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Principal component analysis attempts to express a = by < data set with < > 2 in new coordinates. obtained

by rotating the original coordinates - so that the overall variance of the observations is contained in decreasing

order in the new variables. If this is successful in that most of the variance is contained in the first 2 or 3 of

the . variables, then this allows inferences to be drawn about the data in a sub-space of dimension < <.

Example 1

From the main SimFIT menus choose [Statistics], [Multivariate], then [Principal components] and analyze

the default test file provided (g03aaf.tf1) which contains the following data

7 4 3

4 1 8

6 3 5

8 6 1

8 5 7

7 2 9

5 3 3

9 5 8

7 4 5

8 2 2

leading to these results.

Variables included: 1 2 3

Transformation: Untransformed

Matrix type: Variance-covariance matrix

Score type: Score variance = eigenvalue

Replicates: Unweighted for replicates

Eigenvalues Proportion Cumulative j2 �$� ?

8.274 0.6515 0.6515 8.613 5 0.1255

3.676 0.2895 0.9410 4.118 2 0.1276

0.750 0.0590 1.0000 0.000 0 0.0000

Loadings (by column)

-0.138 0.699 0.702

-0.250 0.661 -0.707

0.958 0.273 -0.084

Scores (by column)

-2.150 -0.173 -0.107

3.800 -2.890 -0.510

0.153 -0.987 -0.269

-4.710 1.300 -0.652

1.290 2.280 -0.449

4.100 0.144 0.803

-1.630 -2.230 -0.803

2.110 3.250 0.168

-0.235 0.373 -0.275

-2.750 -1.070 2.090

The significance of the options used for the analysis and the results listed in this table are now explained.
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• Variables included

All three variables were included as this was defined in the trailer section of g03aaf.tf1, but the

variables to be included can also be adjusted interactively.

• Transformation

The data were used without any transformation.

• Matrix type

If the magnitude of the variables are similar so that the data do not need to be centralized and scaled,

then the covariance matrix can be used. Otherwise the correlation matrix should be used.

• Score type

Several options are available, to provide consistency and facilitate comparison with published data.

• Replicates

SimFIT provides the facility to supply a weighting vector to permit data suppression (setting a weight

to zero), or to allow for replicates (setting a weight equal to the number of replicates used in the

observation).

• Eigenvalues

These are listed in decreasing order, the proportion of variance and cumulative sum of variances

captured by each component is listed, and a chi-square test is performed to check the significance

of each component. The significance levels are not valid if the correlation matrix is used instead of

the covariance matrix. Clearly the first two principal components are sufficient to represent the three

original variables.

• Loading

Column 9 of the loading matrix contains the coefficients required to express H 9 as linear function of the

variables G1, G2, . . . , G<. The values can be used to indicate the importance of the contribution of the

original variables to the rotated variables.

• Scores

Row 8 of the scores matrix contains the values for row 8 of the original data expressed in variables

H1, H2, . . . , H<. If most of the variance can be explained by the first two or three variables, the values

can be used instead of the original observations to visualize grouping and clustering, etc.

Example 2

The next example concerns the analysis of the Fisher iris data with 150 cases and 4 variables (Sepal length,

Sepal width, Petal length, and Petal width) contained in the test file iris.tf1. The figures below show the

scores and loadings for these data after analyzing the correlation matrix.

The score plot displays the score components for all samples using the selected principal components, so

some may prefer to label the legends as principal components instead of scores, and this plot is used to search

for possible groupings among the sample. The components can be labeled using any labels supplied at the

end of the data file, but this can cause confusion where, as in the present case, the labels overlap leading to

crowding. A method for moving labels to avoid such confusion is provided. However, with such dense labels

it is best to just plot the scores using different symbols and colors for the three groups.

The loading plot displays the coefficients that express the selected principal components H 9 as linear functions

of the original variables G1, G2, . . . , G<, so this plot is used to observe the contributions of the original variables

G to the new ones H.

Note that figures also illustrate an application of the SimFIT technique for adding extra data interactively to

create the cross-hairs intersecting at (0, 0), and it also shows how labels can be added to identify the variables

in a loadings plot. It should be noted that, as the eigenvectors are of indeterminate sign and only the relative
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magnitudes of coefficients are important, the scattergrams can be plotted with either the scores calculated

from the SVD, or else with the scores multiplied by minus one, which is equivalent to reversing the direction

of the corresponding axis in a scores or loadings plot.
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The confidence ellipse plotted on the scores will be explained later.
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Example 3

An important topic in principal component analysis is deciding how to choose a sufficient number of principal

components to represent the data adequately. As the eigenvalues are proportional to the fractions of variance

along the principal component axes, a table of the cumulative proportions is calculated, and some users may

find it useful to include sufficient principal components to account for a given amount of the variance, say 70%.

Consider these results from the analysis of data with eight variables contained in test file cluster.tf1 and

analyzed using the covariance matrix.

Eigenvalues Proportion Cumulative j2 �$� ?

