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The Poisson distribution is widely used to model the occurrence of events in time or space. It can be presented

as a limiting form of the binomial distribution, or more formally by way of the Poisson postulates defined

using %= (ℎ) for the probability of = events occurring in an interval of width ℎ in time (or space) as follows.

1. The number of events in nonoverlapping intervals of time are independent.

2. Probability does not change during the occurrence of the events.

3. Probability of 1 event in a small interval of time is approximately proportional to the size of the interval.

4. Probability of 1 event in a small interval of time is much larger than that for occurrence of multiple

events.

Definitions

A random integer variable - that can take all values ≥ 0 is said to obey the Poisson distribution with parameter

_ > 0 if the discrete probability mass function 5 (G) is

5 (G) = _G

G!
exp(−_)

with mean and variance both equal to _.

Example 1: Counting arbitrary independent events.

In the case of the binomial distribution with parameters # and ? where # is very large and ? very small, then

the following approximation becomes valid

(

#

:

)

?: (1 − ?)#−: ≈ (#?):
:!

exp(−#?) .

In other words, the Poisson distribution with one parameter _ = #? becomes a good approximation to the

binomial distribution with two parameters # and ? when # → ∞ and ? → 0 but #? remains finite.

Example 2: Counting independent events as a function of time.

Again, for a process with an average rate of ` events per unit of time, then the probability of : events in time

interval C is

%: (C) =
(`C):
:!

exp(−`C),

which defines a Poisson process with parameter _ = `C.

Plotting Poisson probabilities

The next plots illustrate how the distribution moves to the right as _ increses.
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Simfit program binomial

Choose [A/Z] from the main SimFIT menu and open program binomial when the following Poisson options

will be available.

Input: Poisson x ... calculate pmf(x)
Input: Poisson x ... calculate cdf(x)
Input: Poisson % ... calculate x-critical
Input: Poisson x, estimate lambda and con.lim.
Input: a sample, test if distributed P(lambda)
Calculate: power and sample size
Calculate: change confidence limits (now 95%)
Calculate: using the non-central beta distribution

Choosing to analyze test file poisson.tf1 for consistency with a Poisson distribution using a dispersion

test, and also a Fisher exact test first warns that Bonferroni = = 2 then outputs these results.

Sample size 40

Sample total 44

Sample sum of squares 80

Sample mean 1.1

Lower 95% confidence limit 0.7993

Upper 95% confidence limit 1.477

Sample variance 0.8103

Dispersion (�) 28.73

%(j2 ≥ �) 0.88632

Degrees of freedom 39

Fisher exact Probability 0.91999
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Note that the Bonferroni = = 2 declaration is a warning not to use both test statistics uncritically. Actually

SimFIT often lists the results of several tests at the same time, but this is only for convenience, and users

should always take note if a Bonferroni correction is required.

It is frequently required to confirm that it is sensible to use the Poisson distribution, with all the associated

assumptions that are involved, as a model when analyzing a given data set. The dispersion test examines if

there is any evidence that the dispersion �

� =

=
∑

8=1

(G8 − Ḡ )2/Ḡ

is significantly greater than 1 (indicating over-dispersion, i.e. clumping or clustering) or significantly less 1

(indicating under-dispersion, i.e. too evenly scattered), while the Fisher exact test, which can only be done

with small samples, estimates the probability of the sample based on all partitions consistent with the sample

size, mean, and total. In this case there seems no evidence to reject the null hypothesis

�0: the sample is consistent with a Poisson distribution.

The following plot compares the observed and expected frequencies in order to visualize the goodness of fit.
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Note the use of a Poisson distribution to assess the significance of :, a small number of counts for one outcome,

out of total number number = > :, by the rule of thumb of taking a 95% confidence range for the population

parameter  as : − 2
√
: ≤  ≤ : + 2

√
: .
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Simfit program chisqd

Radioactive decay is an exponential process but, during a sufficiently small time interval where the decay rate

can be regarded as approximately constant, particle emission follows a Poissson distribution. In a famous

experiment Rutherford counted :, the number of particles emitted in 2608 intervals of 7.5 seconds to obtain

the following results, where the expected values were calculated using _ = 10094/2608 = 3.87.

k Observed Expected

0 57 54.399

1 203 210.523

2 383 407.361

3 525 525.496

4 532 508.418

5 408 393.515

6 273 253.817

7 139 140.325

8 45 67.882

9 27 29.189

≥ 10 16 17.075

The SimFIT program chisqd was used to analyze the observed and expected frequencies to obtain these

results.

Number of partitions (bins) 11

Number of degrees of freedom 9

Chi-square test statistic � 12.88

%(j2 ≥ �) 0.1679 Consider accepting �0

Upper tail 5% critical point 16.92

Upper tail 1% critical point 21.67

and the following bar chart.
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