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Hypothesis testing is based upon specifying a null hypothesis Hy then testing to see if a statistic calculated
from the data is sufficiently extreme to justify rejecting the null hypothesis. There are two possible errors.

e Typel error
The null hypothesis is rejected when it is true and the probability of this happening is .

e Type Il error
The null hypothesis is accepted when it is false and the probability of this happening is S.

The significance level is @ while the power is 1 — 8, often expressed as a percentage. The situation can be
summarized in the following table.

Decision Hj is true Hy is false
Reject Hy | Type | error | Correct

a 1-p
Accept Hy | Correct Type Il error
l -« B

Calculations related to power as a function of sample size can be performed as long as the statistical dis-
tributions and parameters required for the null hypothesis are correct and specified. Unfortunately, while
calculation of « is straightforward, calculation of 8 requires that an alternative hypothesis H4 be specified
and can be much more difficult.

In any given situation it may be necessary to estimate the sample size n required given a and 3, or to estimate
B given @ and n, as it is not possible to simultaneously minimize @ and S. If n is fixed, then increasing «
decreases 3, while decreasing « increases 8. The following cases are discussed here.

1. One binomial sample

2. Two binomial samples

3. One normal sample

4. Two normal samples

5. Multiple normal samples
6. One and two variances
7. One and two correlations
8. The chi-squared test

For each of these cases, the minimum essential theoretical details are given followed by typical examples.
Plots of power as a function of sample size can also be created. Finally, a more comprehensive description of
the underlying theory is given.

1. Power calculations for 1 binomial sample

The calculations are based on the binomial test, the binomial distribution, and the normal approximation to it
for large samples and p not close to 0 or 1.



If the theoretical binomial parameters po and gg = 1 — pg are not too close to O or 1 and it is wished to estimate
this with an error of at most ¢, then the sample size required is
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where P(Z > Z, ) = /2,
or ®(Zyp) =1-a/2,

which, for many purposes, can be approximated by n ~ 1/§2. The power in a binomial or sign test can be
approximated, again if the sample estimates p; and g; = 1 — p; are not too close to 0 or 1, by
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Example 1

This demonstrates calculations that are possible when, in a sample of size n, x successes are used to estimate
the binomial parameter p = x/n. Given a binomial distribution with Hy : parameter p = pg, H4 : parameter
p = p1, and « specified, then three calculations are possible, namely

1. Calculate n(6), i.e. n giving an error at most §
2. Calculate n(f), i.e. n given 3
3. Calculate 8(n), i.e. B given n

as summarized in the next table.

Example 1: Power analysis for 1 binomial sample

Forn(é) | «=0.05| p=05 | 6§=0.1 n=96
Forn(B) | «=0.05 | =02 | pp=05 | p;=0.6 n=192
ForB(n) | «=0.05| po=05 | p; =0.6 | power=80% | n=192

The conclusion is that a sample size of 96 is required to ensure that the parameter estimated is within 0.1 of
the true parameter p = 0.5 for 95% of the results from repeated samples, while to confirm that the parameter
is distinct from p = 0.6 with 80% power requires a sample size of 192.

2. Power calculations for 2 binomial samples

For two sample proportions p; and p; that are similar and not too close to 0 or 1, as in a 2 by 2 contingency
table, the sample size n and power 1 — 8 associated with a binomial test for Hy : pg1 = po2 can be estimated
using one of numerous methods based upon normal approximations. For example

o P11+ p2a2)(Zapp + Z)*

(p1 —p2)? '
)2
Zp =Pz,
p1q1 + p2q2
B=P(Z > Zﬁ')’

1-B=d(Zp).

Example 2a

This deals with the situation where two samples of size n are analyzed to determine if the estimates p; = x| /n
and p, = x,/n differ significantly. Parameters can also be input as log odds ratios.



Example 2a. Power analysis for 2 binomial samples

B(n) | «=0.05| p; =06 | pp=0.7 | power=32% | n=100
B(n) | «=0.05| p; =06 | pp=0.7 | power =56% | n=200
B(n) | «=0.05| p; =06 | pp=0.7 | power=73% | n=300
n(B) | «=0.05| =02 | p;=06 | p2=07 n =353

Note that, for p; = 0.6 and p,= 0.7 the power increases from 32%, to 56%, to 73% as n increases from 100,
to 200, to 300, while a sample of size n = 353 is required to achieve 80% power.

