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The Hill plot is used to display cooperativéfects in ligand binding to a protein or receptor with at least
two linked sites. Sites with no linkage will show one-sitading isotherms and so, to explain how to create
Hill plots, use progransffit to fit a two site model to the test filef f i t . t f 4. After fitting, a cooperativity
analysis interface is presented and, choosing the Hill glemerates the next plot with data, best-fit curve,
and extreme points needed to plot the asymptotes in Hillespac

Saturation Function y with Hill Asymptotes
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Choosing a Hill plot with asymptoté& = 1 the next plot will be displayed, and this is followed by an
introduction to the principles of cooperativity analyseeded to interpret Hill plots..

Hill Plot for n = 2 Saturation Function
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Theory

Ligand binding theory will be presented under the followheadings.
1. Historical introduction
. Binding polynomials

. Definition of cooperativity
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4. Factorability of the binding polynomial

5. Statistical interpretation of saturation functions
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. Cooperativity analysis

Historical Introduction

In 1910 Hill [1] proposed that the sigmoid binding curve fotygen binding to haemoglobin could be ana-
lyzed in terms of the binding af ligands in one step with no appreciable intermediatesthe&mass action
description

Hb+ nX = HbX,,.

This leads to the Hill equation describing the fractionailisationy as a function of concentration and the
Hill plot of log[ y/(1 — y)] as a function of log as follows
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Iog(i) =nlogx + logK.
1-y

It is now realized that the Hill equation is simply an emmtiequation that is at best a poor approximation
to any real binding situation since:

1. itis only an appropriate representation for a one-siteibg process, i.e. far=1;

2. whenn < 1 it has an infinite slope at the origin and cannot model anfsteabinding situation;
3. whenn > 1 it has zero slope at the origin and cannot model any reabtiding situation;

4. whenn is not a positive integer it is pure nonsense; and
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. using it to discuss theffect of cooperativity on graphical features such as sigrnaibjdin the y(x)
curve, or convexity in Lineweaver-Burke or Scatchard sphas resulted in considerable confusion.

Of course, before the days of computers and nonlinear reigreditting a straight line to a Hill plot to get a
non-integer value for the estimated slope was all that cbeldone, and this non-integer value was correctly
taken to mean that this was a result of the model being incbrre

Nowadays no one would dream of discussing cooperative ftognii terms of the Hill equation or fitting a
straight line to a Hill plot but, by a serendipitous coingide, it turns out that the variable slope of the curve
obtained by transforming a saturation curve into Hill spsiik provides an unambiguous definition of the
sign and magnitude of cooperativity that has got nothindlab @o with the Hill equation. That is because,

to use receptor terminology,
y _ [Bound]

1-y  [Free]




Binding polynomials and their Hessians

In 1925 Adair [2] improved the description of binding isotims by defining binding constants for the in-
dividual binding events, and later it came to be appreci#ttatithese have to be normalized by statistical
factors in order to discuss thdiaity of receptor for ligand in adjacent binding events. I'679%yman [3]
rationalized the situation by pointing out that, for a n@geegating macromolecule withbinding sites and
only one ligandx varied, there would be binding polynomial which would a&elia partition function in
that successive terms of degiiei@ the polynomial are proportional to the amount of macraoale withi
ligands attached.

So now the binding of ligands to receptors can be defined fqagsible cooperative binding schemes in
terms of a binding polynomigd(x) in the free ligand activity, as follows

P(X) = 1+ Kix + Kox? + - - - + K, X"

n
=1+ AX+ A1A2x2+---+1_[Aix”
i=1
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where the only dference between these alternative expressions concernmgetii@ng and interpretation of

the binding constants. The fractional saturation is justsitaled derivative of the log of the polynomial with
respect to logf), and an important auxiliary function i¥x), the Hessian of the binding polynomial defined
as follows

1\ dlogp(x

y(x) = (ﬁ) %g(x)
(1) xp'(x)
‘(ﬁ) p(x)
h(x) = npp” - (n - 1)p”%,

Definition of cooperativity

Given a binding polynomial of degre®ethere aren — 1 cooperativity cofficientsc; defined as
¢, =B, -Bfori=1L2....,.n-1

or alternatively as lod%;+1/B;), and the interpretation of these is perfectly clear: inaagion wherec; > 0

the macromolecule has greatdiiity for binding thei + 1th ligand after théth ligand has been bound and
it is perfectly reasonable to describe this as mechanistiipe cooperativity. Hence every binding situation
for n ligands can be summarized by a succession efl signs and it might be thought that during the
actual saturation of macromolecule with ligand there wdngdd succession of phases with possibiieding
cooperativity. For instance, the sequenrce + might be supposed to give a saturation curve with positive,
then negative, then positive cooperativity. Unfortunatbke cooperativity co@cients cannot be interpreted
in this way and they are not a unique indicator of the sign aagnitude of the type of cooperativity exhibited
during the saturation process. The reason for this is siryat/binding does not occur in a succession of
isolated steps and at every stage foe X < co every species that is possible is present, that is no ligands
bound, one ligand bound, two ligands bound, etc. upligands bound.

At every point in the range @ X < co there is a one site binding curyg,,, with a uniquely defined apparent
binding constankK,,, according to the scheme

[Free sitesl X = [Occupied sites]



that is

KappX
app(X) = —22
Yapp(X) = 77 Kapp X

Surely all would agree that the sign and magnitude of codipéyeat that point in the saturation curve would
depend on whethe(,,, is increasing or decreasing as a functiorxoft turns out that

B p’(X)
Karr = 5000 = xpr (9 2
dKapp _ h(x)

dx  (np(x) - xp'(x))?

so that increasingfhnity (i.e. positive cooperativity) requirds(x) > 0, decreasingfénity (i.e. negative
cooperativity) requirefi(x) < 0 while at a point wheréa(x) = 0 cooperativity changes sign. Bardsley and
Wyman [4] emphasized that the magnitude of the Hill slopéwétspect to 1 is the unambiguous indicator
of cooperativity which also depends on the sign of the Hesasfollows

dlogly/A -1 _, ., xh(x)
dlogx P’ (x) (NP(X) — xp’(X))
and Wood and Bardsley [5] proved that the Hessian can havestima 2 positive zeros.

