreme types of graphics files used to display or report scientific data: vector files
and bit–map files but, because bit–map files are usually very large, several types of compression can be used.
An explanation of which type of file to use follows, and this information is particularly valuable with SimFIT
*.eps files because they can be used retrospectively to generate any type of graphics file.

14.13.1 Standard graphics files

1. Vector files

Vector files simply contain the instructions to draw lines and text in various sizes and colors and an
interpreter is needed to visualize or print the file. The great advantage with such files is the compactness
as only the information essential to interpret the data is included. As the size of plot being produced
depends on the replay system, as does the application of anti-aliasing to smooth out curves and improve
the readability of fonts, these files are essentially device-independent. Three of the standard formats
are as follows.

(a) Encapsulated PostScript (*.eps)

This a special form of PostScript file consisting of exactly one page but with certain restrictions
such as the necessity for a BoundingBox, which simply records the coordinates of the rectangle
containing the plot. This feature allows computer programs to easily resize, re-scale, rotate, make
collages, etc., and explains the wide use with advanced type-setting systems, such as LATEX.

(b) Scalable Vector Graphics (*.svg)

This is a special form of XML containing only markup commands and is especially recommended
by the W3C for the internet. Because of the increasing use of *.svg files there are now many
editors to enhance the graphs, which is a strong recommendation.

(c) Enhanced Metafiles (*.emf)

This is a dedicated Windows format and so can be imported easily into documents prepared by
most word processing programs. However, some versions allow users to scale unsymmetrically
which will change the aspect ratio and can lead to ugly effects.

2. Bit–map files

Typical bit–map files (*.bmp) contain the characteristic values for each pixel in a display. Because of
this they tend to be very large and of fixed resolution, and so tend to be used to record photographs of
tissue sections and similar, where fine variations in color and brightness are important. They are very
convenient for inserting into documents and for photo-editing, but it is normal to store in a compressed
form especially when there is much redundant information. For instance, the background of a scientific
graph consisting of lines, symbols, and text, accounts for a large portion of the bit–map information,
but actually it can be represented entirely by the value of one pixel.

14.13.2 Compressed bit–maps

Compression always leads to loss of information and there are many compression algorithms. The most used
format is the joint photographic group one (*.jpg), but for the web the portable network graphic format (*.png)
is recommended because it is rather more lossless and better captures the lines and curves found in scientific
graphs. As compression cannot be reversed and the resolution cannot be improved, it is advantageous to
create *.jpg and *.png files from *.eps files because they can then be of much higher resolution than those
saved as screen dumps.

14.13.3 Document files

Two standard document files that can also be used as graphics files are the portable document format (*.pdf)
and the Microsoft Windows *.xps format.
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The *.pdf format developed from PostScript but with the additional advantage that font information could be
embedded. This means that *.pdf files created from SimFIT *.eps files retain some of the the virtues of being
compact and to a degree device independent. For instance, the SimFIT reference manual (w_manual.pdf)
has some 500 pages packed with hundreds of mathematical formulas, tables, and graphs but is only about
5MB: a very small fraction of what such a manual would be when produced by a typical document preparation
program.

The *.xps format is a specialized ZIP archive file containing XML and was created to compete with the *.pdf
format. It is only of value to users of Microsoft Office, but nevertheless such files can be created from SimFIT
*.eps files.

14.13.4 Warning

SimFIT users should note that *.svg files created directly using the [Win] option or *.eps files using the [PS]
option are true vector files. That is, they only consist of instructions that can be used to create hardcopy of any
size and resolution for viewing or printing, and they contain no embedded bit–maps. Unfortunately, all the
vector files in existence have the facility to embed bit–maps for pre-viewing, and this has been exploited by
many computer programs, to the extent that *.eps files can be output as screen dumps from bit–map displays
so as to constitute the total file without including vector–type information, so completely vitiating the whole
purpose of vector graphic files format.

14.13.5 Using GhostScript to create graphics files form *.eps files

The recommended way to save graphics files from SimFIT is to use the [PS] option first to open the PostScript
interface, shown next.

Shape

X,Y offset

Scale axes

Line width

Font

File

PS

PDF

Quit

The SIMFIT PostScript driver

Orientation
Stretch/clip/slide
Number of colors
Font type
Font size
X-axis offset
Y-axis offset

Portrait
Suppressed
72
Helvetica
1.00
1.00
3.50

[File] means save As a *.eps file then make
bmp/jpg/pcx/pdf/tif/png/svg files if required

[PS] means use your PS-driver to view/print/
add previews, or Save As...

[PDF] means transform into PDF then use your
PDF-reader to view/print, or Save As...
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From the [File] option it is possible to save a *.eps file which can then create transformed files immediately.
Otherwise, use the main SimFIT [Plot] control or else program editps retrospectively, to transform *.eps files
into one of the following file types.

1. PDF

This will create a high quality file preserving many of the *.eps vector file features.

2. PNG

This is highly recommended as long as the effect of the dots per inch (DPI) setting is understood.

If a low value for DPI is chosen, say 72 dpi, the resulting file will be satisfactory for a website thumbnail
but not suitable for a document or visual display. Choosing a larger value, say 300 dpi, will be fine for
documents but the resulting file size will be greater, while choosing, say > 600 dpi, will result in much
bigger files with little further improvement in resolution. Anti-aliasing can be used to make curves
smoother and fonts more readable.

One great advantage of *.png files created this way instead of directly from the [Win] hardcopy control
is that files saved from the [Win] control have a fixed maximum resolution limited by the display size,
but files created using *.eps with GhostScript can have much higher resolution.

3. JPG

Comments about DPI as for PNG files, but subsequent editing may be easier.

4. XPS

Comments about DPI as for PNG files, but only useful for Word processors that can import *.xps files.

5. PCX

Now an obsolete format.

6. BMP

Comments about DPI as for PNG files, but can lead to massive files.

7. TIFF

Now an obsolete format

8. SVG

The quality available from GhostScript has been very poor so, unless this changes, it is preferable to
use Gsview. In any case, SVG files saved directly from the [Win] option are true vector files. Note
that, program GSview version 6.0 on uses MuPdf technology to generate high quality *.svg files from
SimFIT *.eps files.

14.13.6 Retrospective editing of graphics files

Very often it is wished to make changes to scientific graphs such as altering line thickness, color, dashed type
into dotted, etc., or maybe replacing circles by triangles for clarity before incorporating into documents. It is
very easy to make such changes to SimFIT *.eps files using any text editor as the format was designed with
this in mind, and the way to do this is described in the reference manual and tutorials.

Now there are many programs for editing graphics files such as *.jpgf or *.svg but it is obvious that such
possibilities are not available in hardcopy files created from *.eps. Even editing SimFIT *.eps in dedicated
PostScript editors such as Adobe Illustrator destroys the ability to edit SimFIT *.eps files retrospectively in a
text editor.
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15 Scalable vector graphics (SVG)

SimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfitSimfit
Tutorials and worked examples for simulation,
curve fitting, statistical analysis, and plotting.
https://simfit.uk
https://simfit.org.uk
https://simfit.silverfrost.com

15.1 SVG: introduction

In order to appreciate the nature and use of scalable vector graphics files (*.SVG) it is useful to review the two
document types, namely bitmap and vector, that are used to archive graphs and include them into computer
generated documents or web pages.

15.1.1 Bitmaps

These files (*.BMP) contain the raw information for every pixel captured by a digital photograph or displayed
on a computer screen. They have the following properties.

• The larger the number of pixels then the greater the detail recorded.

• Such files are very easy to display, include in documents, or print but, unless there is a large number of
pixels, then lines and curves will appear stepped and fonts will pixelate.

• For complicated portraits, landscapes, capture of microscope fields, or 3D display of molecules etc.
requiring shading such files are indispensable.

• Where there are appreciable homogeneous patches such as blue sky in a landscape then considerable
compression into formats such those of the joint photographic expert group (*.JPG) or portable network
graphics (*.PNG) can result in smaller files, but compression is not always lossless.