Example 2b

Power for the Fisher exact test with sample size n used to estimate both p; and p,, as for the binomial test,
can be calculated using

RYEE ) [

r=0 C,
where r = total successes,
x = number of successes in the group,

and C, = the critical region.

This can be inverted by SIMF[T to estimate n, but unfortunately the sample sizes required may be too large
to implement by the normal procedure of enumerating probabilities for all 2 by 2 contingency tables with
consistent marginals.

Example 2b. Power analysis for the Fisher Exact Test

B(n) | «=0.05| p; =06 | pp=0.7 | power=37% | n=100
B(n) | «=0.05 | p;=0.6 | pp=0.7 | power =64% | n =200
n(B) | «=0.05| =02 | p;=06| pp=0.7 n =304

For sample sizes of 100 and 200 the power is 37% and 64% but sample sizes of 304 are required for 80%
power.

3. Power calculations for 1 normal sample

The calculations for a 1 sample ¢ test are based upon the confidence limit formula for the population mean u
from a sample of size n, using the sample mean X, sample variance s> and the 7 distribution, as follows

- N _ N
Plx - taj2n-1—"= Spusx+ ta/Z,n—l_) =1-a,

Vn Vn
where x = Z x;/n,

i=1
=) i =0/ (n=1),
i=1

P(t <tapy)=1-a/2,
andv=n-—-1.
You input the sample variance, which should be calculated using a sample size comparable to those predicted
above. Power calculations can be done using the half width & =7,/ ,_15/ /n, or using the absolute difference
0 between the population mean and the null hypothesis mean as argument. The following options are available:
O n(h),i.e. to calculate the sample size necessary to estimate the true mean within a half width &

242
§ t(t/2,n—l .
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O n(6), i.e. to calculate the sample size necessary for an absolute difference ¢

2
S
2.
n= ﬁ(t(t/Z,n—l +t,8,n—l) , or

O B(n),i.e. to estimate the power
)

2/

Ig.n-1= —la/2,n-1-

se/n

It should be noted that the sample size occurs in the degrees of freedom for the ¢ distribution, necessitating an
iterative solution to estimate n.

Example 3

Example 3. Power analysis for 1 sample ¢ test

n(h) h=1 | @=0.05 =1 n=7
n(s) =1 | @=0.05]8=02 [s>=1]n=10
6(m,B) | n=10 | =005 | =02 | s>=1 | 6=0.9947
B(n) n=10 | 6=1 @=005]s>=1| §=0.1958

4. Power calculations for 2 normal samples

These calculations are based upon the same type of ¢ test approach as just described for 1 normal sample,
except that the pooled variance sf7 should be input as the estimate for the common variance o2, i.e.,

Ny 1y
D=0+ Y (v - )
) il Jj=1

p ne+ny —2

N

where X has sample size n, and Y has sample size n,. The following options are available:

U To calculate the sample size necessary to estimate the difference between the two population means
within a half width A
2s%t2
n= a@/2,2n-2

h2
0 To calculate the sample size necessary to detect an absolute difference 6 between population means

2s§, )
n= ?(ta/2,2n—2 +1820-2)"; OF

O To estimate the power
0

1/2s§,/n

The ¢ test has maximum power when n, = n,, but, if the two sample sizes are unequal, calculations based on
the the harmonic mean nj should be used, i.e.,

1g,2n—2 = —ta/2,2n-2-

2nyxny
nh = 9
Ny +ny
npn
so that ny = ———.
2ny, —ny



Example 4

In order to perform calculations it is necessary to assume that both samples are from normal distributions
with the same variance and then input those of the following parameters as required.

* The significance level «

* An accurate estimate for the common variance s°

* Choice of a 2-tail test or 1-tail test

* The half width & to determine a 95% confidence range 24 for the difference between the sample means
e The minimum absolute difference ¢ between the sample means that can be detected

* The power 100(1 — 8)%

e The sample size n

The following table was created using the analysis of power and sample size option from the statistical
calculations procedure available from the [Statistics] menu on the St(MF[T main menu, or by using the [A/Z]
option to open program simstat.

