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Goodness of fit analysis is always required before a model can be considered to be satisfactory, otherwise

using parameter estimates to characterize experimental observations can lead to false interpretation.

As an example consider the use of program gcfit to fit nonlinear growth models to data in the test file

gcfit.tf2 as shown in the next figure. A typical situation would be when an experimentalist would want to

fit growth curves to data with the main aim being to estimate parameters like the maximum growth rate, the

time at which this was achieved, and the final size attained in order to characterize a group under observation,

say bacterial colonies of several species incubated with alternative antibiotics.

Fitting Alternative Growth Models

Time

D
at

a 
an

d 
B

es
t F

it 
C

ur
ve

s

0.00

0.25

0.50

0.75

1.00

1.25

0 2 4 6 8 10

Data Points
Model 1
Model 2
Model 3

The models fitted were Model 1 (exponential), Model 2 (monomolecular) and Model 3 (logistic) as follows.

Model 1: 51(C) = �1 exp(:1C)
Model 2: 52(C) = �2 (1 − exp(−:2C))

Model 3: 53(C) =
�3

1 + � exp(−:3C)

It is perfectly clear in this case that Model 1 is completely unsatisfactory, Model 2 would give a rough estimate

for the final asymptotic size, while Model 3 would accurately fit all features of the data set. SimFIT program

gcfit also displays the following summary.
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Model ,((&/#�$� %(� ≥ ,) %(Runs ≤ A) # > 10% # > 40% �E.A% Verdict

1 1.52E+02 0.000 0.000 29 17 40.03 Very bad

2 1.81E+01 0.000 0.075 20 0 12.05 Very poor

3 1.32E+00 0.113 0.500 0 0 3.83 Incredible

The way to interpret this goodness of fit summary table will now explained, but it must always be remembered

that the only situations where statistical tests are justified, and when minimizing ,((& is equivalent to

maxmimum likelihood, are when the following four conditions are met.

1. The values G(8) must be known exactly, and not subject to errors of estimation or natural variation. In

other words, - can be regarded as an independent variable and not a covariate.

2. The error of measurement n (8) must be normally distributed with mean zero.

3. The variance of n (8) has one of two forms.

(a) The homoscedastic case where weighting factors B(8) are all equal to one and ,((&/#�$�

estimates the constant variance.

(b) The heteroscedastic case where the variance of n (8) is a function of - and/or. and exact values for

the standard deviation of the n (8) are supplied as B(8). In other words, values of B(8) are supplied

to reduce this case to the homoscedastic case with error variance = 1.

4. The model is correct and linear.

As experimental errors are more like a Cauchy distribution than a normal distribution, variance of the

experimental error is usually an increasing function of the absolute value of the observations, values of B(8)
supplied are at best only determined with limited precision from independent studies or at worst are determined

from replicates, and the model is nonlinear and often only an approximation anyway, such results tables must

be interpreted with restraint.

• ,((&/#�$�

This is the objective function estimated by SimFIT and ,((&/#�$� should be approximately one

at the solution point, as the expectation of a chi-square variable is the number of degrees of freedom.

• %(� ≥ ,)
This is the very approximate result of a performing a j2 test on the weighted sum of squared residuals.

An alternative test is usually done by SimFIT based on the estimated coefficient of variation here and

for the previous result when all B(8) = 1.

• %('D=B ≤ A)
This is the probability of runs less than the number obtained, given the number of negative and positive

residuals.

• # > 10%

This is the number of data points where the ratio of absolute residual to absolute value of observation

exceeds 0.1.

• # > 40%

This is the number of data points where the ratio of absolute residual to absolute value of observation

exceeds 0.4.

• �E.A%

This is the average of absolute residual divided by absolute observation as a percentage.

• Verdict

This is a somewhat arbitrary decision based on a formula involving all of these, and also some other

factors.
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Analysis of residuals

Analysis of residuals and/or weighted residuals is a very important way to judge goodness of fit, especially

when there is only one independent variable, and SimFIT provides numerous ways to do this as follows.

1. Tables of residuals

These highlight residuals which indicate poor fit by colour changes and stars.

2. Tables summarizing goodness of fit based on residuals

3. Test for runs and serial correlations

These rely on the residuals being in a systematic order, such as in order of the independent variable.

4. Test for a normal distribution

Residuals cannot be normally distributed due to correlations induced by parameter estimation, nev-

ertheless the Shapiro-Wilks test is quiet robust when the number of observations greatly exceeds the

number of parameters estimated.

5. Methods for plotting residuals

(a) Residuals plotted against the independent variable

(b) Residuals plotted against the observations

(c) Residuals plotted against the best-fit model

(d) Normal and half-normal plots

Probably option (a) is the easiest to interpret and residuals have to deviate wildly from normality

before option (d) picks this up. Unfortunately this is the only option available when there are multiple

independent variables.

