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The Pearson product-moment method is used to estimate the amount of linear correlation between paired

columns, say - and . , of a = by < data matrix where it is assumed that the values are of the continuous type

from a normal bivariate distribution, and not integers such as frequencies or categorical variables. The null

hypothesis is that - and . are independent, i.e. have zero covariance, that is

�0 : - and . are from a bivariate normal distribution with d = 0.

Example 1

From the SimFIT main menu choose [Statistics], [Multivariate], [Correlation], then analyze g02baf.tf1,

the test file provided, using the Pearson product-moment technique. This file contains the following 5 by 3

data matrix

2.0 3.0 3.0

4.0 6.0 4.0

9.0 9.0 0.0

0.0 12.0 2.0

12.0 -1.0 5.0

and analysis leads first to the correlation coefficients and corresponding ? values

Matrix �, Pearson correlation results

Upper triangle: A

Lower triangle: corresponding two-tail ? values

..... -0.5704 0.1670

0.3153 ..... -0.7486

0.7883 0.1455 .....

which is in the following simplified but comprehensive format

� =



· · · A12 A13

?12 · · · A23

?13 ?23 · · ·


where the values 08 9 for matrix � in the table are interpreted as now described. For 9 > 8 in the strict upper

triangle, then 08 9 = A8 9 = A 98 are the correlation coefficients, while for 8 > 9 in the strict lower triangle

08 9 = ?8 9 = ? 98 are the corresponding two-tail probabilities. In other words, since A8 9 = A 98 , ?8 9 = ? 98 , while

A88 = 1, there will only be <(< − 1)/2 independent correlations coefficients, and so the diagonal A88 = 1

are shown as dots. For instance A12 = −0.5704 is the correlation coefficient for columns 1 and 2, while

?12 = 0.3153 is the two-tail ? value for this correlation coefficient. The table indicates that none of the

correlations are significant in this case, that is, the probability of obtaining such pairwise linearity in a random

swarm of points from a multivariate normal distribution is not low.

This is then followed by a likelihood ratio test that the full correlation matrix ' = A8 9 for the data matrix is the

identity matrix with the following results.

Test for absence of any significant correlations

�0: correlation matrix is the identity matrix

Determinant 0.2290

Test statistic ()() 3.194

Degrees of freedom 3

%(j2 ≥ )() 0.3627
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To test the hypothesis of no significant correlations, i.e.

�0: the covariance matrix is diagonal, or equivalently

�0: the correlation matrix ' is the identity matrix, the likelihood ratio test statistic )(, i.e.

−2 log_ = −(= − (2< + 11)/6) log |' |

is used, where |' | is the determinant of the full correlation matrix (not the previous � matrix) which has the

asymptotic chi-square distribution with <(< − 1)/2 degrees of freedom.

Example 2

This example illustrates the analysis of SimFIT test file cluster.tf1which contains the following data set

1.0 4.0 2.0 11.0 6.0 4.0 3.0 9.0

8.0 5.0 1.0 14.0 19.0 7.0 13.0 21.0

3.0 1.0 3.0 1.0 3.0 6.0 23.0 37.0

9.0 0.0 7.0 7.0 1.0 2.0 21.0 2.0

7.0 12.0 9.0 5.0 14.0 9.0 12.0 14.0

2.0 13.0 15.0 2.0 23.0 6.0 34.0 8.0

11.0 7.0 2.0 1.0 4.0 17.0 11.0 4.0

6.0 3.0 7.0 12.0 11.0 8.0 8.0 0.0

8.0 21.0 1.0 10.0 31.0 9.0 3.0 18.0

19.0 14.0 12.0 9.0 16.0 10.0 0.0 27.0

17.0 18.0 10.0 6.0 19.0 14.0 1.0 24.0

15.0 21.0 8.0 7.0 17.0 12.0 4.0 22.0

leading to this correlation and probability matrix

Upper triangle = A, Lower = corresponding two-tail ? values

..... 0.5295 0.2874 0.0662 0.1941 0.6255 -0.5876 0.3010

0.0766 ..... 0.3285 -0.0219 0.7930 0.5338 -0.4230 0.3006

0.3650 0.2971 ..... -0.2833 0.2165 0.0264 0.2314 -0.0304

0.8381 0.9460 0.3723 ..... 0.2787 -0.2837 -0.5238 -0.1166

0.5455 0.0021 0.4992 0.3804 ..... 0.2029 -0.1949 0.2144

0.0296 0.0738 0.9351 0.3715 0.5271 ..... -0.4532 0.1360

0.0445 0.1706 0.4694 0.0805 0.5439 0.1390 ..... -0.1696

0.3418 0.3424 0.9253 0.7181 0.5035 0.6735 0.5983 .....

