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Multilinear regression is resorted to in situations where the value of a variable. is believed to depend on one

or more fixed variables - , but it has not proved possible to develop a mathematical model based on scientific

principles. Usually the variation in . due to experimental error or sampling variation is considerably greater

than the variation in - , and in addition variables - are assumed to be uncorrelated, so that . can be regarded

as a dependent variable, and - as independent variables.

From the main SimFIT menu choose the [A/Z] option, open program linfit, choose [multilinear regression]

using least squares, then browse the default test file linfit.tf2which contains the following data set.

G1 G2 G3 G4 H B

7.00 26.0 6.00 60.0 78.50 1

1.00 29.0 15.0 52.0 74.30 1

11.0 56.0 8.00 20.0 104.3 1

11.0 31.0 8.00 47.0 87.60 1

7.00 52.0 6.00 33.0 95.90 1

11.0 55.0 9.00 22.0 109.2 1

3.00 71.0 17.0 6.00 102.7 1

1.00 31.0 22.0 44.0 72.50 1

2.00 54.0 18.0 22.0 93.10 1

21.0 47.0 4.00 26.0 115.9 1

1.00 40.0 23.0 34.0 83.80 1

11.0 66.0 9.00 12.0 113.3 1

10.0 68.0 8.00 12.0 109.4 1

The columns have the following meanings.

1. Column 1: % tricalcium aluminate

2. Column 2: % tricalcium silicate

3. Column 3: % tetracalcium alumino ferrite

4. Column 4: % dicalcium silicate

5. Column 5: Heat evolved in calories per gram of cement

6. Column 5: weighting factor.

Note that the weighting factor B must be supplied as the last column so that SimFIT knows how many variables

are present. It is usual to set all the values of B to one as in the above example, but if accurate estimates for

the standard deviations of . are known these could be used so that weighted least squares fitting can be done.

To conclude: if the data set supplied has : columns, then it will be presumed that there are : − 2 independent

variables - in columns 1, 2, . . . , : − 2, the dependent variable. is in column : − 1, and the weighting factors

are in column :. If these are all equal to one then unweighted regression will be carried out, but otherwise

the values B8 will be assumed to be standard errors for the H8 and weighted regression will be performed using

F8 = 1/B2

8
. Setting B = 0 suppresses corresponding rows of data but this is not recommended.

Analysis of these data then leads to the following tables of results using this model

H = V0G0 + V1G1 + V2G2 + · · · + V:−2G:−2

where G0 = 1 if V0 is to be estimated and a constant term is required, or V0 = 0 otherwise.
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Table 1: Parameter estimates

Number of parameters: 5, Rank: 5, Number of points: 13, Degrees of freedom: 8

Residual-((&: 47.864, Mallows’ �?: 5.0, '2: 0.9824

Parameter Value Lower95%cl Upper95%cl Std. Error p

V0 (Constant) 62.405 -99.179 223.99 70.071 0.3991 ***

V1 1.5511 -0.16634 3.2685 0.74477 0.0708 *

V2 0.51017 -1.1589 2.1792 0.72379 0.5009 ***

V3 0.10191 -1.6385 1.8423 0.75471 0.8959 ***

V4 -0.14406 -1.7791 1.4910 0.70905 0.8441 ***

The stars shown against the parameter estimates in Table 1 are displayed when the parameter estimates are not

significantly different from zero, so this table indicates that none of the five parameters were well determined.

Table 2: Residuals

Number H-value Theory Residual Leverage Studentized

1 78.500 78.495 0.0047604 0.55028 0.0029021

2 74.300 72.789 1.5112 0.33324 0.75662

3 104.30 105.97 -1.6709 0.57694 -1.0503

4 87.600 89.327 -1.7271 0.29524 -0.84108

5 95.900 95.649 0.25076 0.35760 0.12791

6 109.20 105.27 3.9254 0.12416 1.7148

7 102.70 104.15 -1.4487 0.36708 -0.74445

8 72.500 75.675 -3.1750 0.40854 -1.6878

9 93.100 91.722 1.3783 0.29431 0.67080

10 115.90 115.62 0.28155 0.70040 0.21029

11 83.800 81.809 1.9910 0.42551 1.0739

12 113.30 112.33 0.97299 0.26298 0.46335

13 109.40 111.69 -2.2943 0.30372 -1.1241

However Table 2 does show a good scatter of residuals about zero with no particular bias or runs indicated.

Table 3: Analysis of Variance

Source NDOF ((& Mean ((& �-value ?