Residuals and/or weighted residuals should be scattered randomly about zero, and the next plot shows very

clearly that with Model 1 there is a systematic nonlinear drift which is much less with model 2, while model

3 shows a much more acceptable pattern
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A plot of the = ordered residuals or weighted residuals as. against normal order statistic medians as - should

be very close to linearity, since residuals should be approximately normally distributed when the number of

points is much greater than the number of parameters estimated. The medians are approximated using

G8 = Φ
−1(I8) where I8 = (8 − 3/8)/(= + 1/4) for 8 = 1, 2, · · · , =.

Here Φ
−1 is the inverse standard normal distribution function. It is also possible to create a half-normal plot

where . are the ordered absolute residuals, and - values are calculated by a similar approximation but using

I8 = (= + 0.5 + 8)/(2= + 9/8) to allow for the wrapping round of the negative residuals. If correctly weighted

residuals are plotted, as in the next figure for the fitted logistic model, the . values should be in the range -3

to 3 for the normal plot, but 0 to 3 for the half normal plot.
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Best-fit lines for the regression of . on - are also plotted on these graphs along with the Pearson product-

moment correlation coefficient A. The significance level ? for the A will also be displayed when ? < 0.05, but

this only happens when the residuals show clear departure from linearity in these plots.
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Testing for differences between two parameter estimates

This can sometimes be a useful simple procedure when you wish to compare two parameters resulting from

a regression, e.g., the final size from fitting a growth curve model, or perhaps two parameters that have been

derived from regression parameters e.g., AUC from fitting an exponential model, or LD50 from bioassay.

You input the two parameter estimates \ and q, the standard error estimates B\ and Bq , the number of

experimental observations #\ and #q , and the number of parameters estimated from the regression "\ and

"q . A C test for equality is then performed with the correction for unequal variances by the the Satterthwaite

procedure, using a C2 statistic with a degrees of freedom calculated with the Welch correction for unequal

variances given by

C2 =
\ − q

√

B2
\
+ B2

q

a =

(B2
\
+ B2

q
)2

B4
\
/(#\ − "\ ) + B4

q
/(#q − "q)

.

Here \ and q refer to the same parameter using the same mathematical model but estimated from two distinct

data sets of sizes #\ and #q .

Such C tests depend on the asymptotic normality of maximum likelihood parameters, and will only be

meaningful if the data set is fairly large and the best fit model adequately represents the data.

Note that C tests on parameter estimates can be especially unreliable because they ignore non-zero covariances

in the estimated parameter variance-covariance matrix.

Testing for differences between several parameter estimates

To take some account of the effect of significant off-diagonal terms in the estimated parameter variance-

covariance matrix you will need to calculate a Mahalanobis distance between parameter estimates e.g., to test

if two or more curve fits using the same model but with different data sets support the presence of significant

treatment effects. For instance, after fitting the logistic equation to growth data by nonlinear regression, you

may wish to see if the growth rates, final asymptotic size, half-time, etc. have been affected by the treatment.

Note that, after every curve fit, you can select an option to add the current parameters and covariance matrix

to your parameter covariance matrix project archive, and also you have the opportunity to select previous fits

to compare with the current fit. For instance, you may wish to compare two fits with < parameters, � in the

first set with estimated covariance matrix �� and � in the second set with estimated covariance matrix ��.

The parameter comparison procedure will then perform a C test for each pair of parameters, and also calculate

the quadratic form

& = (� − �)) (�� + ��)−1(� − �)

which has an approximate chi-square distribution with < degrees of freedom. You should realize that the rule

of thumb test using non-overlapping confidence regions is more conservative than the above C test: parameters

can still be significantly different despite a small overlap of confidence windows.

This technique must be used with care when the models fitted are themselves sums of : identical sub-functions

such as

5 (ΘG) = 51(Θ, G) + 52 (Θ, G) + · · · + 5: (Θ, G) .

Examples of where this can occur could be sums of exponentials, Michaelis-Menten terms, High-Low affinity

site binding isotherms, Gaussians, trigonometric terms, and so on. This is because the parameters are only

unique up to a permutation.
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For instance, the terms �8 and :8 are linked in the exponential function

5 (C) =
<
∑

8=1

�8 exp(−:8 C)

but the order implied by the index 8 is arbitrary. So, when testing if �1 from fitting a data set is the same as

�1 from fitting another data set it is imperative to compare the same terms.

The user friendly programs exfit, mmfit, and hlfit attempt to assist this testing procedure by rearranging the

results into increasing order of amplitudes �8 but, to be sure, it is best to use qnfit, where starting estimates and

parameter constraints can be used from a parameter limits file. That way there is a better chance that parameters

and covariance matrices saved to project archives for retrospective testing for equality of parameters will be

consistent, i.e. the parameters will be compared in the correct order.

The next figure illustrates a common problem, where the same model has been fitted to alternative data sets

and it is wished to decide if one or more parameters differ significantly.
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In this case, the logistic model defined as

5 (C) = \1

1 + \2 exp(−\3C)

was simulated using makdat and adderr then fitted by gcfit, and the main interest is to decide if the estimated

final asymptote i.e. \̂1 differs significantly for the test files gcfit.tf2 and gcfit.tf3 which actually have

identical parameters \1 = 1, while gcfit.tf4 has a slightly larger asymptotic value \1 = 1.25, the other

parameters being identical \2 = 10 and \3 = 1.
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The next table illustrates how this technique works.