Example 4. Power analysis for the t test

n(h) | h=1 «=0.05 52 =1 n=9
n(s) | 6=1 @=005] =02 | s2=1 n=17
6(n) | n=17 | @=005] =02 | s2=1 5 =0.9912
Bn) | n=17 | 6=1 =005 | s =1 B =0.1931
n(h) | h=05] @=0.05 s2=0.5193 | n=18
n(6) [ 6=05]a=005] =01 | s2=05193 | n=45
B(n) [ n=15 | 6=1 @ =0.05| s>=0.5193 | B =0.0454

The last three entries in the above table would be typical. They are for two samples of size n = 15 with pooled
variance s2 = 0.5193, and the results would be interpreted as follows.

* n(h) shows that a sample size of n = 18 would be required to have a 95% confidence interval for the
difference between the true means no larger than 1, that is with 4 = 0.5.

* n(6) illustrates that a sample size of n = 45 is necessary in order for a 90% chance of detecting a
difference ¢ between the true means as small as 0.5.

* B(n) demonstrate that the power for detecting a difference of & = 1 between the true means has a power
of 95.46%.

5. Power calculations for k normal samples

The calculations are based on the 1-way analysis of variance technique, i.e. ANOVA. Note that the SIMF[T
power as a function of sample size procedure also allows you to plot power as a function of sample size, which
is particularly useful with ANOVA designs where the number of columns k can be of interest, in addition
to the number per sample n. The power calculation involves the ' and non-central F distributions and you
calculate the required n values by using graphical estimation to obtain starting estimates for the iteration. If
you choose a n value that is sufficient to make the power as a function on n plot cross the critical power, the
program then calculates the power for sample sizes adjacent to the intersection, which is of use when studying
k and n for ANOVA.

Example 5



All the power procedures available in SIMF[T provide the ability to plot power as a function of sample size
but this particularly useful with ANOVA, as will now be explained.

It is important in the design of experiments to be able to estimate the sample size needed to detect a significant
effect. For such calculations you must specify all the parameters of interest except one, then calculate
the unknown parameter using numerical techniques. For example, the problem of deciding whether one
or more samples differ significantly is a problem in the Analysis of Variance, as long as the samples are
all normally distributed and with the same variance. You specify the known variance, o2, the minimum
detectable difference between means, A, the number of groups, k, the significance level, «, and the sample
size per group, n. Then, using nonlinear equations involving the F' and noncentral F' distributions, the power,
100(1 — B) can be calculated. It can be very confusing trying to understand the relationship between all
of these parameters so, in order to obtain an impression of how these factors alter the power, a graphical
technique is very useful, as in this figure.
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simstat was used to create this graph. The variance, significance level, minimum detectable difference and
number of groups were fixed, then power was plotted as a function of sample size. The ASCII text coordinate
files from several such plots were collected together into a library file to compose the joint plot using simplot.
Note that, if a power plot reaches the current power level of interest, the critical power level is plotted (80%
in the above plot) and the n values either side of the intersection point are displayed.



6. Power calculations for 1 and 2 variances

The calculations depend on the fact that, for a sample of size n from a normal distribution with true variance
o, the function y? defined as
»  (n- 1)s?
= o-g
is distributed as a chi-square variable with n — 1 degrees of freedom. Also, given variance estimates si and
si obtained with sample sizes n, and n, from the same normal distribution, the variance ratio F defined as

2 2
Ky S
F = max —;, —;
sy Sx
is distributed as an F' variable with either ny, n, or ny, n, degrees of freedom. If possible n, should equal ny,,

of course. The 1-tailed options available are:

0 Ho:o? < of against Hy : 02 > 03

1-B=P(x* 2 x4 ,100/5);

O Hy:o?%> 0'5 against H; : ol < O'g

1-B=P(xX* < X]_q.n100/57); Or

O Rearranging the samples, if necessary, so that s3 > s3 then

c 2 — 2 aoai .2 2
Hy: oy =0y against Hy : o # 0y

2m(ny —2) 52
Zg = ———1 21-Z
B m +1 Og S%, a
where m = ne =l
ny — 1

Example 6a

This example shows the results from performing a one-tail test on a variance estimate s% of 2.6898 obtained
with a sample size of 8 compared to a theoretical value of s(z) of 1.5. A confidence interval for the sample
variance is calculated as well as the actual power, followed by the sample size needed for 90% power.

