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The Hill plot is used to display cooperative effects in ligand binding to a protein or receptor with at least
two linked sites. Sites with no linkage will show one-site binding isotherms and so, to explain how to create
Hill plots, use programsffit to fit a two site model to the test filesffit.tf4. After fitting, a cooperativity
analysis interface is presented and, choosing the Hill plot, generates the next plot with data, best-fit curve,
and extreme points needed to plot the asymptotes in Hill space.
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Choosing a Hill plot with asymptoteA = 1 the next plot will be displayed, and this is followed by an
introduction to the principles of cooperativity analysis needed to interpret Hill plots..
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Theory

Ligand binding theory will be presented under the followingheadings.

1. Historical introduction

2. Binding polynomials

3. Definition of cooperativity

4. Factorability of the binding polynomial

5. Statistical interpretation of saturation functions

6. Cooperativity analysis

Historical Introduction

In 1910 Hill [1] proposed that the sigmoid binding curve for oxygen binding to haemoglobin could be ana-
lyzed in terms of the binding ofn ligands in one step with no appreciable intermediates, i.e.the mass action
description

Hb + nX ⇋ HbXn .

This leads to the Hill equation describing the fractional saturationy as a function of concentrationx, and the
Hill plot of log[ y/(1− y)] as a function of logx as follows

y =
K xn

1+ K xn

log

(

y

1− y

)

= n log x + log K .

It is now realized that the Hill equation is simply an empirical equation that is at best a poor approximation
to any real binding situation since:

1. it is only an appropriate representation for a one-site binding process, i.e. forn = 1 ;

2. whenn < 1 it has an infinite slope at the origin and cannot model any realistic binding situation;

3. whenn > 1 it has zero slope at the origin and cannot model any realistic binding situation;

4. whenn is not a positive integer it is pure nonsense; and

5. using it to discuss the effect of cooperativity on graphical features such as sigmoidicity in the y(x)
curve, or convexity in Lineweaver-Burke or Scatchard space, has resulted in considerable confusion.

Of course, before the days of computers and nonlinear regression, fitting a straight line to a Hill plot to get a
non-integer value for the estimated slope was all that couldbe done, and this non-integer value was correctly
taken to mean that this was a result of the model being incorrect.

Nowadays no one would dream of discussing cooperative binding in terms of the Hill equation or fitting a
straight line to a Hill plot but, by a serendipitous coincidence, it turns out that the variable slope of the curve
obtained by transforming a saturation curve into Hill spacestill provides an unambiguous definition of the
sign and magnitude of cooperativity that has got nothing at all to do with the Hill equation. That is because,
to use receptor terminology,

y

1− y
=

[Bound]
[Free]

.
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Binding polynomials and their Hessians

In 1925 Adair [2] improved the description of binding isotherms by defining binding constants for the in-
dividual binding events, and later it came to be appreciatedthat these have to be normalized by statistical
factors in order to discuss the affinity of receptor for ligand in adjacent binding events. In 1967 Wyman [3]
rationalized the situation by pointing out that, for a non-aggregating macromolecule withn binding sites and
only one ligandx varied, there would be binding polynomial which would act like a partition function in
that successive terms of degreei in the polynomial are proportional to the amount of macromolecule withi
ligands attached.

So now the binding of ligands to receptors can be defined for all possible cooperative binding schemes in
terms of a binding polynomialp(x) in the free ligand activityx, as follows

p(x) = 1+ K1x + K2x2
+ · · · + Kn xn

= 1+ A1x + A1A2x2
+ · · · +

n
∏

i=1

Ai x
n

= 1+

(

n
1

)

B1x +

(

n
2

)

B1B2x2
+ · · · +

(

n
n

) n
∏

i=1

Bi x
n,

where the only difference between these alternative expressions concerns themeaning and interpretation of
the binding constants. The fractional saturation is just the scaled derivative of the log of the polynomial with
respect to log(x), and an important auxiliary function ish(x), the Hessian of the binding polynomial defined
as follows

y(x) =

(

1
n

)

d log p(x)
d log x

=

(

1
n

)

xp′(x)
p(x)

h(x) = npp′′ − (n − 1)p′2.

