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Constrained nonlinear regression involves minimizing an objective function such as a scaled weighted sum of

squares

W SSQ
N DOF

=

1

n − m

n∑

i=1

wi (yi − f (xi,Θ))2

with respect to a m dimensional parameter vector Θ, where there are n observations yi , and a model f (x,Θ),
along with parameter starting estimates and limits, and specified weights wi . The aim is to use the parameter

estimates and confidence limits to asses the value of model parameters that have a physical interpretation,

such as diffusion constants, chemical reaction rate constants, or growth rates, etc. Of course the observations

y, independent variables x, functions f , and weights w would often be vector quantities. The main SimFIT

programs to perform this type of optimization are qnfit providing quasi-Newton and other methods, and

deqsol for systems of differential equations, and numerous considerations must be understood and several

conditions must be satisfied before these iterative techniques can obtain sensible solution points. Some of

these these are now summarized.

1. The model

The model can be used from a default library of models, but it is normally anticipated that users would

define their own specialized model, and create a model file using program usermod. It will be obvious

that the model should be parsimonious, using only the minimum number of parameters, and where

every parameter has a scientific interpretation. Often data can be normalized by users before curve-

fitting if this reduces the number of parameters that need to be estimated. For instance, normalizing

observations so that f (0) = 0, or f (∞) = 1, or, especially in the case of differential equations, so that

initial conditions do not need to be estimated.

2. The data

The data must be extensive in the sense that n >> m, and with a high signal to noise ratio, but

they should also cover a range where the effect of all parameters can be assessed. For instance, with

exponential decay the range should extend beyond the longest half-life, and, where growth data or ligand

binding data approach a horizontal asymptote, the experimental data should clearly be starting to look

asymptotic.

3. The weights

The variance of experimental observations almost always increases as the absolute value of the observa-

tions increase, and even though the expectation will often be zero, the distribution will have longer tails,

more like a Cauchy than a Gaussian distribution. Now the theory required for the analysis of goodness

of fit and calculation of statistics to estimate parameter reliability and perform model discrimination

depends on the principle of maximum likelihood, which assumes a linear model with uncorrelated

normally distributed error. This means that either wi = 1 if the variance is constant, or wi = 1/s2
i

otherwise where the standard deviations si are known exactly. So several approaches are possible.

• Assume constant variance and set all si = 1. This leads to fitting being dominated by large

observations, and hence the parameters contributing to the large values will be estimated more

accurately than those only contributing to small values.

• Assume constant relative error and assume that standard deviation is proportional to the absolute

value of the observation. This can lead to the opposite effect to assuming constant variance, i.e.

biasing the fit towards small values.

• Assume that si is a defined function of the observations or the best-fit function values. This

requires an assumption about the functional dependency of variance and, if the best-fit model is

used rather than observations, then weighting changes as iterations proceed.
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• Estimate the error variance independently. This is undoubtedly the best method as long as at least

five replicates are determined at each independent variable setting and, if possible, a smoothing

technique is used to determine a reliable model for the change in variance as a function of the

value of observations.

4. The starting estimates and limits

Constrained nonlinear optimization is an iterative technique that attempts to find a local minimum given

parameter starting estimates and parameter limits. So naturally it is important that the starting estimates

are close to the true values and the limits are not so wide that parameters can stray into unlikely regions

of parameter space. SimFIT programs qnfit and deqsol also use the starting estimates to normalize the

internal parameters to order unity, as calculation of maxim descent vectors and augmented Lagrangians

will be most accurate if all internal parameters are of order unity.

Success and Failure

If all the above criteria are met then convergence to a minimum should be achieved so that W SSQ will be

approximately chi-squared distributed with N DOF = n − m. Then the objective function should be of order

unity with reasonable parameter estimates and satisfactory goodness of fit analysis.

On the other hand, if the conditions are not met then failure will occur with appropriate error messages. In

such dubious cases you should switch on the options to evaluate the parameter covariance matrix, the condition

number of the Hessian, and study tables of residuals and residuals plots. Note that, if the objective functions

is too small or too large on entry due to an inappropriate model, poor quality data, incorrect weighting, or

unrealistic starting estimates, then the routine will not be able to estimate the gradient vector and exit will

occur without fitting.

In order to become familiar with program qnfit some very simple examples will be given next to illustrate the

standard way to proceed. That is:

1. select the model type required, e.g. one function of one variable;

2. input a data set composed in the EXPERT mode with starting estimates and limits appended;

3. read in the model file, e.g. created using program usermod; then

4. proceed to fitting.