followed by the results displayed next for a likelihood ratio test.

Test for absence of any significant correlations

�0: correlation matrix is the identity matrix

Determinant 0.002476

Test statistic ()() 45.01

Degrees of freedom 28

%(j2 ≥ )() 0.0220 Reject �0 at 5% significance level

From the A values in the strict upper triangle, the ? values in the strict lower triangle, and the chi-square test

there are linear correlations, and in such cases it would be usual to select pairs of columns for closer analysis.

Analyzing selected pairs of columns

For example, the results for analyzing columns 1 and 2 will be considered.

For the next analysis: - is column 1, . is column 2

Linear regression: H(G) = � + � ∗ G, G(H) = � + � ∗ H
Sample size = 12

For X mean = 8.8333 std. dev. = 5.7814 var. = 33.424

For Y mean = 9.9167 std. dev. = 7.5973 var. = 57.720
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First the parameter estimates for linear regression are calculated, where Estimate/Standard Error are C values

to test for parameters significantly different from zero, Ppmcc is the Pearson product-moment correlation

coefficient, and the Fisher I value is used to estimate a 95% confidence region for d. In this type of table

? ≤ 0.05 would be required to suggest a nonzero parameter at the 5% significance level.

Parameter Estimate Standard Error Estimate/Standard Error ?

� (slope) 0.69583 0.35252 1.9739 0.0766

� (const) 3.7702 3.6748 1.0260 0.3291

A (Ppmcc) 0.52951 0.26826 1.9739 0.0766

A2 0.28038

H-variation due to G = 28.04%

I(Fisher) 0.58946

Note: I = (1/2) log[(1 + A)/(1 − A)]
A2

= � ∗ �, and C = A ∗
√
[(= − 2)/(1 − A2)] = Estimate/Standard Error for � and �

The Pearson product-moment correlation coefficient A estimates d and

95% confidence limits using I are −0.0771 ≤ d ≤ 0.8500

Then this analysis of variance (ANOVA) table is displayed, where the � value is used to test for a significant

regression slope. In this type of table ? ≤ 0.05 would be required to suggest a nonzero regression slope at

the 5% significance level.

Source Sum of squares =3> 5 Mean square �-value ?

due to regression 178.02 1 178.02 3.8962 0.0766

about regression 456.90 10 45.690

total 634.92 11

Conclusions:

� is not significantly different from zero (? > 0.05)

� is not significantly different from zero (? > 0.05)

The two best-fit unweighted regression lines are:

H(G) = 3.7702 + 0.69583G, and G(H) = 4.8375 + 0.40294H

Various options for plotting follow, and the theory necessary to interpret such correlation tests and visual

displays will be presented next.

Theory

Given any set of = nonsingular (G8 , H8) pairs, a correlation coefficient A can be calculated as

A =

=∑

8=1

(G8 − Ḡ) (H8 − H̄)
√√

=∑

8=1

(G8 − Ḡ)2

=∑

8=1

(H8 − H̄)2

where −1 ≤ A ≤ 1 and, using 1GH for the slope of the regression of - on . , and 1HG for the slope of the

regression of . on -

A2
= 1HG1GH .

However, only when - is normally distributed given . , and . is normally distributed given - can simple

statistical tests be used for significant linear correlation. For instance, when the (G8 , H8) pairs are from such a

bivariate normal distribution, the statistic

C = A

√
= − 2

1 − A2

has a Student’s C-distribution with = − 2 degrees of freedom. It is also the C value required to test for nonzero

slope in the regression of . on - , and - on . , for which a ? value can be calculated.
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The next figure illustrates how the elliptical contours of constant probability for a bivariate normal distribution

are aligned with the - and . axes when - and . are uncorrelated, i.e., d = 0 but are inclined otherwise. In

this example `- = `. = 0 and fG = f. = 1, but in the upper figure d = 0, while in the lower figure d = 0.9.