Definition of cooperativity

Given a binding polynomial of degreen there aren − 1 cooperativity coefficientsci defined as

ci = Bi+1 − Bi for i = 1, 2, . . . , n − 1,

or alternatively as log(Bi+1/Bi ), and the interpretation of these is perfectly clear: in a situation whereci > 0
the macromolecule has greater affinity for binding thei + 1th ligand after theith ligand has been bound and
it is perfectly reasonable to describe this as mechanistic positive cooperativity. Hence every binding situation
for n ligands can be summarized by a succession ofn − 1 signs and it might be thought that during the
actual saturation of macromolecule with ligand there wouldbe a succession of phases with possibly differing
cooperativity. For instance, the sequence+ − + might be supposed to give a saturation curve with positive,
then negative, then positive cooperativity. Unfortunately the cooperativity coefficients cannot be interpreted
in this way and they are not a unique indicator of the sign and magnitude of the type of cooperativity exhibited
during the saturation process. The reason for this is simplythat binding does not occur in a succession of
isolated steps and at every stage for 0< x < ∞ every species that is possible is present, that is no ligands
bound, one ligand bound, two ligands bound, etc. up ton ligands bound.

At every point in the range 0< x < ∞ there is a one site binding curveyapp with a uniquely defined apparent
binding constantKapp according to the scheme

[Free sites]+ X ⇋ [Occupied sites]
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that is

yapp (x) =
Kapp x

1+ Kapp x
.

Surely all would agree that the sign and magnitude of cooperativity at that point in the saturation curve would
depend on whetherKapp is increasing or decreasing as a function ofx. It turns out that

Kapp =
p′(x)

np(x) − xp′(x)
and

dKapp

dx
=

h(x)

(np(x) − xp′(x))2

so that increasing affinity (i.e. positive cooperativity) requiresh(x) > 0, decreasing affinity (i.e. negative
cooperativity) requiresh(x) < 0 while at a point whereh(x) = 0 cooperativity changes sign. Bardsley and
Wyman [4] emphasized that the magnitude of the Hill slope with respect to 1 is the unambiguous indicator
of cooperativity which also depends on the sign of the Hessian as follows

d log[y/(1− y)]
d log x

= 1+
xh(x)

p′(x)(np(x) − xp′(x))
.

and Wood and Bardsley [5] proved that the Hessian can have at mostn − 2 positive zeros.

Zeros of the binding polynomial

If the n zeros of the binding polynomial areαi then the fractional saturationy can be expressed as

y =

( x
n

) n
∑

i=1

1
x − αi

,

but further discussion depends on the nature of the zeros.

First observe that, for a set ofm groups of receptors, each withni independent binding sites and binding
constantki , then the zeros are all real and

p(x) =
m
∏

i=1

(1+ ki x)ni ,

andy =
1

∑m
i=1 ni

m
∑

i=1

ni ki x
1+ ki x

,

so y is just the sum of simple binding curves, giving concave downdouble reciprocal plots, etc.

Actually Bardsley et al [6] and [7] proved that, if a binding polynomial factorizes intom polynomialspi with
positive coefficients according to

p(x) = p1(x)p2(x) . . . pm (x)

then the Hill plot slope cannot exceed that of the Hill plot slope for any of the individual factors. As a binding
polynomial can always be factorized into a product of linearfactors with real negative zeros and complex
conjugate pairs forming quadratic factors it might be supposed that the Hill slope can never exceed two.
However, if a binding polynomial of degree> 2 has complex conjugate zeros, the Hill slope may exceed two
and there may be evidence of strong positive cooperativity.That is why Hill plot slopes up to a maximum of
the degree of the binding polynomial can be achieved if thereare quadratic factors with negative coefficients,
corresponding to a group of at least three linked binding sites.