In the next fairly trivial examples note that the test data files and model files can be easily located using the

[Demo] button on the file-open dialogue box.

Example 1: One function of one variable

Open SimFIT program qnfit then follow the next steps.

1. Choose to fit one function of one variable

2. From the file-open dialogue press [Demo] then view and open the test file

qnfit_data.tf1

3. Choose to open an ASCII text model file then from the file-open dialogue press [Demo] then view and

open the test file

qnfit_model.tf1

4. Choose the EXPERT mode for starting estimates then fit

Note that this is simulated data for a quadratic and the EXPERT mode appended section is as follows.
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begin{limits}
-10 1 10
-10 1 10
-10 1 10

end{limits}

The model file defines a quadratic f (x) = p1x + p2x2
+ p3 as follows.

%
Model for a polynomial of degree 2

f(x) = p(1)x + p(2)x^2 + p(3)

%
1 equation
1 variable
3 parameters
%
begin{expression}
f(1) = p(1)x + p(2)x^2 + p(3)
end{expression}
%

Now, to obtain a permanent copy of the outcome after fitting, extract the table of best-fit parameters using the

[Results] then [Extract tables] options from the main SimFIT menu to import the following table into your

document.

Best-fit parameters for curve-fit 1 using LBFGSB

Number Low-Limit High-Limit Value Std.Error Lower95%cl Upper95%cl p
1 -10.0 10.0 2.12035 0.0197309 2.07829 2.1624 0.0000

2 -10.0 10.0 -0.11565 0.0035714 -0.12326 -0.1080 0.0000

3 -10.0 10.0 0.10347 0.0032091 0.09663 0.1103 0.0000

For 50,90,95,99% confidence limits using [parameter value +/- t(α/2)*std.err.]

t(0.25) = 0.691, t(0.05) = 1.753, t(0.025) = 2.131, t(0.005) = 2.947

Note that the tν (.) values are provided in case you want to calculate parameter confidence limits in addition

to the default 95% values.

Example 2: One function of two variables

Proceeding exactly as for example one except that one function of two variables is chosen, the data file is

qnfit_data.tf2 and the model file is qnfit_model.tf2 observe that now the data file has four

columns (x, y, g(x, y), s) for observations g(x, y).

The appended EXPERT mode section defining the lower-limits, starting values, and upper limits for the three

parameters follows

begin{limits}
-10 -2 10
-10 2 10
-10 4 10
end{limits

while the model has the next definition followed by the results from fitting.
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%
Linear model with two variables
g(x,y) = p(1)x + p(2)y + p(3)
%
1 equation
2 variables
3 parameters
%
begin{expression}
f(1) = p(1)x + p(2)y + p(3)
end{expression}
%

Best-fit parameters for curve-fit 2 using LBFGSB

Number Low-Limit High-Limit Value Std.Error Lower95%cl Upper95%cl p
1 -10.0 10.0 0.96311 0.0334131 0.895683 1.03054 0.0000

2 -10.0 10.0 0.95436 0.0323055 0.889165 1.01955 0.0000

3 -10.0 10.0 1.05694 0.0359344 0.984422 1.12946 0.0000

For 50,90,95,99% confidence limits using [parameter value +/- t(α/2)*std.err.]

t(0.25) = 0.680, t(0.05) = 1.682, t(0.025) = 2.018, t(0.005) = 2.698

Example 3: One function of three variables

This time the data file is qnfit_data.tf3, while the model file is qnfit_model.tf3 defining a

function of three variables thus

%
Linear model with three variables
h(x,y,z) = p(1)x + p(2)y + p(3)z + p(4)
%
1 equation
3 variables
4 parameters
%
begin{expression}
f(1) = p(1)x + p(2)y + p(3)z + p(4)
end{expression}
%

while the best-fit parameters for the model h(x, y, z) = p1x + p2y + p3z + p4 are displayed in the next table.

Best-fit parameters for curve-fit 3 using LBFGSB

Number Low-Limit High-Limit Value Std.Error Lower95%cl Upper95%cl p
1 -10.0 10.0 1.00348 0.015231 0.97335 1.03361 0.0000

2 -10.0 10.0 0.99476 0.017071 0.96098 1.02853 0.0000

3 -10.0 10.0 0.98594 0.017159 0.95199 1.01988 0.0000

4 -10.0 10.0 -2.94533 0.055805 -3.05572 -2.83493 0.0000

For 50,90,95,99% confidence limits using [parameter value +/- t(α/2)*std.err.]

t(0.25) = 0.676, t(0.05) = 1.657, t(0.025) = 1.978, t(0.005) = 2.614
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