• Where a bitmap has been created using antialiasing to smooth out polygons and polylines as in text,
curves, or lines then compression can lead to fuzzy curves or distorted characters. Traditional computer
graphics hardly ever looked good on computer screens because hard edges at an angle would show as
a series of steps (a distortion known as aliasing). This made even the simplest graph – such as a sine
curve, look ugly. This problem has been largely eliminated by anti-aliasing (automatically employed
by SimFIT). However a bitmap of a specific size generated using anti-aliasing, never looks its best if
it is ultimately displayed at another resolution. SVG completely sidesteps this problem because the
necessary anti-aliasing is performed as an image is displayed (or printed), so that data are displayed
correctly. This property of being device–independent is something that sets aside vector graphics from
bitmap graphics.

15.1.2 Vector graphics

Scientific graphs largely consist of axes, curves, and plotting symbols, with small amounts of text, and vector
graphic files simply contain the mathematical data such as coordinates necessary to reproduce the graph at
any degree of magnification or compression without loss of information. Here is a summary of properties for
the two main vector graphics files; encapsulated PostScript (*.EPS), and scalable vector graphics (*.SVG).

• The files are in text format, which means they can easily be edited retrospectively in text editors such
as notepad in order to change, titles, legends, line types, plotting symbols, or colours.

• They are device independent so there is no loss of information on expansion or compression.

• They can be imported into LATEX documents or include LATEX code, so that high quality mathematical
formulas and chemical structures can be incorporated.
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• The free program Ghostscript can be used to convert EPS files into other formats, and similarly
Inkscape can be used to visualize and transform SVG files.

• While EPS is the main import format for LATEX documents, SVG is the recommended format for
scientific graphs on the internet.

15.1.3 Bogus vector files

Note that many applications claim to transform bitmap and compressed bitmap files into vector files without
loss of significant information, but this is almost impossible except for fairly simple images. Such applications
usually just exploit a weakness in vector files that allows bitmaps to be inserted giving bogus vector files that are
wrappers containing bitmaps. Similarly portable document files (*.PDF) were developed from PostScript and
retain many PostScript features that can be exploited. For instance, using the SimFIT interface to GhostScript
to transform SimFIT EPS files into PDF files yields PDF files that are effectively device independent, whereas
using Windows to distil files into PDF merely creates bitmap files.

15.1.4 Using SVG files in SimFIT

The SVG format is very comprehensive as it has been specifically developed to be versatile for web use. For that
reason few applications implement the whole standard and SimFIT is no exception, so it must be emphasized
that SimFIT will only accept and manipulate SVG files according to the graph plotting functionality provided
by Silverfrost FTN95 Clearwin+. This interface was written by David Bailey and it provides the following
SVG file functionality for SimFIT users.

• The SVG files can be used on the web and opened by browsers such as firefox.

• The SVG files can be displayed and edited retrospectively by the program EditSVG.

• The SVG files created by other applications may cause warning messages, but in some circumstances
files may use acceptable subsets of SVG facilities. To explore this option just open the SVG file with a
text editor and splice the option Clearwin_output="1" into the line beginning <svg. It is easy to get this
wrong, so it is probably best to file the result to a different file name.

15.1.5 Editing SVG files in SimFIT

The functionality provided by procedure EditSVG is now listed.

1. The only file types that can be used in this program are:

(A) *.SVG files created by SimFIT, and other Clearwin+ output from Silverfrost FTN95 programs.

(B) *.TEX files describing mathematical equations or chemical formulas. Such *.TEX files can be
used to generate internal *.SVG files if latex.exe, dvips.exe, and dvisvgm.exe are on the path.
For instance if users have a recent version of MikTeX available.

2. Files can be input from the console, by drag and drop, or by using library files.

3. Images can be enlarged or reduced by "right clicking" on the image.

4. Images can be freely positioned by dragging a window from any point on its surface. Using the view
menu it is possible to add a graticule with optional "snap to nearest graticule intersection" facility. The
graticule does not remain on the finished image.

5. After manipulating a file or a set of files the resulting composite image can be written out to a *.SVG,
or *.PNG, file, or even to a *.ISVG rebuild–image file.

6. It can be used to create strict collages where every image is snapped to the nearest grid point, freestyle
collages where images can be arranged in arbitrary positions, or overlays where smaller images can be
inserted into larger ones.
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15.1.6 Using LATEX

Some examples of how to use these procedures within the SimFIT package from version 7.5.0 onwards using
the test files provided follow. However the procedure used to create the SVG files using LATEX should be noted.

To enlarge on the use of LATEX it must be emphasized that the procedure to use LATEX depends on whether the
user has a fully functioning LATEX installation on their machine. So there are three distinct cases.

1. The direct method

There is a LATEX installation so the user prefers to input a *.TEX file directly into program EditSVG

whereupon the *.TEX file will be processed and the image will appear in the main window.

2. The indirect method

There is a LATEX installation but the user prefers to use the command line technique described subse-
quently to transform the *.TEX file into *.DVI then use dvisvgm to transform this into a stand alone
*.SVG file. Note that filenames used in this procedure must be local files with no spaces in the file
name.

3. The remote user method

There is no LATEXinstallation so a known LATEX user will have to perform the transformation. Alterna-
tively, a stand–alone *.SVG file, such as the demonstration files distributed with SimFIT will have to be
used.

LATEX is designed to create documents and, because of this, care is needed to remove much of the header
information in order to create simple images that can be imported into EditSVG. This is much the same as the
steps required to create a *.EPS from from a *.PS file but using the following commands.

To make DVI: use latex myfile.tex to create myfile.dvi.

To make PS: use dvips myfile.dvi to create myfile.ps.

To make SVG: use dvisvgm ­E myfile.ps to create myfile.svg.

The argument ­E indicates that a PostScript file is to be input. Note that white space can be trimmed from the
resulting SVG file by EditSVG, or alternatively by using inkscape or GSview (e.g. Version 5) to transform
myfile.ps into myfile.eps, where the BoundingBox will automatically remove white space.

15.1.7 Important differences between EPS and SVG files

From within any SimFIT graph it is possible to create *.EPS files by first selecting [PS] then choosing [File],
or to create *.SVG files by first selecting [Win] then choosing the [SVG] option. Any *.SVG file created in
this way will be a fairly accurate representation of the display, as will any *.EPS files, except that there will
be small but significant differences between them. That is unavoidable because the fonts used may differ
slightly as the *.SVG file will use Windows fonts whereas the *EPS file will use PostScript fonts. In addition
SimFIT allows users to set different global line thickness for EPS and SVG files as line thickness do not scale
in exactly the same way in EPS and SVG files. Nevertheless it is useful to know how to create a *.SVG file
from a *.EPS file and vice versa.

Fortunately such transformations can readily be carried out due to the widespread availability of Open Source
programs such as Inkscape and Cairo. The usefulness of such transformationswill be explained in subsequent
tutorial sections.
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15.2 SVG: Importing LATEX maths equations

Sometimes it is required to use LATEX to display a mathematical equation inside a scientific plot, and this
document describes how to do this for the normal distribution cumulative distribution function Φ(G). Note
that all the files mentioned in this document are distributed as SimFIT test files so that users simply wishing to
create the final composed document can proceed directly to the last section describing how to use EditSVG.

15.2.1 The TEX source

This is the code contained in the file latex_maths_equation.tex

\documentclass[12pt]{article}

\usepackage{amsmath,bm}

\pagestyle{empty}

\begin{document}

\Large

\[

\frac{1}{\sigma \sqrt{2\pi}}

\int\limits_{­\infty}^x

\exp ­\left\{

\frac{1}{2} \left( \frac{t­\mu}{\sigma} \right)^2 \right\}\,dt

\]

\end{document}

which displays the mathematical definition of Φ(G) as follows.

In order to import this formula into a graph using EditSVG this code must be used to create the corresponding
SVG file latex_maths_equation.svg, the overall process being the following sequence of commands.

• latex latex_maths_equation.tex

• dvips latex_maths_equation.dvi

• dvisvgm ­E latex_maths_equation.ps

The file latex_maths_equation.svg created is then ready to be imported into EditSVG but, alternatively,
the source file latex_maths_equation.tex can be opened in or dragged and dropped directly onto EditSVG

if there is a local installation of LATEX.

