

Tutorials and worked examples for simulation, curve fitting, statistical analysis, and plotting. https://simfit.org.uk

Sometimes it is required to use LATEX to display a mathematical equation inside a scientific plot, and this document describes how to do this for the normal distribution cumulative distribution function $\Phi(x)$. Note that all the files mentioned in this document are distributed as SIMFIT test files so that users simply wishing to create the final composed document can proceed directly to the last section describing how to use EditSVG.

The TEX source

This is the code contained in the file latex_maths_equation.tex

```
\documentclass[12pt]{article}
\usepackage{amsmath,bm}
\pagestyle{empty}
\begin{document}
\Large
\[
 \frac{1}{\sigma \sqrt{2\pi}}
   \int\limits_{-\infty}^x
   \exp -\left\{
   \frac{1}{2} \left( \frac{t-\mu}{\sigma} \right)^2 \right\}\,dt
\]
\end{document}
```

which displays the mathematical definition of $\Phi(x)$ as follows.

$$\frac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{x}\exp\left\{\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^{2}\right\} dt$$

In order to import this formula into a graph using **EditSVG** this code must be used to create the corresponding SVG file latex_maths_equation.svg, the overall process being the following sequence of commands.

- latex_maths_equation.tex
- dvips latex_maths_equation.dvi
- dvisvgm -E latex_maths_equation.ps

The file latex_maths_equation.svg created is then ready to be imported into EditSVG but, alternatively, the source file latex_maths_equation.tex can be opened in or dragged and dropped directly onto EditSVG if there is a local installation of LATEX.

It should be realized that, when using LAT_EX in this way to create a SVG file, the command line must be used from a folder containing the *.TEX file required as a local file and not as a fully qualified path-filename to a remote source file. The program EditSVG circumvents this issue when importing LAT_EX source by creating local copies of all files.

Creating the plot file

The file latex_maths_plot.svg with the $\Phi(x)$ profile to be used looks like this before the equation is added.

This figure was created using **makmat** by selecting to display the normal cumulative distribution $\Phi(x)$ with $\mu = 0$ and $\sigma^2 = 1$ for $-4 \le x \le 2$, and then transferring the resulting plot into the program **simplot** using the [Advanced] option to manipulate the title, legends, line–widths, and colors, etc.

Users wishing to avoid this process can simply read the SIMFIT metafile latex_maths_plot.metafile directly into the SIMFIT program simplot, or the SIMDEM program simdem70.

In either case the file is then saved as latex_maths_plot.svg using the [Win] or [SVG] option.

Joining the SVG files using EditSVG

First open program **EditSVG** then input the test file latex_maths_plot.svg to act as a background, then there two possible options.

- 1. Input the test file latex_maths_equation.svg directly; or
- 2. read in the test file latex_maths_equation.tex which will then be used by LATEX to generate an internal copy of latex_maths_equation.svg.

Finally, just use the mouse to move the equation into position and alter the scaling as required to obtain the final plot saved as latex_maths.svg and shown next.

Normal (0,1) Distribution Function

Summary

The programs referred to in this document are as follows.

- 1. InkScape is an OpenSource program that takes in SVG files and can write out EPS and other files.
- 2. EditSVG is a SIMF_IT and SIMD_EM program that takes in SVG or TEX files and writes out SVG and other files.
- 3. editPS is a SIMFT and SIMDEM program that takes in EPS files and writes out only EPS files.
- 4. The SIMFIT program simplot and the SIMD_EM program simdem70 take in SIMFIT metafiles and write out either SVG or EPS files.

Further, the SIMFIT test files (*.TEX and *.SVG) described in this document that can be used by program **EditSVG**, and those (*.EPS) that can be used by program **editPS** are now listed.

File name	Data included
latex_maths_plot.metafile	SIMF _I T or SIMD _E M metafile to create the plot without any equation
latex_maths_equation.tex	LATEX source file for the maths equation with no plot
latex_maths_equation.svg	SVG file containing the formula only
latex_maths_plot.svg	SVG file containing the plot only
latex_maths.svg	SVG file containing both the equation and plot
latex_maths_equation.eps	EPS file containing the formula only
latex_maths_plot.eps	EPS file containing the plot only
latex_maths.eps	EPS file containing both the equation and plot