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Curve and surface fitting aims to fit mathematical models described by equations or systems of equations to

observations in order to estimate parameters that can be used to interpret the experimental data.

An example to illustrate the advantages of curve fitting

As a typical example consider the results from using SimFIT program hlfit to fit the dose response data in

test file hlfit.tf4 to first one binding site and then to two binding sites, where the aim is to decide if the

assumption of two sites can be justified on statistical grounds and, if so, to estimate the parameters.

The model fitted is defined as

5 (G) =
�1G

1 +  01G
+

�2G

1 +  02G
+ �

but with � = 0, and hlfit displays the following plots to illustrate that fitting two sites gives significant

improvement over fitting one site, and hlfit also provides convincing evidence of this by showing how the

overall fit results as the sum of the distinct contributions from the low and high affinity sites.
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Not only does the evidence support the hypothesis that there are two classes of binding sites of differing

affinity and activity, but this is substantiated by the following results table for estimated parameters, their

standard errors, 95% confidence ranges, and significance levels.

For the best-fit 2:2 High-Low affinity sites model using program HLFIT

Number Parameter Value Std.error Lower95%cl Upper95%cl p

1 �1 0.91175 0.2451 0.4079 1.416 0.0010

2 �2 1.0625 0.3055 0.4344 1.691 0.0018

3  01 0.97501 0.6857 -0.4345 2.385 0.1669 *

4  02 8.5829 2.004 4.463 12.70 0.0002

Apparent +<0G (i.e. �1 + �2 + · · · + �=) = 1.9742

Apparent  < (i.e. G0 where 5 (G0) − � = +<0G/2) = 0.31272

Here parameters �1 and �2 are proportional to the responses from two populations of binding sites with

binding constants  01 and  02, and the apparent overall response and half saturation point are calculated by

numerical techniques, which removes the subjective element involved in data interpretation.

A brief survey of the nomenclature used and procedures provided by SimFIT follows.
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The Data

In the simplest case an experimentalist would have # pairs of observations G(8), H(8), possibly together with

B(8), the estimated standard deviations of H(8) to use as weights F(8) = 1/B(8)2, as follows

- = G(1), G(2), G(3), . . . , G(#)

. = H(1), H(2), G(3), . . . , H(#)

( = B(1), B(2), B(3), . . . , B(#)

and there could be three possibilities.

1. Case 1

Values of G(8) are known with high accuracy, as fixed by experiment, and the error distribution of H(8)

is assumed to be one of constant variance. In this case it is usual to set all B(8) = 1.

2. Case 2

Values of G(8) are known with high accuracy, as fixed by experiment, and the error distribution of H(8)

is assumed to vary as a function of the experimental conditions, so values for B(8) are required.

3. Case 3

Values of G(8) and H(8) would both be measured, i.e. there could be error or variation in - and . .

Of course there are endless variations on this simple scheme, for instance, - and/or . could be multidimen-

sional, and the model might have to be defined as an implicit function, Φ(G, H) = 0, or require numerical

integration of a system of nonlinear differential equations.

The weighting

It is important to realize that all curve fitting is actually weighted curve fitting. The only issue is whether the

weighting is assumed to have a defined form, to be estimated from the sample, or to be estimated independently.

• Case 1

This is the simplest and most used technique because it assumes that - is an independent variable and

. values result from a random error n with constant variance added to an exact function value, i.e.

H(8) = 5 (G(8)) + n (8) .

With this approach no separate attempt is made to estimate the variance of . as the sample variance of

. is used. It has the great attraction of simplicity but there are two things to observe:

a) This assumption is almost never true as, in general, error variance is an increasing function |. |.

b) It diminishes the importance of low |. | values so that the resulting fit is dominated by large |. | values.

• Case 2

This is more realistic in that it accepts that the variance of . is not constant and attempts to remedy

this by providing or calculating a set of weighting factors B(8). However, if the B(8) are inaccurate, the

resulting fit can be even more biased than with Case 1. In particular, using a weighting scheme based

simply on the experimental. values or the estimated function values can lead to a situation the reverse

of Case 1, where the fit can be dominated by small values of the observations.

• Case 3

This requires that the variance-covariance matrix �+ (-,. ) be estimated, and sample estimates for

variance-covariance matrices are notoriously unreliable. For this reason this approach is often reserved

for the analysis of very large samples with very simple model equations, together with prior knowledge

of the covariance structure.

The model
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The model to be fitted will involve parameters that have to be estimated, e.g. a parameter vector Θ as in

Θ = \1, \2, \3, . . . , \<

and models are usually described as linear or nonlinear.