For instance, the binding polynomial for a four site Monod-Wyman-Changeux model is

p(α) =
1

1+ L

(

(1+ α)4
+ L(1+ cα)n

)
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and this can factorize into the form

q(x) = (1+ a1x + b1x2)(1− a2x + b2x2)

with a1 > 0, a2 > 0, b1 > 0, b2 > 0 under certain constraints so that the meaningless quadratic factor with a
negative term allows Hill slopes greater than two.

Edelstein and Bardsley [8] subsequently explored the relationship between the Hill slope at half-saturation
and the Hessian of the binding polynomial.

Statistical interpretation of saturation functions

The species fractional populationssi which are defined fori = 0, 1, . . . , n as

si =
Ki xi

K0 + K1x + K2x2 + · · · + Kn xn

with K0 = 1, are interpreted as the proportions of the receptors in thevarious states of ligation as a function
of ligand activity. The species fractions defined asyi = isi/n for i = 1, 2, . . . , n are the contributions of the
species to the overall saturation. Note that

n
∑

i=0

si = 1, , while

n
∑

i=1

yi = (1/n)d log p/d log x.

Such expressions are very useful when analyzing cooperative ligand binding data and they can be generated
from the best fit binding polynomial after fitting binding curves with programsffit, or by interactive input of
binding constants into programsimstat. At the same time other important analytical results like factors of
the Hessian and minimax Hill slope are also calculated.

The species fractional populations can be also used in a probability model to interpret ligand binding in
several interesting ways. For this purpose, consider a random variableU representing the probability of a
receptor existing in a state withi ligands bound. Then the the probability mass function, expected values and
variance are

P(U = i) = si (i = 0, 1, 2, . . . , n),

E(U) =
n

∑

i=0

isi,

E(U2) =
n

∑

i=0

i2si,

V (U) = E(U2) − [E(U)]2

= x

(

p′(x) + xp′′(x)
p(x)

)

−

(

xp′(x)
p(x)

)2

= n
dy

d log x
,

as fractional saturationy is E(U)/n. In other words, the slope of a semi-log plot of fractional saturation data
indicates the variance of the number of occupied sites, namely; all unoccupied whenx = 0, distribution with
variance increasing as a function ofx up to the maximum semi-log plot slope, then finally approaching all
sites occupied asx tends to infinity. You can input binding constants into the statistical calculations procedure
to see how they are mapped into all spaces, cooperativity coefficients are calculated, zeros of the binding

5



polynomial and Hessian are estimated, Hill slope is reported, and species fractions and binding isotherms are
displayed, as is done automatically after everyn > 1 fit by programsffit.

Cooperativity analysis

After fitting a model, programsffit outputs the binding constant estimates in all the conventions and, when
n > 2 it also outputs the zeros of the best fit binding polynomial and those of the Hessian of the binding
polynomial h(x). The positive zeros ofh(x) indicate points where the theoretical one-site binding curve
coinciding with the actual saturation curve at thatx value has the same slope as the higher order saturation
curve, which are therefore points of cooperativity change.The SimFIT cooperativity procedure allows users
to input binding constant estimates retrospectively to calculate zeros of the binding polynomial and Hessian,
and also to plot species population fractions.

For instance, for 4 sites withK1 = 100, K2 = 10, K3 = 1, andK4 = 0.1, the Hessian has a positive zero
at x = 5.86139, the minimum Hill slope in the range plotted is 0.0842, at x = 0.28607, the maximum is
1.44479, at x = 17.059, and the slope at half saturation is 1.0847, at x = 6.5808.

The next graph shows how the Hill plot slope varies with the maximum and minimum slopes indicated along
with the point where the positive zero of the Hessian occurs.
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The following graph shows the sort of complicated Hill plotsthat can be obtained when there are more than
two cooperatively linked sites. The asymptotes are for the equation

y =
k x

1+ k x

with k = K1/n asx → 0 andk = nKn/Kn−1 asx → ∞.
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