Total 12 2715.8

Regression 4 2667.9 666.97 111.48 0.0000

Residual 8 47.864 5.9830

Table 3 is used in much the same way as for simple linear regression and is defined using Ĥ8 for the best-fit

model as follows.

((&C>C0; =

=∑

8=1

(H8 − H̄)2

((&A46A4BB8>= =

=∑

8=1

( Ĥ8 − H̄)2

((&A4B83D0; =

=∑

8=1

(H8 − Ĥ8)2

The � value is the ratio of mean regression ((& to mean residual ((&, and the significance level ? is used

to test the null hypothesis

�0 : V8 = 0 for all 8

against the alternative hypothesis

�� : V8 ≠ 0 for one or more 8.
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Clearly it must be concluded that, although none of the individual parameters were well determined as judged

by the C tests on the ratios of estimates to standard errors, there is a significant overall reduction in the sum of

squares by some combinations of variables.

At this point it is customary to see if a satisfactory regression could be achieved with fewer parameters, and a

variety of techniques are available to perform such subset regression to find the best explanation of the data in

terms of the smallest number of variables. When this is done systematically with large data sets it generates an

enormous amount of analysis, which is not normally justified because usually the experimentalist would have

a good idea which subsets of variables to try. This is fairly easy to do interactively in SimFIT by suppressing

variables until a fit is achieved where all the parameters are significantly different from zero with the two-tail

C test, and the fit is justified by the �? values.

The way to interpret the Mallows’ �? values should be explained. Program linfit first fits a full model and the

results from this analysis are saved. This fit is assumed to be the best possible for estimating the variance and

the effect of suppressing any variable can then be seen by comparing the effect on the �? value. From fitting

the full model the �? value will be equal to the total number of parameters and subsequent subset regressions

can be judged by the ratio of the �? values to the number of parameters, where values much greater than the

number of parameters estimated suggest a deficient model.

The next table summarizes the results from fitting a constant only, followed by fitting subsets of the additional

1, 2, and 3 variables.

Table 4: �? values

Variables �? Parameters

Constant only 442.9 1

+1,+2,+3,+4 202.5, 142.5, 315.2, 138.7 2

+12, +13, +14 2.7, 198.1, 5.5 3

+23, +24, +34 62.4, 138.2, 22.4 3

+123, +124, +134, +234 3.0, 3.0, 3.5, 7.3 4

+1234 5.0 5

In Table 4 the first column indicates the subscripts of the variables added to the constant term, column 2 holds

the corresponding�? variables, while column 3 contains the total number of parameters varied including the

constant term. Values where �? divided by the number of parameters in the regression are less than or equal

to one are highlighted, and it is perfectly clear that the combination of a constant plus variables 1 and 2 seems

to be strongly recommended.

Here, for example, are the results from suppressing variables 3 and 4.

Table 1A: parameter estimates with variables 3 and 4 suppressed

Number of parameters: 3, Rank: 3, Number of points: 13, Degrees of freedom: 10

Residual-((&: 57.904, Mallows’ �?: 2.6782, '2: 0.9787

Parameter Value Lower95%cl Upper95%cl Std. Error ?

V0 (Constant) 52.577 47.483 57.671 2.2862 0.0000

V1 1.4683 1.1980 1.7386 0.12130 0.0000

V2 0.66225 0.56008 0.76442 0.045855 0.0000
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Table 2A: Residuals with variables 3 and 4 suppressed

Number H-value Theory Residual Leverage Studentized

1 78.500 80.074 -1.5740 0.25119 -0.75590

2 74.300 73.251 1.0491 0.26189 0.50745

3 104.30 105.81 -1.5147 0.11890 -0.67061

4 87.600 89.258 -1.6585 0.24225 -0.79175

5 95.900 97.293 -1.3925 0.83616 -0.60451

6 109.20 105.15 4.0475 0.11512 1.7881

7 102.70 104.00 -1.3021 0.36180 -0.67732

8 72.500 74.575 -2.0754 0.24119 -0.99011

9 93.100 91.275 1.8245 0.17915 0.83687

10 115.90 114.54 1.3625 0.55002 0.84405

11 83.800 80.536 3.2643 0.18402 1.5018

12 113.30 112.44 0.86276 0.19666 0.40002

13 109.40 112.29 -2.8934 0.21420 -1.3564

Table 3A: Analysis of Variance with variables 3 and 4 suppressed

Source NDOF ((& Mean ((& �-value ?