Linear models

Linear models are of the form 5 (Θ, G) = \1 51(G) + \2 52(G) + \3 53 (G) + · · · + \< 5<(G) and examples could be

A simple straight line: 5 (\, G) = \1 + \2G

A multilinear model: 5 (Θ, G) = \1G1 + \2G2 + \3G · · · + \<G<

A polynomial: 5 (Θ, G) = \1 + \2G + \3G
2 + · · · + \<G

<−1.

These all have partial derivatives of 5 (Θ, G) with respect to \8 that are independent of Θ.

The advantage of linear models is that they can be fitted very easily and usually lead to unique solutions.

Another advantage is that the assumption of normally distributed errors zero means and constant variance

allows the application of convenient statistical tests for goodness of fit and parameter significance based on

the j2, C, and � distributions. The disadvantage is that the real world is nonlinear and linear models are not

based on scientific laws but are used for convenience when a meaningful mathematical model is not available.

Nonlinear models

Nonlinear models do not have have partial derivatives of 5 (Θ, G) with respect to \8 that are independent of Θ.

Examples could be the following.

Michaelis-Menten functions: 5 (Θ, G) =
\1G

\2 + G
+

\3G

\4 + G
+ · · · +

\<−1G

\< + G

Exponential functions: 5 (Θ, G) = \1 exp(−\2G) + \3 exp(−\4G) + · · · + \<−1 exp(−\<G)

Rational functions: 5 (Θ, G) =
\1G + \2G

2 + · · · + \</2G
</2

1 + \</2+1G + \</2+2G
2 + · · · + \<G</2

.

The advantage of using nonlinear models is that they may be a good approximation to reality based on scientific

laws. The disadvantage is that they have to be fitted by iterative techniques which depend critically on sensible

scaling, good starting estimates, and meaningful limits on parameter values. Because of this, local rather than

global solutions may be located.

However it is well to remember a distinct limitation of nonlinear regression: all the numerical techniques used

to fit the models, and all the statistical methods used to interpret the results, are based on the assumptions

that the model can be regarded as approximately linear at a solution point, and that the weighting factors are

known exactly.

The objective function

This will usually be,((&, the weighted sum of squared residuals defined as

,((& =

#
∑

8=1

F(8) [H(8) − 5 (Θ, G(8)]2,

and the hope is that minimizing this expression with respect to parameters Θ will be equivalent to finding the

maximum likelihood estimates.
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Options

The SimFIT package provides many options to prepare data, define models, fit data, and test for model

discrimination, goodness of fit, and parameter redundancy as briefly summarized below.

• Programs for linear models

Simple linear models can be fitted by program linfit which also provides techniques for orthogonal

regression, generalized linear models (GLM), and partial least squares (PLS). Polynomials can be fitted

by program polnom, which also allows inverse prediction, i.e. generating calibration curves. Several

varieties of cubic splines can be fitted by program spline, and used to compare curves by compare,

while program calcurve is dedicated to using splines to construct calibration curves followed by inverse

prediction of G given H.

• Programs for simple nonlinear regression

The following programs attempt to guess starting estimates then fit models and output tables of statistical

results and graphs.

– mmfit fits Michaelis-Menten models.

– hlfit fits high and low affinity binding site models.

– sffit fits cooperative ligand binding isotherms.

– rffit fits positive rational functions.

– gcfit fits classical nonlinear growth models.

• Advanced nonlinear regression

Program qnfit provides the following facilities but, as it is extremely comprehensive, it requires con-

siderable expertise and should only be used by experienced analysis.

– Models can be functions of one or several independent variables.

– Multiple linked or independent models can be fitted simultaneously.

– Parameters can be constrained interactively within user-defined limits.

– Three dimensional plots and contours of the objective function can be plotted at solution points.

– The best fit models can be used for evaluation or inverse prediction.

– Models can be used from a built-in library or supplied as text files.

– Single nonlinear differential equations can be fitted.

– Models defined as convolutions of two defined functions can be fitted.

• Differential equations

Program deqsol allows the simulation and fitting of systems of nonlinear differential equations but, like

qnfit, it should only be used by experts.

• Simulation

An essential technique required for advanced curve fitting is the ability to simulate exact data using

program makdat then add random error to simulate reality using program adderr. SimFIT also

provides numerous additional facilities to confirm the robustness of results from regression with respect

to sensitivity of the results to perturbations of parameter values, change in the range of variables, nature

of the error, etc.
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How to interpret tables of parameter estimates

The meaning of the results generated by program exfit after fitting two exponentials to exfit.tf4will now be

explained, as a similar type of analysis is generated by all the user-friendly curve fitting programs. Consider,

first of all the next table listing parameter estimates which result from fitting the two exponential function

5 (C) = �1 exp(−:1C) + �2 exp(−:2C) .