Zeros of the binding polynomial

If the n zeros of the binding polynomial arg then the fractional saturationcan be expressed as

X\ v 1
y:(ﬁ)zx—ai’

but further discussion depends on the nature of the zeros.

First observe that, for a set of groups of receptors, each with independent binding sites and binding
constank;, then the zeros are all real and

p(x) = [ J@+ k™,
i=1
1 <L n; k,‘X

andy = m B
i=1 n; = 1+k;x

soy is just the sum of simple binding curves, giving concave ddauble reciprocal plots, etc.

Actually Bardsley et al [6] and [7] proved that, if a bindinglpnomial factorizes intan polynomialsp; with
positive codficients according to

P(X) = P1(X)P2(X) . . . Pm (X)
then the Hill plot slope cannot exceed that of the Hill plai for any of the individual factors. As a binding
polynomial can always be factorized into a product of linfzautors with real negative zeros and complex
conjugate pairs forming quadratic factors it might be sggpbthat the Hill slope can never exceed two.
However, if a binding polynomial of degree2 has complex conjugate zeros, the Hill slope may exceed two
and there may be evidence of strong positive cooperatiVigt is why Hill plot slopes up to a maximum of
the degree of the binding polynomial can be achieved if theeequadratic factors with negative dogents,
corresponding to a group of at least three linked bindinggsit

For instance, the binding polynomial for a four site Monog##an-Changeux model is
1 4 n
p@) = 1 (A+ )"+ L(1+ca)")
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and this can factorize into the form
q(x) = (L + arx + by x?) (1 — apx + bpx?)

with a; > 0,a, > 0,b; > 0,b, > 0 under certain constraints so that the meaningless qiméthaator with a
negative term allows Hill slopes greater than two.

Edelstein and Bardsley [8] subsequently explored theioelstip between the Hill slope at half-saturation
and the Hessian of the binding polynomial.

Statistical interpretation of saturation functions

The species fractional populatiosswhich are defined for=0,1,...,nas

_ KiXi
5= Ko+ KiX + Kox2 + -+ - + K, x"

with Kg = 1, are interpreted as the proportions of the receptors indhieus states of ligation as a function
of ligand activity. The species fractions definedyas= is;/nfori = 1, 2,...,n are the contributions of the
species to the overall saturation. Note that

>si =1, while

i=0

Zyi = (1/n)dlog p/dlog x.
i=1

Such expressions are very useful when analyzing coopergand binding data and they can be generated
from the best fit binding polynomial after fitting binding &es with progransffit, or by interactive input of
binding constants into prograsimstat. At the same time other important analytical results liketdes of

the Hessian and minimax Hill slope are also calculated.

The species fractional populations can be also used in abildlp model to interpret ligand binding in
several interesting ways. For this purpose, consider aorandhriableU representing the probability of a

receptor existing in a state withigands bound. Then the the probability mass function, etqukvalues and
variance are

PU=i)=s(=0L12...,n),
E(U)zzn:isi,
i=0

E(U?) =) i%;,
i=0

V(U) = E(U?) - [E(U)]?
(P xR (X)) (xp ()
‘X( p() ) (p(x))
b
~ dlogx’

as fractional saturatiopis E(U)/n. In other words, the slope of a semi-log plot of fractiondlsation data
indicates the variance of the number of occupied sites, yamleéunoccupied whernx = 0, distribution with
variance increasing as a functionyip to the maximum semi-log plot slope, then finally approaghill
sites occupied astends to infinity. You can input binding constants into thegistical calculations procedure
to see how they are mapped into all spaces, cooperativitfficieats are calculated, zeros of the binding



polynomial and Hessian are estimated, Hill slope is repipdad species fractions and binding isotherms are
displayed, as is done automatically after every 1 fit by programsffit.

Cooperativity analysis

After fitting a model, progransffit outputs the binding constant estimates in all the convestand, when

n > 2 it also outputs the zeros of the best fit binding polynomial ¢hose of the Hessian of the binding
polynomial h(x). The positive zeros of(x) indicate points where the theoretical one-site binding/eu
coinciding with the actual saturation curve at thatalue has the same slope as the higher order saturation
curve, which are therefore points of cooperativity chanjge SmF| T cooperativity procedure allows users

to input binding constant estimates retrospectively towate zeros of the binding polynomial and Hessian,
and also to plot species population fractions.

For instance, for 4 sites witK; = 100K, = 10Kz = 1, andK4 = 0.1, the Hessian has a positive zero
at x = 5.86139, the minimum Hill slope in the range plotted i9842 atx = 0.28607, the maximum is
1.44479atx = 17.059, and the slope at half saturation i8847 at x = 6.5808.

The next graph shows how the Hill plot slope varies with th&imam and minimum slopes indicated along
with the point where the positive zero of the Hessian occurs.

Hill Plot Slope with Maximum and Minimum Points
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The following graph shows the sort of complicated Hill plttiat can be obtained when there are more than
two cooperatively linked sites. The asymptotes are for theagon

a kx
T 1+ kx

y

with k = Ki;/nasx — 0 andk = nK,,/K,,_1 asx — oo.



Hill Plot for K;=100, K,=10, K53=1, K, =0.1
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