Table of Mahalanobis j2, and corrected pairwise C tests for

differences between parameters(�, �) and covariances(�0,�1).

Comparison 1: Parameters from gcfit.tf3 (�) and gcfit.tf2 (�)
& = (� − �)) (�0 + �1)−1(� − �) = 2.193� + 00, #�$� = 3

%(j2 ≥ &) = 0.5333

Index A B A - B t DOF p

1 0.996 0.999 -0.0033 -2.567E-01 53 0.7984

2 10.15 9.890 0.2600 7.224E-01 40 0.4743

3 0.985 0.988 -0.0033 -1.164E-02 37 0.9908

Comparison 2: Parameters from gcfit.tf4 (A) and gcffit.tf2 (B)

& = (� − �)) (�0 + �1)−1(� − �) = 7.492� + 02, #�$� = 3

%(j2 ≥ &) = 0.0000: Reject �0 at 1% significance level

Index A B A - B t DOF p

1 1.224 0.999 0.2251 19.17 57 0.0000 *****

2 10.04 9.890 0.1500 0.382 50 0.7038

3 0.969 0.988 -0.0191 -0.063 46 0.9501

Comparison 3: Parameters from gcfit.tf4 (A) and gcfit.tf3 (B)

& = (� − �)) (�0 + �1)−1(� − �) = 1.064� + 03, #�$� = 3

%(j2 ≥ &) = 0.0000: Reject �0 at 1% significance level

Index A B A - B t DOF p

1 1.224 0.996 0.2284 16.21 59 0.0000 *****

2 10.04 10.15 -0.1100 -0.443 52 0.6596

3 0.969 0.985 -0.0158 -0.093 52 0.9265

The data were fitted using gcfit using the option to store parameter estimates and covariance matrices. Then

the global tests for different parameter sets, and C tests for individual parameter differences were performed,

leading to the results indicated.

Clearly the parameter estimates for test files gcfit.tf2 and gcfit.tf3 indicate no significant differences,

while gcfit.tf4 differed significantly from both of these, due to a larger value for the asymptote \1 for

gcfit.tf4.

Graphical deconvolution

There are occasions when a model to be fitted consists of a sum of sub-functions and it is wished to estimate

the contribution of the sub-functions to the overall regression. In some instances it may be possible to plot

the overall function fitted to the data along with plots for the sub-functions.

This is particularly valuable with models such as the sum of Gaussians, which for three components is

5 (G) = �1√
2f1

exp−1

2

(

G − `1

f1

)2

+ �2√
2f2

exp−1

2

(

G − `2

f2

)2

+ �3√
2f3

exp−1

2

(

G − `3

f3

)2

.

This model is notoriously difficult to fit unless the amplitudes �8 and variances f2
8

are of similar size, but

the means `8 are distinct. However it is one of several models where the ability to do such plotting, which is

loosely referred to as graphical deconvolution in SimFIT, is provided.
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Using SimFIT program qnfit to analyze the data in test file gauss3.tf1 leads to the following table of

parameter estimates for parameters defined in terms of Θ as

5 (G) = \1√
2\7

exp−1

2

(

G − \4

\7

)2

+ \2√
2\8

exp−1

2

(

G − \5

\8

)2

+ \3√
2\9

exp−1

2

(

G − \6

\9

)2

.

The columns indicate: the parameter number, the lowest value allowed for the parameter, the highest value

allowed for the parameter, the value of the parameter estimate, the standard error of the parameter estimate,

the lower 95% confidence limit for the estimate, the upper 95% confidence limit for the estimate, and the

significance level for the estimate. The small ? values and absence of stars after the last column in the next

table of results indicates that all 9 parameters were well determined.

Number Low-Limit High-Limit Value Std. Error Lower95%cl Upper95%cl ?

1 0.000 2.000 0.90754 0.021624 0.8648 0.9503 0.0000

2 0.000 2.000 1.16433 0.042173 1.0810 1.2477 0.0000

3 0.000 2.000 0.92519 0.030130 0.8656 0.9848 0.0000

4 -2.000 2.000 -0.07298 0.015572 -0.1038 -0.0422 0.0000

5 2.000 6.000 3.74510 0.050816 3.6446 3.8456 0.0000

6 8.000 12.00 10.2774 0.096413 10.087 10.468 0.0000

7 0.100 2.000 0.92641 0.014331 0.8981 0.9547 0.0000

8 1.000 3.000 2.34330 0.070567 2.2038 2.4828 0.0000

9 2.000 4.000 2.76906 0.062637 2.6452 2.8929 0.0000

This conclusion is reinforced by the next graphical deconvolution plot showing the data as dots, the best-fit

curve as a dotted line, and the components contributing to the best-fit curve as red, green, and blue curves.
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