Parameter Value Std.error Lower95%cl Upper95%cl p

�1 0.8526 0.0677 0.713 0.992 0.0000

�2 1.1764 0.0747 1.023 1.330 0.0000

:1 6.7933 0.8541 5.038 8.549 0.0000

:2 1.1121 0.0511 1.007 1.217 0.0000

�*� 1.1834 0.0147 1.153 1.214 0.0000

�*� is the area under the curve from C = 0 to C = ∞

Initial time point (�) = 0.03598

Final time point (�) = 1.611

Area from C = � to C = � = 0.9383

Average over range (�, �) = 0.5958

The first column gives the estimated values for the parameters, i.e., the amplitudes �8 and decay constants

:8 , although it must be appreciated that the pairwise order of these is arbitrary. Actually program exfit will

always try to rearrange the output so that the amplitudes are in increasing order, and a similar rearrangement

will also occur with programs mmfit and hlfit. For situations where �8 > 0 and :8 > 0, the area from zero to

infinity, i.e. the �*�, can be estimated, as can the area under the data range and the average function value

calculated from it. The parameter �*� is not estimated directly from the data, but is a secondary parameter

estimated algebraically from the primary parameters. The standard errors of the primary parameters are

obtained from the inverse of the estimated Hessian matrix at the solution point, but the standard error of

the �*� is estimated from the partial derivatives of �*� with respect to the primary parameters, along

with the estimated variance-covariance matrix. The 95% confidence limits are calculated from the parameter

estimates and the C distribution, while the ? values are the two-tail probabilities for the estimates, i.e., the

probabilities that parameters as extreme or more extreme than the estimated ones could have resulted if the true

parameter values were zero. The windows defined by the confidence limits are useful for a quick rule of thumb

comparison with windows from fitting the same model to another data set; if the windows are disjoint then the

corresponding parameters differ significantly, although there are more meaningful tests. Clearly, parameters

with ? < 0.05 are well defined, while parameters with ? > 0.05 must be regarded as ill-determined.

Expert users may sometimes need the estimated correlation matrix

�8 9 =
�+8, 9

√

�+88�+ 9 9

,

where −1 ≤ �8 9 ≤ 1, �88 = 1, which is shown in the next table, and where the index 8 refers to the natural

order of parameters, that is 8 = 1, 2, 3, 4 corresponds to �1, :1, �2, :2.

Parameter correlation matrix

1

-0.8756 1

-0.5961 0.8995 1

-0.8478 0.9485 0.8199 1
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How to interpret tables for goodness of fit

The next table, displaying the results from analyzing the residuals after fitting two exponentials to exfit.tf4,

is typical of many SimFIT programs. Residuals tables should always be consulted when assessing goodness

of fit.

Analysis of residuals: ,((& 24.397

%(j2 ≥ ,((&) 0.5533

'2, 22(theory,data)2 0.9934

Largest absolute relative residual 11.99%

Smallest absolute relative residual 0.52%

Average absolute relative residual 3.87%

Absolute relative residuals in range 0.1–0.2 3.33%

Absolute relative residuals in range 0.2–0.4 0.00%

Absolute relative residuals in range 0.4–0.8 0.00%

Absolute relative residuals > 0.8 0.00%

Number of negative residuals (=1) 15

Number of positive residuals (=2) 15

Number of runs observed (A) 16

%(runs ≤ A: given =1 and =2) 0.5759

5% lower tail point 11

1% lower tail point 9

%(runs ≤ A : given =1 plus =2) 0.6445

%(signs ≤ least number observed) 1.000

Durbin-Watson test statistic 1.8061

Shapiro-Wilks, statistic 0.9387

Significance level of , 0.0841

Akaike AIC (Schwarz SC) statistics 1.7979 (7.4027)

Verdict on goodness of fit: incredible

Several points should be remembered when assessing such residuals tables, where there are # observations

H(8), with weighting factors B(8), theoretical values 5 (G(8)), residuals A (8) = H(8)− 5 (G(8)), weighted residuals

A (8)/B(8), and where < parameters have been estimated. Theoretical details for the statistical tests will be

found in the SimFIT reference manual w_manual.pdf, or the appropriate tutorial documents.

• ,((&

The j2 test on # − < degrees of freedom using ,((&, the objective function at the solution point

where

,((& =

#
∑

8=1

(

H(8) − 5 (G8)

B(8)

)2

,

is only meaningful if the weights defined by the B(8) supplied for fitting are good estimates of the

standard deviations of the observations at that level of the independent variable; say means of at least

five replicates. Inappropriate weighting factors will result in a biased chi-square test. Also, if all the

B(8) are set equal to 1, unweighted regression will be performed and an alternative analysis test based

on the coefficient of variation will be performed.