Example 6a: Testfor Hy : 0> < 1.5,H; : 0> > 1.5
Sample variance s7 2.6898
Sample size used to calculate s% 8

95% confidence interval for s% 1.1758,11.142

Test statistic (C) 12.552
P(x*>0) 0.0838
Power of this test 34.6486% (for @ = 0.05)
Minimal sample size 51 (for @ = 0.05, 5 =0.1)

Example 6b

This example explores the power as a function of sample size for a two-tail variance ratio test using samples
with variances s% =21.87(n; = 11) and s% = 15.36(ny = 8), i.e. for the null hypothesis Hy : 0'12 = 0'22. Details
for two-tail tests are also given for the additional hypothetical cases with the same variances but estimated

with sample sizes n; = np = 60 and n; = 20,n, = 30.



Example 6b. Two-tailed variance ratio (F) test

Sample variance si

Sample variance s
Sample size n;
Sample size n;
Variance ratio (VR)
P(F = VR)

Power of this actual test
Minimal sample size

Hypothetical sample size n;
Hypothetical sample size n;
Variance ratio (VR)

P(F > VR)

Power of this hypothetical test

Hypothetical sample size n;
Hypothetical sample size n;
Variance ratio (VR)

P(F > VR)

Power of this hypothetical test

21.87
15.36

11

8

1.4238

0.3284

15.359% (for a = 0.05)
86 (for @ = 0.05, 8 = 0.1)

60
60

1.4238

0.0889

76.763% (for @ = 0.05)

20

30

1.4238

0.1908

38.348% (for a = 0.05)

7. Power calculations for 1 and 2 correlations

The correlation coeflicient  calculated from a normally distributed sample of size n has a standard error

1-r2

Sy = | ——
n—2

and is an estimator of the population correlation p. A test for zero correlation, i.e., Hy : p = 0, can be based
on the statistics

t=—,

Sy
1+|r|
or F = s
1 —|r|

where ¢ has a ¢ distribution with n — 2 degrees of freedom, and F has an F distribution withn —2 and n — 2
degrees of freedom. The Fisher z transform and standard error s, defined as

zztanh_lr,
11 1+r
= =10 .
2 B\T=r
1
R ey

are also used to test Hy : p = po, by calculating the unit normal deviate

_z=4o
Sz

V4

where £y = tanh™! o. The power is calculated using the critical value
Y p g




which leads to the transform z,. = tanh™! re and
ZIBZ(Z—ZC)VH—?)

then the sample size required to reject Hp : p = 0, when actually p is nonzero, can be calculated using

Zs+Zgn\>
n:(u) +3.
4o

For two samples, X of size ny and Y of size ny, where it is desired to test Hy : px = py, the appropriate Z
statistic is

where s, =

and the power and sample size are calculated from

lzx — 2yl
Zg= ——"2 = Zyp.
Sxy
Zon+7Z
andn=2( ol ﬁ) 3
x — 2y

Example 7a
A sample correlation coefficient Ry = 0.87 was calculated from a sample of size 12 and a population

correlation Ry = 0.5 was assumed, resulting in the following calculations.

Example 7a. Hy : p = 0,H; : |p| > 0(or > Rp)
Current « 0.05

Current 8 0.01

Correlation coefficient Ry  0.87

Correlation coefficient Ry 0.5

Sample size 12

95% confidence limits 0.5893, 0.9633
Two tailed t-test, p 0.0002

Power of this test 97.882%
NforH; :|p| >0 14 (R, given)
Nfor Hy : |p| > Ry 64 (R, arbitrary)

These results indicate that a 95% confidence interval for R; is (0.5893, 0.9633) and that the power for this
test was 97.882%. The sample size would have to be increased to 14 to obtain 99% power with the current
sample correlation coefficient R, while a sample size of 64 would be required to ensure 99% power in a test
for |p| > 0.5 before a sample is taken in order to calculate R;.

