

Tutorials and worked examples for simulation, curve fitting, statistical analysis, and plotting. http://www.simfit.org.uk

Given a model defining one or more equations in one or more variables, the integral(s) can be estimated over a hyper-rectangular region defined by fixed limits.

The following procedure is required for just one function of $m \ge 1$ variables, although $n \ge 1$ functions of $m \ge 1$ variables can be analyzed in exactly the same way.

- 1. Create a file defining the function of *m* variables to be integrated.
- 2. Open program **usermod** and input the file defining one function of *m* variables.
- 3. It is necessary to explicitly indicate that one function is required and m must be input correctly.
- 4. Program **usermod** then checks that the function is defined correctly.
- 5. The range of integration required must be defined by editing the vectors *BLIM* and *TLIM* to specify the *m* lower and upper limits for the corresponding variables.
- 6. The absolute error *EPSABS* and relative error *EPSREL* parameters required must be set.
- 7. Integration can then be requested but the result should only accepted if IFAIL = 0 on completion.
- 8. If |IFAIL| > 0 some of the previous parameters will have to be adjusted.

From the main $SimF_IT$ menu, choose [A/Z], open program **usermod**, then read in the test file d01fcf.mod which defines the the integrand used to evaluate the following integral

$$I = \int_0^1 \int_0^1 \int_0^1 \int_0^1 \frac{4u_1 u_3^2 \exp(2u_1 u_3)}{(1 + u_2 + u_4)^2} du_4 du_3 du_2 du_1$$

and the results are listed in the next table

IFAIL EPSABS EPSREL	0 (from D01EAF) 1.000E-06 1.000E-03	
Number	BLIM	TLIM
1	0.0	1.0
2	0.0	1.0
3	0.0	1.0
4	0.0	1.0
Number	INTEGRAL	ABSEST
1	0.57533267	1.0782E-04

Note that in order to perform the integration it may be necessary to re-define the limits, absolute, and relative tolerances, which can be done interactively.

Exit with IFAIL = 0 indicates that the absolute error estimate ABSEST satisfies

$$|ABSEST| \le \max(EPSABS, ABSREL \times |INTEGRAL|)$$

as defined for NAG routine D01EAF.

The model equation file d01fcf_e.mod is as follows.

```
%
f(y) = {4y(1)y(3)^2[exp(2y(1)y(3))]}/{1 + y(2) + y(4)}^2
%
1 equation
4 variables
0 parameters
%
begin{expression}
f(1) = 4y(1)y(3)^2[exp(2y(1)y(3))]/[1.0 + y(2) + y(4)]^2
end{expression}
%
```