• '2

The '2 value is the square of the correlation coefficient between data and best fit points. It only

represents a meaningful estimate of that proportion of the fit explained by the regression for simple

unweighted linear models, and should be interpreted with restraint when nonlinear models have been

fitted.
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• Absolute relative residuals

The results based on the absolute relative residuals 0(8) defined using machine precision n as

08 =
2|A (8) |

max(n, |H(8) | + | 5 (G(8)) |)

do not have statistical relevance, but they do have obvious empirical justification, and they must be

interpreted with commonsense, especially where the data and/or theoretical values are very small.

• Run and sign tests

The probability of the number of runs observed given =1 negative and =2 positive residuals is a very

useful test for randomly distributed runs, but the probability of runs given # = =1 + =2, and also the

overall sign test are weak, except for very large data sets.

• Durbin-Watson test

The Durbin-Watson test statistic

�, =

#−1
∑

8=1

(A (8 + 1) − A (8)2

#
∑

8=1

A (8)2

is useful for detecting serially correlated residuals, which could indicate correlated data or an inappro-

priate model. The expected value is 2.0, and values less than 1.5 suggest positive correlation, while

values greater than 2.5 suggest negative serial correlation.

• Shapiro-Wilks test

Where # , the number of data points, significantly exceeds <, the number of parameters estimated,

the weighted residuals are approximately normally distributed, and so the Shapiro-Wilks test should be

taken seriously.

• Akaike and Schwarz criteria

The Akaike ��� statistic

��� = # log(,((&/#) + 2<

and Schwarz Bayesian criterion (�

(� = # log(,((&/#) + < log#

are only really meaningful if minimizing ,((& is equivalent to Maximum Likelihood Estimation.

Note that only differences between ��� with the same data, i.e. fixed # , are relevant, as in the evidence

ratio �', defined as �' = exp[(��� (1) − ��� (2))/2].

• The qualitative conclusion

The final verdict is calculated from an empirical look-up table, where the position in the table is

a weighted mean of scores allocated for each of the tests listed above. It is qualitative and rather

conservative, and has no precise statistical relevance, but a good result will usually indicate a well-

fitting model.

• Residuals plots

As an additional measure, plots of residuals against theory, and half-normal residuals plots can be

displayed after such residuals analysis, and they should always be inspected before concluding that any

model fits satisfactorily.

• Leverages

With linear models, SimFIT also calculates studentized residuals and leverages, while with generalized

linear models, deviance residuals can be tabulated.
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How to interpret tables for model discrimination results

After a sequence of models have been fitted, tables like the next one are generated.

,((&-previous 224.9

,((&-current 24.4

Number of parameters-previous 2

Number of parameters-current 4

Number of G-values 30

Akaike ���-previous 64.44

Akaike ���-current 1.798, �' = 3.998� + 13

Schwarz (�-previous 67.24

Schwarz (�-current 7.403

Mallows �? 213.7, �?/<1 = 106.9

Numerator degrees of freedom 2

Denominator degrees of freedom 26

� test statistic (�() 106.9

%(� ≥ �() 0.0000

%(� ≤ �() 1.0000

5% upper tail point 3.369

1% upper tail point 5.526

Conclusion based on the � test

Reject the previous model at 1% significance level

There is strong support for the extra parameters

Tentatively accept the current best fit model

First of all, note that the above model discrimination analysis is only strictly applicable for nested linear

models with known error structure, and should be interpreted with restraint otherwise. Now, if,((&1 with

<1 parameters is the previous (possibly deficient) model, while ,((&2 with <2 parameters is the current

(possibly superior) model, so that,((&1 > ,((&2, and <1 < <2, then

� =
(,((&1 −,((&2)/(<2 − <1)

,((&2/(# − <2)

should be � distributed with <2 − <1 and # − <2 degrees of freedom, and the � test for excess variance can

be used. Alternatively, if ,((&2/(# − <2) is equivalent to the true variance, i.e., model 2 is equivalent to

the true model, the Mallows �? statistic

�? =
,((&1

,((&2/(# − <2)
− (# − 2<1)

can be considered. This has expectation <1 if the previous model is sufficient, so values greater than <1, that

is �?/<1 > 1, indicate that the current model should be preferred over the previous one. However, graphical

deconvolution should always be done wherever possible, as with sums of exponentials, Michaelis-Mentens,

High-Low affinity sites, sums of Gaussians or trigonometric functions, etc., before concluding that a higher

order model is justified on statistical grounds.
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