The Pearson product-moment correlation coefficient A is an estimator of d, and it can can be used to test for

independence of - and . .
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The SimFIT product-moment correlation procedure can be used when you have a data matrix - consisting of

< > 1 columns of = > 1 measurements (not counts or categorical data) and wish to test for pairwise linear

correlations, i.e., where pairs of columns can be regarded as consistent with a bivariate normal distribution.

In matrix notation, the relationships between such a = by < data matrix - , the same matrix . after centering

by subtracting each column mean from the corresponding column, the sum of squares and products matrix �,

the covariance matrix (, the correlation matrix ', and the diagonal matrix � of standard deviations are

� = .).

( =

1

= − 1
�

� = diag(√B11,
√
B22, . . . ,

√
B<<)

' = �−1(�−1

( = �'�.

So, for all pairs of columns, the sample correlation coefficients A 9 : are given by

A 9 : =

B 9 :
√
B 9 9 B::

,

where B 9 : =

1

= − 1

=∑

8=1

(G8 9 − Ḡ 9 ) (G8: − Ḡ: ),
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and the corresponding C 9 : values and significance levels ? 9 : are calculated then output in matrix format with

the correlations as a strict upper triangular matrix, and the significance levels as a strict lower triangular

matrix.

Plotting lines on correlation diagrams

You can plot either both unweighted regression lines, the unweighted reduced major axis line,or the unweighted

major axis line on such scattergrams and the difference between these types will now be outlined.

For n pairs (G8 , H8) with mean G = Ḡ and mean H = H̄, the variances and covariance required are

(GG =

1

= − 1

=∑

8=1

(G8 − Ḡ)2

(HH =

1

= − 1

=∑

8=1

(H8 − H̄)2

(GH =

1

= − 1

=∑

8=1

(G8 − Ḡ) (H8 − H̄) .

Also, for an arbitrary point (G8 , H8) and a straight line defined by H = 0 + 1G the squares of the vertical,

horizontal, and orthogonal (i.e. perpendicular) distances, E2
8
, ℎ2

8
, and >2

8
between the point and the line are

E2
8 = [H8 − (0 + 1G8)]2

ℎ2
8 = E2

8 /12

>2
8 = E2

8 /(1 + 12) .

Ordinary least squares

If G is regarded as an exact variable free from random variation or measurement error while H has random

variation, then the best fit line from minimizing the sum of E2
8

is

H1 (G) = V̂1G + [H̄ − V̂1Ḡ]

where V̂1 = (GH/(GG. However, if H is regarded as an exact variable while G has random variation, then the

best fit line for G as a function of H from minimizing the sum of ℎ2
8

would be

G2 (H) = (1/V̂2)H + [Ḡ − (1/V̂2) H̄]

where V̂2 = (HH/(GH or, rearranging to express the line as H2 (G),

H2 (G) = V̂2G + [H̄ − V̂2Ḡ],

emphasizing that the slope of the regression line for H2 (G) is the reciprocal of the slope for G2 (H). Since

neither of these two best fit lines can be regarded as satisfactory, SimFIT plots both lines such that H1 (G)
covers the range of G values while G2 (H) covers the range of H values. However these two lines intersect at

(Ḡ, H̄) and, from the fact that the ratio of slopes equals the square of the correlation coefficient, that is,

A2
= V̂1/V̂2,

then two best fit lines with similar slopes suggests strong linear correlation, whereas one line almost parallel to

the G axis and the other almost parallel to the H axis would indicate negligible linear correlation. For instance,
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if there is no linear correlation between G and H, then the slope of the regression line for H(G) i.e. V̂1 would

be zero, as would be the slope of the regression line for G(H) i.e. 1/V̂2 leading to A2
= 0. Conversely strong

linear correlation would lead to V̂1 = V̂2 and A2
= 1.