It should be realized that, when using LATEX in this way to create a SVG file, the command line must be used
from a folder containing the *.TEX file required as a local file and not as a fully qualified path–filename to
a remote source file. The program EditSVG circumvents this issue when importing LATEX source by creating
local copies of all files.
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15.2.2 Creating the plot file

The file latex_maths_plot.svg with theΦ(G) profile to be used looks like this before the equation is added.
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This figure was created using makmat by selecting to display the normal cumulative distribution Φ(G) with
` = 0 and f2 = 1 for −4 ≤ G ≤ 2, and then transferring the resulting plot into the program simplot using the
[Advanced] option to manipulate the title, legends, line–widths, and colors, etc.

Users wishing to avoid this process can simply read the SimFIT metafile latex_maths_plot.metafile

directly into the SimFIT program simplot, or the SimDEM program simdem70.

In either case the file is then saved as latex_maths_plot.svg using the [Win] or [SVG] option.

15.2.3 Joining the SVG files using EditSVG

First open program EditSVG then input the test file latex_maths_plot.svg to act as a background, then
there are two possible options.

1. Input the test file latex_maths_equation.svg directly; or

2. read in the test file latex_maths_equation.tex which will then be used by LATEX to generate an
internal copy of latex_maths_equation.svg.

Finally, just use the mouse to move the equation into position and alter the scaling as required to obtain the
final plot saved as latex_maths.svg and shown next.



822 Scalable vector graphics (SVG)

0.5

1.0

-4.0 -2.0 0.0 2.0

Normal (0,1) Distribution Function

x

cd
f(

x)

15.2.4 Summary of files described in this section

The programs referred to in this document are as follows.

1. InkScape is an OpenSource program that takes in SVG files and can write out EPS and other files.

2. EditSVG is a SimFIT and SimDEM program that takes in SVG or TEX files and writes out SVG and
other files.

3. editPS is a SimFIT and SimDEM program that takes in EPS files and writes out only EPS files.

4. The SimFIT program simplot and the SimDEM program simdem70 take in SimFIT metafiles and write
out either SVG or EPS files.

Further, the SimFIT test files (*.TEX and *.SVG) described in this document that can be used by program
EditSVG, and those (*.EPS) that can be used by program editPS are now listed.

File name Data included
latex_maths_plot.metafile SimFIT or SimDEM metafile to create the plot without any equation
latex_maths_equation.tex LATEX source file for the maths equation with no plot
latex_maths_equation.svg SVG file containing the formula only
latex_maths_plot.svg SVG file containing the plot only
latex_maths.svg SVG file containing both the equation and plot
latex_maths_equation.eps EPS file containing the formula only
latex_maths_plot.eps EPS file containing the plot only
latex_maths.eps EPS file containing both the equation and plot
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15.3 SVG: Importing LATEX chemical formulas

Sometimes it is required use LATEX to display chemical structures inside a scientific plot, and this document
describes how to do this using a condensed scheme for the oxidation of p-dimethylaminomethylbenzylamine.
Note that all the files mentioned in this document are distributed as SimFIT test files so that users simply
wishing to create the final composed document can proceed directly to the last section describing how to use
EditSVG

15.3.1 The TEX source

This is the code contained in the file latex_chemical_formula.tex

\documentclass[12pt]{article}

\usepackage{carom}

\pagestyle{empty}

\begin{document}

{\begin{picture}(3000,600)(0,0)

\thicklines

\put(0,0){\bzdrv{1==CH$_{2}$NH$_{2}$;4==CH$_{2}$N(CH$_{3}$)$_{2}$}}

\put(700,450){\vector(1,0){400}}

\put(820,550){[O]}

\put(1000,0){\bzdrv{1==CHO;4==CH$_{2}$N(CH$_{3}$)$_{2}$}}

\put(1650,400){+}

\put(1750,400){NH$_{3}$}

\put(2000,450){\vector(1,0){400}}

\put(2120,550){[O]}

\put(2300,0){\bzdrv{1==CO$_{2}$H;4==CH$_{2}$N(CH$_{3}$)$_{2}$}}

\end{picture}}

\end{document}

which displays like this.

To import this formula into a graph using EditSVG, latex_maths_equation.svg can be made using the
following commands, or latex_maths_equation.tex can be input directly into EditSVG.

• latex latex_chemical_formula.tex

• dvips latex_chemical_formula.dvi

• dvisvgm ­E latex_chemical_formula.ps

The file latex_chemical_formula.svg created is then ready to be imported into EditSVG but, alternatively,
the source file latex_chemical_formula.tex can be opened in or dragged and dropped directly onto
EditSVG if there is a local installation of LATEX. It should be realized that, when using LATEX in this way to
create a SVG file, the command line must be used from a folder containing the *.TEX file required as a local
file and not as a fully qualified path–filename to a remote source file. The program EditSVG circumvents this
issue when importing LATEX source by creating local copies of all files.



824 Scalable vector graphics (SVG)

15.3.2 Creating the plot file

The file latex_chemical_plot.svg with the time course data to be used looks like this before the equation
is added.
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This figure was created using qnfit fit three data sets for the consecutive reaction scheme

� → � → �

in the SimFIT test library file consec3.tfl, then fitted using the model in the model file consec3.mod.

After manipulating the line thicknesses, title, legend, and colors, the files latex_chemical_plot.svg,
and latex_chemical_plot.eps were created to archive the graph. In addition the SimFIT metafile
latex_chemical_plot.metafile was saved so that users wishing generate this plot can easily do so using
the SimFIT program simplot or the SimDEM program simdem70. Users wishing to avoid this process can
simply read the SimFIT metafile latex_maths_plot.metafile directly into the SimFIT program simplot,
or the SimDEM program simdem70.

Joining the SVG files using EditSVG

Open program EditSVG then input the test file latex_chemical_plot.svg. Then there are two options.

1. Input the test file latex_chemical_formula.svg directly; or

2. read in the test file latex_chemical_formula.tex which will then be used by LATEX to generate an
internal copy of latex_chemical_formula.svg.

Finally, just use the mouse to move the equation into position and alter the scaling as required to obtain the
final plot saved as latex_chemistry.svg and shown next.
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15.3.3 Summary of files used in this section

The programs referred to in this document are as follows.

1. InkScape is an OpenSource program that takes in SVG files and can write out EPS and other files.

2. EditSVG is a SimFIT and SimDEM program that takes in SVG or TEX files and writes out SVG and
other files.

3. editPS is a SimFIT and SimDEM program that takes in EPS files and writes out only EPS files.

4. The SimFIT program simplot and the SimDEM program simdem70 take in SimFIT metafiles and write
out either SVG or EPS files.

Further, the SimFIT test files (*.TEX and *.SVG) described in this document that can be used by program
EditSVG, and those (*.EPS) that can be used by program editPS are now listed.

File name Data included
latex_chemical_plot.metafile SimFIT or SimDEM metafile to create the plot without any equation
latex_chemical_formula.tex LATEX source file for the maths equation with no plot
latex_chemical_formula.svg SVG file containing the formula only
latex_chemical_plot.svg SVG file containing the plot only
latex_chemistry.svg SVG file containing both the formula and plot
latex_chemical_formula.eps EPS file containing the formula only
latex_chemical_plot.eps EPS file containing the plot only
latex_chemistry.eps EPS file containing both the formula and plot
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15.4 SVG: Importing SVG files into SVG files

Sometimes it is required to import one SVG file into another SVG file,for example to create overlays, insets,
or collages. This document describes how to do this using program EditSVG when fitting one then two
exponential functions to a data set and plotting the best–fit curves to evaluate the improvement in fit.

15.4.1 Fitting exponential functions

Using SimFIT program exfit in the default mode to analyze data in the test file exfit.tf4 for models of
orders 1 and 2 fits the following exponential functions sequentially.

51(C) = �4−�C

52(C) = U14
−:1C + U24

−:2C

Program exfit then outputs goodness of fit criteria and statistical tests to see if there is sufficient statistical
evidence to accept the need to fit the additional parameters required by the two exponential model. In addition
the following graph is plotted to illustrate the goodness of fit for both models.
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The following SimFIT test files are provided to reproduce this fit.