198.9 0.4274 0.4274 61.13 35 0.0041

106.8 0.2294 0.6568 48.09 27 0.0075

88.29 0.1897 0.8465 39.73 20 0.0054

40.18 0.0863 0.9328 25.39 14 0.0309

17.46 0.0375 0.9703 15.04 9 0.0898

9.036 0.0194 0.9898 9.149 5 0.1033

3.966 0.0085 0.9983 4.349 2 0.1137

0.803 0.0017 1.0000 0.000 0 0.0000

The next figure shows how scree plots
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can be displayed to illustrate the number of components needed to represent the data adequately. For instance,

in this case, it seems that approximately three of the principal components are required. A useful rule of

thumb for selecting the minimum number of components is to observe where the scree diagram crosses the

average eigenvalue or becomes flattened indicating that all subsequent eigenvalues contribute to a comparable

extent. Use of the chi-square statistics for this type of investigation will be described later.
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Theory 1: The calculation of principal components

In the principal components analysis of a = by < data matrix, new coordinates H are selected by rotation of

the original coordinates G so that the proportion of the variance projected onto the new axes decreases in the

order H1, H2, . . . , H<. The hope is that most of the variance can be accounted for by a subset of the data in H

coordinates, so reducing the number of dimensions required for data analysis.

It is possible to scale the original data so that the variables are all of comparable dimensions and have similar

variances in order to prevent the analysis being dominated by variables with large values. However, basing

principal components analysis on the correlation matrix rather than the covariance or sum of squares and

cross product matrices is often recommended, as it prevents the analysis being unduly dominated by variables

with large values, and is equivalent to centering and scaling the original data. The data format for principal

components analysis is exactly the same as for cluster analysis; namely a data matrix with = rows (cases) and

< columns (variables).

If the data matrix is - with covariance, correlation or scaled sum of squares and cross products matrix (, then

the quadratic form

0)
1
(01

is maximized subject to the normalization 0)
1
01 = 1 to give the first principal component

21 =

<∑
8=1

018G8 .

Similarly, the quadratic form

0)
2
(02

is maximized, subject to the normalization and orthogonality conditions 0)
2
02 = 1 and 0)

2
01 = 0, to give the

second principal component

22 =

<∑
8=1

028G8

and so on. The vectors 08 are the eigenvectors of ( with eigenvalues _2

8
, where the proportion of the variation

accounted for by the 8th principal component can be estimated as

_2

8 /
<∑
9=1

_2

9 .

Actually SimFIT uses a singular value decomposition (SVD) of a centered and scaled data matrix, say

-B = (- − -̄)/
√
(= − 1) as in

-B = +Λ%)

to obtain the diagonal matrix Λ of singular values, the matrix of left singular vectors + as the = by < matrix

of scores, and the matrix of right singular vectors % as the < by < matrix of loadings.

Theory 2: Confidence ellipses in scores plots

Note that a 95% confidence Hotelling )2 ellipse is also plotted, which assumes a multivariate normal

distribution for the original data and uses the � distribution.

The confidence ellipse is based on the fact that, if H̄ and ( are the estimated mean vector and covariance

matrix from a sample of size = and, if G is a further independent sample from an assumed ?−variate normal

distribution, then

(G − H̄)) (−1(G − H̄) ∼ ?(=2 − 1)
=(= − ?) �?,=−? ,
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where the significance level for the confidence region can be altered interactively.

Theory 3: The chi-square test for significant components

In cases where the correlation matrix is not used, a chi-square test statistic is also provided along with

appropriate probability estimates to make the decision more objective. In this case, if : principal components

are selected, the chi-square statistic

(= − 1 − (2< + 5)/6)
{
−

<∑
8=:+1

log(_2

8 ) + (< − :) log

(
<∑

8=:+1

_2

8 /(< − :)
)}

with (< − : − 1) (< − : + 2)/2 degrees of freedom can be used to test for the equality of the remaining < − :

eigenvalues.

If one of these test statistics, say the : +1th, is not significant then it is usual to assume : principal components

should be retained and the rest regarded as of little importance. So, if it is concluded that the remaining

eigenvalues are of comparable importance, then a decision has to be made whether to eliminate all or preserve

all. For instance, from the last column of ? values referring to the above chi-square test for g03aaf.tf1,

it might be concluded that a minimum of two components are required to represent this data set adequately.

However, for the case of iris.tf1, three components would be required.

The common practise of always using two or three components just because these can be visualized is to be

deplored.

Theory 4: Calculating scores from loadings

The data used by SimFIT are automatically centered at run time, and sometimes also scaled if requested, so

it is not usually necessary to transform the original data for principal component analysis, especially if the

correlation matrix method is used. However, in order to calculate scores using the loadings retrospectively

the following points should be noted.

1. The original data matrix must be centralized by subtracting column sample means.

2. If the correlation matrix technique was used to calculate the scores, then the data must also be scaled

by dividing columns by the column sample standard deviations.

3. If the covariance matrix technique was used no further scaling is required.

4. If the sum of squares and cross-product matrix method was used, then the centralized data must also be

multiplied by
√
= − 1.

5. The final scaling of the scores will be that used when generating the loadings.

6. The average of a group of : scores is the same as using loadings with the means from the same : values.

7. The scores are unspecified up to multiples of -1.

To illustrate this procedure consider the following steps that are required to calculate the scores for a covariance

matrix with scores normalized to have variance equal to the corresponding eigenvalue, using the notation for

subroutine g03aaf in the NAG library documentation.

• Obtain the data matrix -

• Transform - to obtain the centered matrix .

• Generate the loading matrix %

• Calculate the scores + = .% as shown next.
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Note that, as the sign of eigenvectors is arbitrary and can change with relatively small perturbations of a data

set, SimFIT provides the option to reflect plots of loadings and scores in order to retain consistency of spatial

distribution for the visual presentations of results.
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