Total 12 2715.8

Regression 2 2657.9 1328.9 229.50 0.0000

Residual 10 57.904 5.7904

Comparing the results with all variables present to those with variables 3 and 4 suppressed leads to the

following conclusions.

1. Table 1 compared to Table 1A

With all variables present no parameters were well-determined by a two-tail C test, but with variables 3

and 4 suppressed all parameters were well-determined.

2. Table 2 compared to Table 2A

There are no differences to indicate a poorer fit with the simpler model.

3. Table 3 compared to Table 3A

There are no differences to indicate a poorer fit with the simpler model.

Sometimes it is useful to evaluate the best-fit model and, as variables 3 and 4 do not seem to be making an

important contributionprediction, this will be demonstratedusing the model with variables 3 and 4 suppressed.

A vector of default values equal to 1 is supplied and this can be edited interactively to change the variables as

follows with variable 2.

Using the best-fit model to predict H given G

G0 = 1.0, coefficient = 52.577 (the constant term)

G1 = 1.0, coefficient = 1.4683

G2 = 1.0, coefficient = 0.66225

H(G) = 54.708

G0 = 1.0, coefficient = 52.577 (the constant term)

G1 = 1.0, coefficient = 1.4683

G2 = 5.0, coefficient = 0.66225

H(G) = 57.357

Of course, users cannot alter the value of G0 which is always equal to 1, and included or excluded from the

regression depending on whether a constant (i.e. intercept) term is included.

Note that, for more advanced analysis of such data sets (including prediction and inverse prediction) the

SimFIT partial least squares procedure should be used.
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Theory

Program linfit fits a multilinear model in the form

H = V0G0 + V1G1 + V2G2 + · · · + V<G<,

where G0 = 1, but you can choose interactively whether or not to include a constant term V0, you can decide

which variables are to be included, and you can use a weighting scheme if this is required. For each regression

sub-set, you can observe the parameter estimates and standard errors, '-squared, Mallows �? , and �#$+�

table, to help you decide which combinations of variables are the most significant. Unlike nonlinear regression,

multilinear regression, is based on the assumptions

. = -V + n,

E(n) = 0,

Var(n) = f2�,

where - is the over-determined data matrix (e.g., the 13 rows and first 4 columns of test file linfit.tf2),.

is the observation vector (e.g., column 5 of test file linfit.tf2), V is the parameter vector and n is the error

vector. This allows us to introduce the hat matrix

� = - (-) -)−1-) ,

then define the leverages ℎ88 , which can be used to asses influence, and the studentized residuals

'8 =
A8

f̂
√

1 − ℎ88
,

which may offer some advantages over ordinary residuals A8 for goodness of fit assessment from residuals

plots. In the event of weighting being required, . , - and n above are simply replaced by ,
1

2. , ,
1

2 - , and

,
1

2 n , where , is the diagonal weighting matrix.

Note that examining parameter reliability using the C test as in Tables 1 and 1A and also model discrimination

analysis using the � test is applicable for nested linear models as fitted by SimFIT program linfit. So several

additional options are provide by linfit to perform such further investigations. For instance, to perform an �

test for excess variance note that, if ,((&1 with <1 parameters is the previous (possibly deficient) model,

while ,((&2 with <2 parameters is the current (possibly superior) model, so that ,((&1 > ,((&2, and

<1 < <2, then

� =
(,((&1 −,((&2)/(<2 − <1)

,((&2/(# − <2)
should be � distributed with <2 − <1 and # − <2 degrees of freedom, and the � test for excess variance can

be used. Alternatively, if ,((&2/(# − <2) is equivalent to the true variance, i.e., model 2 is equivalent to

the true model, the Mallows’ �? statistic

�? =
,((&1

,((&2/(# − <2)
− (# − 2<1)

can be considered. This has expectation <1 if the previous model is sufficient, so values greater than <1, that

is �?/<1 > 1, indicate that the current model should be preferred over the previous one. In the linfit results

tables �? values refer to the full model being fitted as the reference case.

Finally it should be noted that, for successful analysis of data, the units used to provide values of - should

be such that the numerical values are of similar size. If categorical data are mixed with continuous data, or

the data set is ill-conditioned, or less than full rank for any reason, a linear model will still be fitted using the

singular value decomposition. However, in such cases linfit will issue a warning that the estimated parameters

are not independent, and the data should be re-scaled, or the number or variables should be reduced until

the columns of the - matrix are independent, i.e. the rank is at least as large as the number of parameters

estimated.
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