• exfit.t4f, the data for input into program exfit

• exfit_normalplot.eps, the above plot in EPS format for input into program editps

• exfit_normalplot.svg, the above plot in SVG format for input into program EditSVG

• exfit_normalplot.metafile, a metafile to create this plot in SimFIT program simplot or SimDEM
program simdem70

The file exfit_normalplot.svg was also created at this stage to archive this plot.
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15.4.2 Creating the log transform

Of course the previous plot was created from within program exfit by simply transferring the plot into SimFIT
advanced graphics mode then editing. Now one technique that can be used to check the relative fit for
two exponentials as opposed to one is to plot a semilogarithm plot, which results in linearizing the single
exponential function but not the double exponential model.

Within the advanced graphics environment this transformation was selected to produce the next plot.
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As the intention was to insert this graph into the previous one the graph was edited as follows

• Suppressing the title

• Changing the legends

• Adding a subsidiary title within the graph

• Making the lines thicker so they do not look too narrow when the plot is reduced in size. As the figure
is to be reduced by a factor of two, the line thicknesses were doubled. Sometimes it is useful to enlarge
the legends or to replace using a bold font, and even the numbers can be enlarged if required.

The following SimFIT test files are provided to reproduce this fit.

• exfit_logplot.eps, the above plot in EPS format for input into program editps

• exfit_logplot.svg, the above plot in SVG format for input into program EditSVG

• exfit_logplot.metafile, a metafile to create this plot in SimFIT program simplot or SimDEM
program simdem70

The file exfit.svg was also created at this stage to archive the compound plot, as described next.
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15.4.3 Joining the SVG files using EditSVG

Open program EditSVG then input the test file exfit_normalplot.svg.

Now input the file exfit_logplot.svg then just use the mouse to move the equation into position and alter
the scaling as required to obtain the final plot saved as exfit.svg and shown next.
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15.4.4 Summary of files used in this section

Finally, the SimFIT test files described in this document that can be used to create this plot are now listed.

File name Data included
exfit_normalplot.metafile SimFIT or SimDEM metafile to create the normal plot
exfit_logplot.metafile SimFIT or SimDEM metafile to create the log plot
exfit_normal.svg SVG file containing the normal plot
exfit_logplot.svg SVG file containing the log plot
exfit.svg SVG file containing both the final compound plot
exfit_normalplot.eps EPS file containing the normal plot
exfit_logplot.eps EPS file containing the log plot
exfit.eps EPS file containing the final compound plot
exfit.tf4 Test file containing the data for fitting
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15.5 SVG: Using LaTeX to label SVG H axes

Sometimes it is required to use LATEX to display a mathematical equation but with the formula rotated so it
can be used as the H axis label inside a scientific SVG plot, and this document describes how to do this using
the beta probability distribution as an example.

Note that all the files mentioned in this document are distributed as SimFIT test files so that users simply
wishing to create the final composed document can proceed directly to the last section describing how to use
EditSVG.

15.5.1 The beta probability density function

Consider, for example, the wide variety of shapes possible for the beta probability distribution as the two
positive parameters U and V are varied as shown next.
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This distribution is widely used in data analysis where a unimodal distribution is required as an empirical
equation to model data as positive frequencies for a variable G that can be scaled into the range 0 ≤ G ≤ 1.

The great advantage of this distribution is that for positive parameters U and V a great variety of shapes can
be generated to illustrate and quantify skew and kurtosis with frequency histograms.
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The LATEX source

This is the LATEX code contained in the file latex_beta_pdf.tex to generate the rotated formula.

\documentclass[12pt]{article}

\usepackage{amsmath}

\usepackage{graphicx}

\pagestyle{empty}

\begin{document}

\Large

\rotatebox{90}{$ f_X(x:\alpha,\beta) = \frac{\Gamma(\alpha +

\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha ­ 1}(1 ­ x)^{\beta ­ 1}$}

\end{document}

which displays the mathematical definition of the beta function (shown before rotation) as follows.

In order to import this formula into a graph using EditSVG the code must be used to create the corresponding
SVG file latex_beta_pdf.svg, the overall process being the following sequence of commands.

• latex latex_beta_pdf.tex

• dvips latex_beta_pdf.dvi

• dvisvgm ­E latex_beta_pdf.ps

The file latex_beta_pdf.svg created is then ready to be imported into EditSVG but, alternatively, the source
file latex_beta_pdf.tex can be opened in or dragged and dropped directly onto EditSVG if there is a local
installation of LATEX. When using LATEX in this way to create a SVG file, the command line must be used
from a folder containing the *.TEX file required as a local file and not as a fully qualified path–filename to
a remote source file. The program EditSVG circumvents this issue when importing LATEX source by creating
local copies of all files.

15.5.2 Creating the plot file
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The file beta_pdf_plot.svg with the 5- (G : U, V) to be used looks like the previous figure before the
equation is added.

This figure was created using the SimFIT program makmat by selecting to display the beta distribution
5- (G : U, V)) with various values for the positive parameters U and V over the range 0.01 ≤ G ≤ 0.99 so as
to avoid the poles at either extreme. Users wishing to avoid this process can simply read the SimFIT metafile
beta_pdf_plot.metafile directly into the SimFIT program simplot, or the SimDEM program simdem70.
In either case the file is then saved as beta_pdf_plot.svg using the [Win] or [SVG] option.

15.5.3 Joining the SVG files using EditSVG

First open program EditSVG then input the test file beta_pdf_plot.svg to act as a main plot, then there are
two possible options.

1. Input the test file latex_beta_pdf.svg directly; or

2. read in the test file latex_beta_pdf.tex which will then be used by LATEX to generate an internal copy
of latex_beta_pdf.svg.

Finally, just use the mouse to move the equation into position and alter the scaling as required to obtain the
final plot saved as beta_pdf_with_equation.svg shown previously at the start of this document.

15.5.4 Summary

The programs referred to in this document are as follows.

1. EditSVG is a SimFIT and SimDEM program that takes in SVG or TEX files and writes out SVG and
other files.

2. The SimFIT program simplot and the SimDEM program simdem70 take in SimFIT metafiles and write
out either SVG or EPS files.

Further, the SimFIT test files (*.TEX and *.SVG) described in this document that can be used by program
EditSVG, and those (*.EPS) that can be used by program editPS are now listed.

File name Data included
beta_pdf_plot.metafile SimFIT or SimDEM metafile to create the plot without any equation
latex_beta_pdf.tex LATEX source file for the beta_pdf equation with no plot
latex_beta_pdf.svg SVG file containing the formula only
beta_pdf_plot.svg SVG file containing the plot only
beta_pdf_with_equation.svg SVG file containing both the equation and plot
beta_pdf_with_equation.eps EPS file containing both the equation and plot only
latex_beta_pdf.eps EPS file containing formula only
beta_pdf_plot.eps EPS file containing the plot only



832 Scalable vector graphics (SVG)

15.6 SVG: Editing using text editors, e.g., Notepad

It is frequently convenient to edit SVG files retrospectively, usually in order to change sizes, titles, legends,
labels, line–types, line–widths, and colors, etc. Fortunately, SVG files, like EPS files, are in ASCII text format
so they can be edited using any text editor that supports UTF8 characters, such as the Windows program
notepad or better notepad++. The actual format is in XML which is similar to HTML but, in addition, the
SVG files created by SimFIT have been designed with editing in mind. For instance, each individual markup
code starts on a new line.

15.6.1 Titles and Legends

As a simple example consider the following stacked bar chart created by importing the SimFIT metafile
stack_plot.metafile into SimFIT program simplot or SimDEM program simdem70.
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On searching for the string "Stack Plot" in the file stack_plot.svg using a text editor we find the following
markup at line 34, where the tokens have been shown on separate lines for clarity.

<text

x="420.00" y="44.72"

font­family="ARIAL"

font­size="47px"

font­weight="700"

fill="rgb(170,0,0)">

Stack Plot</text>

Note the key markup codes used in this line.

• <text ... ></text>
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• font-family=

• font-size=

• font-weight=

• fill=

We might think the title could be more explanatory and would be better using a more subdued coloring
given the amount of color already associated with the stack segments. So, after some editing in notepad++,
re-displaying using firefox gives the next graph.
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Lines 34, 35, and 36 now look like this (with line numbers added for clarity).