Example 7b
Two samples were analyzed to investigate equality of correlation coefficients and estimate the power and

sample size needed for specified power for hypothetical samples with the same correlation coefficients but
with equal hypothetical sample sizes.



Example 7b. Hy : p1 = p2, Hy : |p1 —p2| > 0

Current a 0.05

Current 8 0.2

Ri,Ni1,7Z; 0.78, 98, 1.045
Ry, N>, 7, 0.84, 95, 1.221
Two-tailed Z-test, p 0.2294

Power of this test 22.42%

For a Z-diff |z1 — 2| 0.1758

sample size N required 511

These results show that, for samples with R; estimated from a sample of size 98, and R, estimated from a
sample of size 95 the power was 22.42%. For a hypothetical sample with the same correlation coefficients
but estimated from samples with size N then, for 80% power, N would have to be at least 511.

8. Power calculations for a chi-square test

The calculations are based on the chi-square test for either a contingency table, or sets of observed and
expected frequencies. However, irrespective of whether the test is to be performed on a contingency table or
on samples of observed and expected frequencies, the null hypotheses can be stated in terms of k probabilities
as

H) : the probabilities are po(i) , fori =1,2,...,k,

H : the probabilities are p (i) , fori =1,2,...,k.

The power can then be estimated using the non-central chi-square distribution with non-centrality parameter
A and v degrees of freedom given by

A=nQ,
5 (poli) - p1(i)?

where Q = -
P po(i)

n = total sample size,

and v = k — 1 — no. of parameters estimated.

You can either input the Q values directly, or read in vectors of observed and expected frequencies. If you do
input frequencies f; > 0 they will be transformed internally into probabilities, i.e., the frequencies only have
to be positive integers as they are normalized to sum unity using

k
pi=fil ), fi
i=1

In the case of contingency table data with r rows and ¢ columns, the probabilities are calculated from the
marginals p;; = p(i) p(j) in the usual way, so you must input k = rc, and the number of parameters estimated
asr+c—2,sothatv=(r—1)(c—1).

Example 8

We demonstrate this procedure using the example of a weighted die discussed by William C Guenther in The
American Statistician 31 (1977) pp 83-85 using table look-up. Here the sum of squares was Q = 0.05 with a
sample size of n = 120 so that the degrees of freedom were A = 6 and 8 was calculated to be approximately
0.5671. Further calculations showed that a sample size of n > 330 was required to achieve g8 = 0.1, while the
results calculated by SIMF[T were as follows.

Example 8. Power analysis for a chi-square test Hy : po(i) = p1(i)
@=005 B=05761 Q=005 A1=6 x2=1259 N =128
a=0.05 F=01000 Q=005 A1=6 X2= 1259 N =352
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Theory

Experiments often generate random samples from a population so that parameters estimated from the samples
can be use to test hypotheses about the population parameters. So it is natural to investigate the relationship
between sample size and the absolute precision of the estimates, given the expectation E(X) and variance
o (X) of the random variable. For a single observation, i.e., n = 1, the Chebyshev inequality

P(|X—E(X)|<e)21—izx)

with € > 0, indicates that, for an unspecified distribution,

P (X - E(X)| < 4.50(X)) = 0.95,
and P (|1X — E(X)| < 100(X)) = 0.99,

but, for an assumed normal distribution,

P (X - E(X)| < 1.960(X)) > 0.95,
and P (|X — E(X)]| < 2.580(X)) > 0.99.

However, provided that E(X) # 0, it is more useful to formulate the Chebyshev inequality in terms of the
relative precision, that is, for 6 > 0

X -E(X) 1 o%(X)
(' E(X) <5)21‘§52(X)'

Now, for an unspecified distribution,

X -E(X) o(X)

P (‘ EX) <4.5 |E(X)|) > 0.95,
andP('X_E(X) <102 ) > 0.99,

E(X) [E(X)]

but, for an assumed normal distribution,

P (‘X_—E(X) < 1.96-Z&) ) > 0.95,

E(X) |E(X)]
and P (‘X_—E(X) <2587 ) > 0.99.