The major axis and reduced major axis lines to be discussed next are attempts to get round the necessity to

plot two lines and just have one best fit line intermediate between these two lines to represent the correlation.

The major axis line

Here it is the sum of >2
8
, the squares of the orthogonal distances between the points and the best fit line, that

is minimized to yield the slope as

V̂3 =

1

2

(
V̂2 − (1/V̂1) + W

√
4 + ( V̂2 − (1/V̂1))2

)

where W = 1 if (GH > 0, W = 0 if (GH = 0, and W = −1 if (GH < 0, so that the major axis line is

H3 (G) = V̂3G + [H̄ − V̂3Ḡ] .

Actually V̂3 is the slope of the first principal component axis and so it points in the direction of maximum

variability.

The reduced major axis line

Instead of minimizing the sum of squares of the vertical distances E2
8
, or horizontal distances ℎ2

8
, it is possible

to minimize the sum of the areas of the triangles formed by the E8 , ℎ8 with the best fit line as hypotenuse, i.e.

E8ℎ8/2, to obtain the reduced major axis line as

H4 (G) = V̂4G + [H̄ − V̂4Ḡ] .

Here

V̂4 = W

√
(HH/(GG

= W

√
V̂1 V̂2

so that the slope of the reduced major axis line is the geometric mean of the slopes of the regression of H on G

and G on H.

Recommendations for plotting lines on scattergrams

1. Plotting both both simple regression lines is the most useful and least controversial. Such lines tending

to coincidence indicate strong linear correlation, while lines approaching perpendicularity indicate

absence of significant linear correlation.

2. If a single line must be plotted to summarize the overall correlation it should be the reduced major axis

line, as this allows for uncertainty in both variables and is not so controversial as the major axis line,

which requires both axes to have similar units, as in allometry.

3. It should not be just one of the simple regression lines, since the line plotted must be independent of

which variable is regarded as G and which is regarded as H.
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Plotting bivariate confidence ellipses: basic theory

For a ?-variate normal sample of size = with mean Ḡ and variance matrix estimate (, the region

%

{
(Ḡ − `)) (−1(Ḡ − `) ≤ ?(= − 1)

=(= − ?) �
U
?,=−?

}
≤ 1 − U

can be regarded as a 100(1 − U)% confidence region for `. The next figure illustrates this for columns 1 and

2 of cluster.tf1 discussed previously. Alternatively, the region satisfying

%

{
(G − Ḡ)) (−1(G − Ḡ) ≤ ?(=2 − 1)

=(= − ?) �
U
?,=−?

}
≤ 1 − U

can be interpreted as a region that with probability 1 − U would contain another independent observation G,

as shown for the swarm of points in the next figure.
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The ` confidence region contracts with increasing =, limiting application to small samples, but the new

observation ellipse does not,making it useful for visualizing if data do represent a bivariate normal distribution,

while inclination of the principal axes away from parallel with the plot axes demonstrates linear correlation.

This technique is only justified if the data are from a bivariate normal distribution and are independent of the

variables in the other columns, as indicated by the correlation matrix.
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Plotting bivariate confidence ellipses: regions

Often a two dimensional swarm of points results from projecting data that have been partitioned into groups

into a subspace of lower dimension in order to visualize the distances between putative groups, e.g., after

principal components analysis or similar. If the projections are approximately bivariate normal then confidence

ellipses can be added, as in the figure below.
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The following steps were used to create this figure and can be easily adapted for any number of sets of two

dimensional group coordinates.

1. For each group a file of values for G and H coordinates in the projected space was saved.

2. Each file was analyzed for correlation using the SimFIT correlation analysis procedure.

3. After each correlation analysis, the option to create a 95% confidence ellipse for the data was selected,

and the ellipse coordinates were saved to file.

4. A library file was created with the ellipse coordinates as the first three files, and the groups data files as

the next three files.

5. The library file was read into simplot, then colors and symbols were chosen.

Note that, because the ellipse coordinates are read in as the first coordinates to be plotted, the option to plot

lines as closed polygons can be used to represent the confidence ellipses as colored background regions.
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