34 <text x="330.00" y="44.72" font­family="ARIAL" font­size="47px"

font­weight="700" fill="rgb(0,0,170)">Bar Chart in Stacked Format</text>

35 <text x="504.00" y="788.92" font­family="ARIAL" font­size="42px"

font­weight="400" fill="rgb(0,170,0)">Columns</text>

36 <text x="68.00" y="449.44" font­family="ARIAL" font­size="44px"

font­weight="400" transform="rotate(270.00,68.00,460.00)"

fill="rgb(0,170,0)">Rows</text>

The following editing will be apparent on inspection.

Line 34

The original short title "Stack Plot" has been changed to the longer title "Bar Chart in Stacked Format",
the color has been changed from red rgb(170,0,0) to blue rgb(0,0,170), and the x-coordinate has been
changed from 420.0 to 330.00 (so that the title remains centralized over the plot).
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Line 35

The x-legend color has been changed from blue rgb(0,0,170) to green rgb(0,170,0)

Line 36

The y-legend color has been changed from blue rgb(0,0,170) to green rgb(0,170,0)

15.6.2 Lines and Curves

Consider the next plot with five lines, each in a different color and line width.

This plot can easily be created by reading the SimFIT metafile lines.metafile into SimFIT program simplot

or SimDEM program simdem70.

Note that in this plot the lines were created by drawing a polyline between two points which could easily have
been drawn as a simple line. However a polyline was drawn as it would be more usual to change the line type,
thickness, and color for a smooth curve which would then have made it more difficult to comprehend with the
presence of a large number of coordinates, whereas only the end points are needed for a straight line.

The point is that, in order to search for a graphical object in a SVG file, the the markup code would be used.
For instance, searching for the text string <polyline points= in the file lines.svg locates the following
code on a single line, but here broken up into separate tokens for clarity.

<polyline points="196.81,823.62 1095.69,823.62"

style="fill:none;stroke:rgb(0,0,0) ;stroke­width:1.84"

stroke­linecap="butt"

stroke­linejoin="round" />
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To understand this code the following summary is presented.

1. <polyline points= ... />

This markup section starting with < and ending with /> defines all the properties of the polyline.

2. style=

Here all the details of the curve to be drawn are to be found.

3. :rgb(0,0,0)

This color convention is exactly as used for HTML, where red, blue, and green color components are
defined on a scale from 0 to 255.

4. stroke width:

This defines the line width in pixels.

5. stroke­linecap=

This defines the way the ends of curves are finished off.

6. stroke­linejoin=

This is where the way that the sections of the polyline making up the curve are to be connected together
is defined.

In fact the code for drawing all five lines is as follows , where dots . . . are used to indicate the text omitted for
clarity.

... style="fill:none;stroke:rgb(0,0,0) ;stroke­width:1.84" ...

... style="fill:none;stroke:rgb(170,0,0) ;stroke­width:2.00" ...

... style="fill:none;stroke:rgb(0,0,170) ;stroke­width:4.00" ...

... style="fill:none;stroke:rgb(0,170,0) ;stroke­width:8.00" ...

... style="fill:none;stroke:rgb(0,170,170) ;stroke­width:16.00" ...

Note that the order of these commands is in the direction from bottom to top, so that the first line (stroke-
width:1.84) refers to the bottom line, while the last command (stroke-width:16) refers to the top line.

Another change that is often required is to swap between solid lines and dashed, dotted, or dash–dotted lines
which requires the definition of a stroke­dasharray parameter as follows.

• stroke­dasharray="18.00,12.00" for dashed lines

• stroke­dasharray="6.00,12.00" for dotted lines

• stroke­dasharray="18.00,12.00,6.00,12.00" for dash–dotted lines

To demonstrate this technique, note that replacing this section of lines.svg by the next section

:rgb(170,0,0) ;stroke­width:16.00"

:rgb(0,0,0) ;stroke­width:2.00" stroke­dasharray="18.00,12.00"

:rgb(0,0,0) ;stroke­width:2.00" stroke­dasharray="6.00,12.00"

:rgb(0,0,0) ;stroke­width:2.00" stroke­dasharray="18.00,12.00,6.00,12.00"

:rgb(170,0,170) ;stroke­width:16.00"

generates the following graph with the dashed, dotted, and dash–dotted lines colored black.
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15.6.3 Character Strings and Fonts

A common need is to reposition a character string, to edit the string, to change the font size, or to change the
colour. Consider, for instance, the following diagram.
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Here is the first character string with Arial/Helvetica at size 1.2, but broken into separate tokens for clarity.

<text x="289.00" y="62.48"

font­family="ARIAL"

font­size="23px"

font­weight="400"

fill="rgb(0,0,0)"

>This is Arial/Helvetica size = 1.2

</text>

If this is understood then editing such a SVG file will be simple. Here is what the rules are.

• <text ...

This indicates the start of a new character string which includes several self–evident definitions such as
these.

– font­family

– font­size

– font­weight

– fill

• This is Arial/Helvetica size = 1.2

This is the actual string itself that is going to be displayed

• </text>

This indicates the end of the instructions to display the string

The command to rotate 90 degrees, again with tokens separated for clarity, is as follows.

<text x="232.00" y="705.00"

font­family="ARIAL"

font­size="25px"

font­weight="700"

transform="rotate(270.00,232.00,711.00)"

font­style = "oblique"

fill="rgb(0,140,0)">

Arial BoldOblique rotated 90 degrees</text>

The following files are distributed with the SimFIT package in order to understand the previous details.

1. lines.metafile, new_lines.metafile, fonts.metafile

These can be used to generate the figures using the SimFIT program simplot or the SimDEM program
simdem70

2. lines.eps, new­lines.eps, fonts.eps

PostScript graphics files

3. lines.svg, new­lines.svg, fonts.svg

SVG graphics files

Note that, to edit text strings containing non–ASCII characters as in the lower strings using Symbol font, an
editor supporting UTF8 must be used.
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15.7 SVG: Creating collages

Sometimes it is required to combine several SVG files together to create a collage, i.e., a single SVG file
containing subgraphs arranged into fixed or arbitrary positions. To do this, subsidiary SVG files are input into
program EditSVG, then rearranged and scaled as necessary. When satisfied, program EditSVG can be used to
output the composite graph as a SVG file (*.SVG).

Note that, after constructing a collage, program EditSVG also provides the facility to output re–build files
(*.ISVG). These simply contain a list of SVG files used to compose the collage along with positions, scaling,
and flags to indicate if white space borders are to be clipped from graphs, etc.

Such collages can be classified into several types as follows.

• A fixed or strict collage

Here all the subgraphs have the same size and shape. For instance, all square, or all in landscape format,
or all in portrait aspect ratio.

• An arbitrary or free–style collage

In this case the subgraphs can be of arbitrary size and shape.

• Using ribbon graphs

On occasions graphs created in square, portrait, or landscape, format are too compressed and it is
necessary to apply differential stretching into a non standard format. This involves scaling the length
of lines without altering the aspect ratio of the fonts used in titles, legends or plot labels. For instance
with dendrograms or forest plots.

Several collages from the SimFIT tutorials section concerning SVG are now shown to illustrate some typical
possibilities.

• Collage 1.

Freestyle non–overlapping type showing a collection of arbitrary mathematical equations and chemical
formulas.

• Collage 2.

Freestyle inlay type illustrating how to combine LATEX maths with visual display of data.

• Collage 3.

Freestyle inlay type illustrating how to combine a LATEX chemical scheme and graph with data and
best-fit curves.

• Collage 4.

Strict type displaying illustrations from the SimFIT tutorials SVG section.

• Collage 5.