E(X) |E(X)]

So, for high precision, the coefficient of variation cv%

o (X)

cv% = 100
[E(X)]

must be as small as possible, while the signal-to-noise ratio SN (X)

|E(X)]
o(X)

SN(X) =

must be as large as possible. For instance, for the single measurement to be within 10% of the mean 95% of
the time requires SN > 45 for an arbitrary distribution, or SN > 20 for a normal distribution. A particularly
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valuable application of these results concerns the way that the signal-to-noise ratio of sample means depends
on the sample size n. From

X = %in,

1 n

) ZVar(X)
i=1

1
—*(X),
n

Var(X)

it follows that, for arbitrary distributions, the signal-to-noise ratio of the sample mean SN(X) is given by
SN(X) = VnSN(X), that is
E(X)

SN(X) = no-(X)'

This result, known as the law of 4/n, implies that the signal-to-noise ratio of the sample mean as an estimate
of the population mean increases as /7, so that the the relative error in estimating the mean decreases like

1/,

If f(x) is the density function for a random variable X, then the null and alternative hypotheses can sometimes
be expressed as

Hy: f(x) = fo(x)
Hi: f(x) = fi(x)

while the error sizes, given a critical region C, are
a = Py, (reject Hyp) (i.e., the Type I error)

- [ o ax
c
B = P, (accept Hp) (i.e., the Type II error)

=1 —Lfl(x)dx.

Usually e is referred to as the significance level, § is the operating characteristic, while 1 — 8 is the power,
frequently expressed as a percentage, i.e., 100(1 — )%, and these will both alter as the critical region is
changed.

Distribution of the mean as a function of sample size Significance Level and Power
2.25 4 n=32 1.00 - 1C=04

0.80 1

1.50 -

0.60 1
£ n=1 £
o o
n=8 0.40
0.75 4 3
n=2 0.20
0.00 ; : + . 0.00 " . ;
-2.00 -1.00 0.00 1.00 2.00 -1.00 0.00 1.00 2.00
X X

This figure illustrates the concepts of signal-to-noise ratio, significance level, and power. The family of curves
on the left are the probability density functions for the distribution of the sample mean X from a normal

12



distribution with mean y = 0 and variance o> = 1. The curves on the right illustrate the significance level a,
and operating characteristic 8 for the null and alternative hypotheses

H02/1=0,O'2=4
H, :p=1,0'2=4

for a test using the sample mean from a sample of size n = 25 from a normal distribution, with a critical point
C = 0.4. The significance level is the area under the curve for Hy to the right of the critical point, while the
operating characteristic is the area under the curve for H; to the left of the critical point. Clearly, increasing
the critical value C will decrease @ and increase 8, while increasing the sample size n will decrease both «
and S.

Often it is wished to predict power as a function of sample size, which can sometimes be done if distributions
Jfo(x) and fi(x) are assumed, necessary parameters are provided, the critical level is specified, and the test
procedure is defined. Essentially, given an implicit expression in k£ unknowns, this option solves for one given
the other k — 1, using iterative techniques. For instance, you might set & and 3, then calculate the sample size
n required, or you could input @ and » and estimate the power. Note that 1-tail tests can sometimes be selected
instead of 2-tail tests (e.g., by replacing Z, /> by Z, in the appropriate formula) and also be very careful to
make the correct choice for supplying proportions, half-widths, absolute differences, theoretical parameters
or sample estimates, etc.

A word of warning is required on the subject of calculating n required for a given power. The values of n
will usually prove to be very large, probably much larger than can be used. So, for pilot studies and typical
probing investigations, the sample sizes should be chosen according to cost, time, availability of materials,
past experience, and so on. Sample size calculations are only called for when Type II errors may have serious
consequences, as in clinical trials, so that large samples are justified.

Of course, the temptation to choose 1-tail instead of 2-tail tests, or use variance estimates that are too small,
in order to decrease the n values should be avoided, but it happens.
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