Differential stretching type illustrating how to stretch the G or H axes while maintaining constant aspect
ratios for characters required for ribbon graphs.
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15.7.1 Collage 1: Miscellaneous LATEX examples
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15.7.2 Collage 2: LATEX maths

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0 1 2 3 4 5 6 7 8 9 10

Fitting a Poisson Distribution

Values

O
/E

 F
re

qu
en

ci
es

Observed (O)

Expected (E)



Scalable vector graphics (SVG) 841

15.7.3 Collage 3: LATEX chemistry
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15.7.4 Collage 4: Tutorial examples
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15.7.5 Collage 5: Differential scaling to create ribbon graphs
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15.8 SVG: Differential scaling examples

Usually scientific graphs are in landscape, square, or portrait aspect ratios as they are intended for inclusion in
documents. However there many occasions where the data to be displayed are very extensive which would lead
to overcrowding of curves or overlapping of labels and plotting symbols. Examples would be the display of
dendrograms, forest plots, time series, or spectra where it would be useful to display data with extreme aspect
ratios and attached scroll bars to scan the graph vertically or horizontally, as with chart–paper. Fortunately
internet graphics using scalable vector graphics (SVG) allows this as all browsers support the SVG format,
and SimFIT provides facilities to stretch out overcrowded SVG graphs.

Unfortunately, where a graph is in bitmap, compressed bitmap, or vector format with landscape, square,
or portrait aspect ratio, it is not possible to merely stretch the graph as this would lead to pixellation, and
distortion of characters and plotting symbols, e.g., circles becoming ellipses, squares becoming rectangles,
etc., so a special type of stretching procedure is required.

SimFIT allows users to sculpture plots in advanced 2D format by editing symbols, line–types, labels, colors,
titles and legends, but then to save in SVG format followed by interactively applying differential scaling until
a satisfactory aspect ratio has been achieved before saving to a new SVG file which will automatically be
displayed with scroll bars in browsers.

So differential scaling as defined in this way requires several steps in SimFIT as follows.

1. Sculpture the graph in advanced 2D graphics

2. Choose the [SVG] option to view the current plot as SVG

3. Select values for X_scale and Y_scale and view the outcome

4. When satisfied save as a new differentially scaled SVG file

Note that the differentially scaled SVG files will have the following characteristics.

• The fonts and inter–character spacings will remain unchanged

• The line type and thickness will remain unchanged

• The plotting symbols will maintain their aspect ratios

• Only the white space between the lines, symbols and labels will change

• However there are likely to be unexpected effects if extreme scaling is used. For instance.

– With horizontally stretched graphs a centralized title or -–legend may only become visible after
horizontal scrolling.

– With vertically stretched graphs a centralized .–legend may only become visible after vertical
scrolling.

– In extreme cases like this it is best to delete the offending title or legend and add a new text string
in an appropriate position, i.e., close to the top left of the plot.

– Moving text, arrows, or information panels by eye with the red arrow will never be precise and
this will become increasingly obvious at as the scaling increases. Positioning can be improved by
using the graticule function, i.e., the mesh of intersecting lines created from the [Style] button.

Some of the unexpected effects and avoidance of such issues will be clear by detailing several examples
that will be discussed next and, to understand this material, it should be combined with viewing the page
https://simfit.org.uk/svg.html.
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15.8.1 A normal dendrogram

This is a very simple example where differential scaling is scarcely necessary but, as it does illustrate several
points, creation of the next plot requires some explanation.
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The steps required to generate this default plot are as follows.

1. The SimFIT test data file cluster.tf2 contains a multivariate data set that can be used to generate
a dendrogram either by input into the SimFITprogram simstat then choosing multivariate statistics to
create a distance matrix with a chosen metric followed by plotting a dendrogram with labels, or by input
into simplot then opening the option to create statistical graphs.

2. The type of dendrogram required can be selected as the Bray-Curtis similarity type, which is often used
for such biological data. This would, of course, always be a user–selected decision that would depend
on the data and either statistical arguments or simply the visual appearance preferred.

3. The title and legend would normally be edited at this stage as required.

4. It should be noted that, with this example, SimFIT has automatically chosen to create a double label
system with rotated - axis labels in order to create a legible -–axis labeling system without the labels
overlapping.

The next plot illustrates the effect of differential -–axis scaling, where the title and .–legend have been
suppressed in order to display the graph in as large a size as is possible in a document.
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To generate this particular figure these steps
were taken.

The dendrogram was created in SimFIT ad-
vanced 2D graphics

The title was suppressed.

The .–legend was suppressed.

The double label threshold was increased us-
ing the [Labels]option followed by choos-
ing to edit the --axis labels
This allows the labels to be displayed on one
line.

The font size for the .–axis numbers and the
-–axis labels was increased.

To improve legibility the --axis scaling fac-
tor X_scale was then increased to 3.
Of course the graph becomes too large to dis-
play in this document so the scrolling version
with title and .–legend has to be observed
using the [SVG] option from the main page
at
https://simfit.org.uk.

In order to view with the labels in standard
orientation rather than rotated it would then
be necessary to increase the -–scaling factor
to a larger value than 3 so as to maintain
legibility and prevent labels overlapping.

The re–scaled and edited graph was saved to
a new file which is displayed to the left, after
rotation.
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15.8.2 A crowded dendrogram

Proceeding as before but using the SimFIT test file iris.tf1 displays the famous Fisher iris multivariate data
as the following dendrogram.
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Here the labels are too crowded to read easily but placing all the labels on the same line instead of on double
lines then stretching by using X_scale = 5 creates a much more legible dendrogram as will be seen from
the SimFIT website. Unfortunately this is then too wide to display in full in this document without serious
reduction.

However, using the SimFIT Postscript technique to clip a section out of such an expanded graph (which is
described in the reference manuals) does allows the display of an arbitrary section clipped out of the center of
the stretched graph as shown next (after some reduction).
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15.8.3 An extremely crowded plot

To create the chart–paper type of plot for primes displayed on the website the test files primes.tf1 and
primes.tf2 were input into SimFIT program simplot followed by editing the .–axis to have range (0, 1.25),
the data being plotted with no lines but with solid barchart–type symbols colored black for primes.tf1 and
red for primes.tf2, to create the next figure (after suppressing - and . legends and . labels and using
integers as -–labels).

0 2000 4000 6000 8000 10000

Primes up to 10000 (Single in Black and twins in Red)

Using the SimFIT Postscript facility described for the previous example to stretch by a factor of 10 and then
clip out the start of this graph to an EPS file (shown below) indicates the effect of differential scaling to separate
out the vertical bars from the solid mass of color in the plot (shown above) without differential scaling. This
is seen more clearly in the scrolling example stretched by a factor of 20 on the website.

0



Index
LATEX, 797, 799

Adair constants, 419
Akaike AIC, 345
aliasing, 401
allocating observations, 315
allosterism, 416
ANOVA, 374

1-way, 150

1-way Kruskal-Wallis nonparametric, 153

2-way, 158

2-way Friedman nonparametric, 160

3-way Latin square, 165

factorial, 171

groups and subgroups, 168

introduction, 147
power and sample size, 202, 203
repeat measures, 161, 305
Tukey Q, 156

variance stabilizing transformations, 147

arc length, 520
area, 516
ARIMA with forecasts, 566
aspect ratio, 789
association constants, 419
asymptotic steady states, 457
atypicality index, 317
AUC, 343, 516, 534, 626
auto-correlation matrices, 563
auto-correlations, 558

bar charts, 688
Bartlett method, 287
Bartlett test, 124

Beta distribution, 472
fitting a cdf, 477
Fitting a pdf, 475
generating random samples, 472

binary logistic regression, 396
binding constants, 419
binding polynomial, 423
binomial distribution, 52, 68, 212, 570
binomial proportions, 177

binomial test, 113, 199
bioassay, 193, 533, 534, 550
biplots, 293
bivariate normal distribution, 76, 490
Bonferroni, 231
Bonferroni correction, 88, 133, 143
box and whisker plots, 22, 134, 692

Bray-Curtis metric, 257, 261

Brillouin index of diversity, 219
Butland method, 529

calibration
introduction, 533
using cubic splines, 543
using polynomial standard curves, 368
using polynomials, 540
using straight lines, 538

Canberra metric, 257

canonical variates, 306
categorical variables, 386, 401
Cauchy distribution, 570
censoring, 329
Chebyshev inequality, 208
Chebyshev polynomials, 369
chi-square contingency table test, 106

chi-square distribution, 64, 570
chi-square test on observed and expected frequencies,

104

Cholesky factorization, 620
choosing parameter starting values and limits, 462
city block metric, 257

classical metric scaling, 264
clipping, 788, 792–794
clipping graphs, 262
Cochran Q test, 112

coefficient of kurtosis, 129
coefficient of skew, 129
coefficient of variation, 208
collages, 765, 766, 768, 769
communalities, 286
comparing curves, 521
comparing groups, 306
comparing parameter estimates, 351
compound symmetry, 138
condition number, 617
condition number of the Hessian, 487
confidence ellipses, 246, 280
confidence limits, 537

binomial parameter, 212
correlation coefficient, 213
normal distribution, 213
Poisson parameter, 211
trinomial distribution, 213

confidence range
canonical variates, 309
in inverse prediction, 197

normal mean, 62

plotting envelopes, 361
constrained nonlinear regression, 458

849



850 Index

contingency table analysis, 106
contingency tables, 186, 386, 390
continuous variables, 51
contour diagrams, 491, 642, 735
convolution integrals, 496, 644
cooperative ligand binding, 416
cooperativity, 226
correlation

canonical, 253

coefficient, 236

introduction, 236

Kendall tau, 248

muliple coefficient, 357
partial, 250

Pearson product-moment, 240

Spearman rank, 248

correlation coefficient, 205, 213
correlation matrix, 135
covariance matrix, 135, 137, 343, 351, 537

testing for equality, 303
covariates, 326
Cox regression, 330, 335
cross validation, 514
cross-correlation matrices, 563
cubic Bessel smoothing, 526
cubic splines, 510
cumulative distribution, 82
curvature, 520
curve and surface fitting, 339
cylinder plots, 737

data exploration, 128
data files, 15
David test, 123

dendrograms, 259, 791
subgroups, 793

derivatives, 520
design of experiments, 203
determinant of a matrix, 613
deviance, 338
deviance residuals, 345
deviances, 384
deviations from Michaelis-Menten kinetics, 428
dichotomous data, 177

differences between parameter estimates, 351
differential equations, 502, 647
diffusion from a plane source, 605
directed correlation, 232
discrete variables, 52
discriminant analysis, 311, 315
discriminant functions, 306, 315
distance matrix, 256

distributions
binomial, 52, 68, 570

bivariate normal, 76

Cauchy, 570
chi-square, 64, 570
F, 66, 570
gamma, 570
logistic, 570
lognormal, 570
negative exponential, 570
normal, 51, 58, 570
Poisson, 72, 570
t, 61, 570
uniform, 53, 570
uniform (integers), 570
Weibull, 570

dose response curves, 193, 534

dot product, 133
double plots, 700
doubling dilution, 381
dummy indicator variables, 386
Dun-Sidak correction, 143
Durbin-Watson test, 345

EC50, 534

ED50, 534

editing PostScript files, 772
Editps (program)

composing graphs, 799
text formatting commands, 784

eigenvalues, 625
eigenvalues and eigenvectors, 613
entropy, 219
epidemic differential equations, 661, 664
equal dispersion tests, 121

equal variance tests, 124

error bars, 22, 702
Euclidean metric, 256

evidence ratio, 345
Excel, 293
exhaustive analysis of a vector, 129
exponential survival, 329
extracting tables from results files, 41
extreme value survival, 330

F distribution, 66, 570
F test, 346, 374
F test for excess variance, 119

factor analysis, 283
false discovery rates, 231
Fast Fourier transform (FFT), 230
FDR(HM), 231
FFT, 229
Fisher exact test, 107, 200
forest plot, 720
freestyle collages, 802



Index 851

frequencies, 176

gamma distribution, 570
Gaussian elimination, 617
generalized inverse of a matrix, 616
generalized linear models (GLM), 381
GLM, 550

survival analysis, 326
goodness of fit, 344
graphical deconvolution, 406, 469, 481

graphics
SimFIT character display codes, 783
2D families of curves, 605
3D families of curves, 606
adding extra text, 776
adding logos, 794
arrows, 675
aspect ratios and shear transformations, 681
axes and labels, 679
bitmaps and chemical equations, 799
changing line and symbol types, 775
changing line thickness and plot size, 773
changing PS fonts, 773
changing title and legends, 774
characters outside the keyboard set, 778
clipping, 793
collages, 765, 766, 768, 769
configuration files, 716
decorative fonts, 778
deleting graphical objects, 774
editing SimFIT EPS files, 772
editing PostScript colors, 807
fonts, 675
insets, 770
ISOLatin1Encoding vector, 780
lines, 672
mathematical equations, 797
polygons, 677
rotating and re-scaling, 680
sizes, shapes, and clipping, 680
special effects, 794
split axes, 683
standard fonts, 777
StandardEncoding vector, 779
stepping over intermediate points, 684
stretch-clip-slide, 773
subsidiary figures as insets, 770
SymbolEncoding vector, 781
symbols, 671
text, 674
warning about editing PS files, 772
ZapfDingbatEncoding vector, 782

Greenhouse-Geisser epsilon, 164

half saturation points, 534

half-normal and normal plots, 130
hat matrix, 374
hazard function, 318
Helmert contrasts, 163

Hessian, 223, 343, 423
Hill equation, 222, 535
Hill plot, 227, 725
hinges, 129
Hodges-Lehman location estimator, 145, 217
homogeneity of variance, 124

Hotelling’s )2 test, 137, 302
Hotelling’s generalized )2

0
statistic, 302

Huyn-Feldt epsilon, 164

IC50, 534

importing tables into documents, 41
incomplete matrices, 22
indices of diversity, 219
initial rates, 453
inner product, 133
insets, 770, 803
integrated hazard function, 318
inverse of a matrix, 613
inverse prediction, 368, 535
isotope displacement models, 407

K-means clustering, 268

Kaplan-Meier survivor function, 319
Kendall coefficient of concordance, 126

kernel density estimation, 229
kinetic isotope effect, 407, 413
knots, 510
Kolmogorov-Smirnov 2 sample test, 98

Kolmogorov-Smirnov test, 86

labels, 708
lag times, 457
lags, 558
Latin square, 165

Latin squares, 574
LD50, 193, 534, 550
least squares line, 364
Levene test, 125

leverages, 345, 374, 384
Libreoffice, 293
ligand-binding cooperativity analysis, 222
linear models, 341
lines

comprehensive least squares, 358
least squares, 244

major axis, 245

reduced major axis, 245

simple least squares, 355
loadings, 276
logistic distribution, 570



852 Index

logistic regression, 392
loglinear model, 108, 387, 390
lognormal distribution, 570
logodds plot, 718
logoddsratios plot, 720
Lotka-Volterra equations, 647, 654
LU factorization, 617

Mahalanobis distance, 309, 314, 351, 622
major axis line, 365
Mallows Cp, 346, 372, 374
Manhattan metric, 257

Mann-Whitney U test, 100

MANOVA, 299
Mantel-Haenszel log-rank test, 331
matrix multiplication, 621
matrix norms, 617
Mauchly sphericity test, 139
maximum growth rate, 534
maximum size, 534
McConalogue method, 529
McNemar test, 110

mean
sample, 81

median test, 122

meta analysis, 186, 720, 790
metafiles, 716
minimum growth rate, 534
missing values, 22
model discrimination, 346, 374
models

cooperative ligand binding, 416
cubic splines, 510
decay, 449
deviations from Michaelis-Menten kinetics, 428
discrimination, 346
epidemic DE, 661, 664
exponential, 438
exponential survival, 329
extreme value survival, 330
GLM, 381
growth, 446
high–low affinity ligand binding, 409
Hill, 456
lag phase to steady state, 457
linear, 341
logistic, 352, 392
Lotka-Volterra predator-prey, 654
Michaelis-Menten, 403, 535
monomolecular, 455
nonlinear, 341
polynomials, 534
positive rational functions, 428
proportional hazards survival, 330

recurrent epidemic DE, 664
sigmoid, 433
substrate inhibition, 435
survival, 450
Van der Pol oscillator, 647
Von Bertalanffy DE, 590, 650
Von Bertalannfy allometric, 447
Weibull survival, 330

Mood test, 123

moving averages, 554
multilinear regression, 370
multiple correlation coefficient, 357
multivariate analysis of variance, 299
multivariate normal plot, 137

nearest neighbors, 258

negative exponential distribution, 570
non-central distributions, 221
non-metric scaling, 264
noncentral F distribution in power calculations, 203
nonlinear models, 341
nonlinear regression: advanced, 458
nonlinear regression: simple, 403
nonparametric tests, 142
normal distribution, 51, 58, 213, 570
normal scores, 131
normal scores plot, 89
numerical integration, 633, 635, 637

objective function, 341
offsets, 329
one sample t test, 84

Operating characteristic, 209
optimization, 640
ordinal scaling, 264
orthogonal line, 365
orthomax rotation, 290

orthonormal contrasts, 161

overdetermined linear equations, 624
overdetermined model, 401

paired t test, 96

parameters
confidence limits, 343
estimates, 343
significant differences between, 351
standard errors, 537

parametric plots, 742
partial auto-correlation functions, 558
partial clustering, 259
partial least squares (PLS), 375
Pearson product-moment correlation, 240

percentiles, 550
permuted lists, 573
pie charts, 685



Index 853

piecewise cubic splines, 510
piecewise monotonic smoothing, 527
plots

binomial proportions, 178

biplots, 293
box and whisker, 154

clipping, 262, 792
dendrograms, 259

expanded training set, 316
half-normal, 360
Hill, 420
K-means clustering, 271
Kaplan-Meier survivor function, 320, 332
LD50, 194

LineWeaver-Burke, 408
loadings, 278
log odds, 178

log odds ratios, 187

MANOVA profiles, 304
normal and half-normal, 350
normal scores, 89

population fractions, 420
principal component scores, 273
probit, 194

saturation function, 418
scattergram, 238

scores, 277
scree, 278
stretching, 262, 271, 792
trinomial contours, 184

Weibull survival curve, 323
plotting arrows, 752
plotting mathematical equations, 711
plotting objects and panels, 753
plotting text, 751
Poisson distribution, 72, 211, 570
Poisson distribution test, 91

polynomial regression, 366
polynomials, 534
positive definite matrix, 620
PostScript, 754

SimFIT character display codes, 783
adding extra text, 776
changing line and symbol types, 775
changing line thickness and plot size, 773
changing PS fonts, 773
changing title and legends, 774
characters outside the keyboard set, 778
creating PostScript text files, 784
decorative fonts, 778
deleting graphical objects, 774
editing SimFIT EPS files, 772
editps text formatting commands, 784
ISOLatin1Encoding vector, 780

specials, 794
standard fonts, 777
StandardEncoding vector, 779
SymbolEncoding vector, 781
using program EDITPS, 765
warning about editing PS files, 772
ZapfDingbatEncoding vector, 782

Postscript
procedures, 765

power and sample size
1 and 2 binomial samples, 199
1 and 2 correlations, 205
1 and 2 normal samples, 200
1 and 2 variance, 204
chi-square test, 207
Fisher exact test, 200
k normal samples (ANOVA), 202
theory, 208

PowerPoint, 776
principal components, 275

probability transform, 53
Procrustes analysis, 288

profile analysis, 304
project archives, 351
projecting space curves onto planes, 740
propagation of errors, 537
proportional hazards model, 330
proportions, 176

pseudo random numbers, 55
pseudo-inverse of a matrix, 616
PSfrag, 797

QR factorization, 619
quadratic forms, 622
quartiles, 129
quartimax rotation, 285, 290

quasi-Newton optimization, 640

R-squared test, 374
random numbers, 55
random walk, 576
rank of a matrix, 614
rank of an observation, 82
re-scaling, 788
reduced major axis line, 365
regression

comparing parameter estimates, 351
Cox, 330
linear, 355
orthogonal, 362
polynomial, 366

relaxation times, 457
repeated-measurements design, 305
residuals, 344



854 Index

Studentized, 374
results files, 31
robust analysis

1 sample, 216
2 samples, 218

roots of equations, 582, 591
Rosenbruck’s function, 640
rotating, 788
run test, 116

running medians, 554

sample mean and variance, 81
Scalable vector graphics (SVG), 816
scaling, 787
Scatchard plot, 723
Schwarz Bayesian criterion, 345
scores, 276
scrambled lists, 573
scree diagram, 278, 310
Shannon index of diversity, 219
Shapiro-Wilks test, 89, 129
shear transformations, 789
shuffled lists, 573
sigmoidicity, 433
sign test, 115

signal-to-noise ratio, 208
Simfit character display codes, 783
Simpsons rule, 633
simulating a user-defined model, 601
simulating experimental error, 607
simulation, 568
singular value decomposition, 297, 614
skyscraper plots, 737
smooth interpolation, 525
sphericity, 139
spline files, 515
stacked barchart plot, 134
STRESS and SSTRESS, 267
stretching, 792
stretching graphs, 262
strict collages, 801
Studentized residuals, 374
studentized residuals, 345
substrate inhibition, 435
summary statistics, 129
surface plots, 734
survival analysis

GLM, 326
Kaplan-Meier survivor function, 319

statistical theory, 318
survivor function, 318

Weibull survivor function, 323

SVG: creating collages, 837
SVG: differential scaling, 843

SVG: editing using Notepad, 831
SVG: importing LATEX chemical formulas, 822
SVG: importing LATEX maths equations, 819
SVG: importing SVG files into SVG files, 825
SVG: Introduction, 816
SVG: Using LaTeX to label SVG H axes, 828
symmetric matrix, 620

t distribution, 61, 570
t test, 94, 200
tests

Bartlett, 124

binomial, 113

Box for equal covariance matrices, 314
chi-square on contingency tables, 106

chi-square on observed and expected frequen-
cies, 55, 104

Cochran Q, 112

contingency table, 106

David, 123

Durbin-Watson, 345
equal dispersion, 121

equal variance, 124

F for excess variance, 119

Fisher exact, 107

Friedman, 160

homogeneity of variance, 124
Hotelling T squared, 161, 280
Kendall coefficient of concordance, 126
Kolmogorov-Smirnov, 55, 86

Kolmogorov-Smirnov 2 sample, 98

Kruskal-Wallis, 153

Levene, 125

loglinear contingency table, 108

Mann-Whitney U, 100

Mantel-Haenszel log-rank, 331
Mauchly, 163

McNemar, 110

median, 122

Mood, 123

nonparametric, 81

one sample t, 84

paired t, 96

parameteric, 81

Poisson distribution, 91

run, 116

runs up or down, 55
Shapiro-Wilks, 89

sign, 115

Tukey Q, 156

unpaired t, 94

Wilcoxon signed ranks, 102

text formatting commands, 784
the law of =, 208
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three dimensional scatter diagrams, 741
three dimensional skyscraper plot, 134
three dimensional space curves, 739
three-dimensional bar charts, 737
three-dimensional surfaces, 734
Time series, 554
training sets, 315
trapezoidal area estimate, 626
trinomial distribution, 213
trinomial proportions, 183

Tukey Q post-ANOVA test, 156

Tukey-Hanning 4253H twice smoother, 554
two-dimensional contours, 735

uniform distribution, 53, 570
uniform distribution (integer), 570
unpaired t test, 94
user-defined models, 592, 711

Van der Pol equation, 647
variables

continuous, 51
discrete, 52
latent, 286

variables influence on projection (VIP), 376
variance, 203

sample, 81
stabilizing transformations, 147

variance ratio test, 204
varimax rotation, 285, 290

vector field diagrams, 732
Venn diagram, 676
Von Bertalanffy differential equation, 650
Von Bertalannfy allometric equation, 447

Weibull distribution, 570
Weibull survivor function, 323, 330
weights, 340
Wilcoxon signed ranks test, 102

Wilks generalized likelihood-ratio statistic, 139
winzorized mean, 145, 217
Word, 776
WSSQ, 341

ZapfDingbats, 782
zeros of 1 function of 1 variable, 629
zeros of a polynomial, 612
zeros of n functions of n variables, 631
zeros of nonlinear equations, 582, 591
zeros of the binding polynomial, 225
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