Tutorials and wor ked examples for simulation,
curve fitting, statistical analysis, and plotting.
http: //www.simfit.org.uk

Nonlinear growth, decay, and survival models are fitted to data in order to estimate parameters that can be
used to compare the effects of treatments and/or different groups. The parameters that are usually estimated
are the initial and final sizes and rates of change and meaningful numbers such as the half life and maximum

rates of change.

Example 1: Growth data

From the main SIMF]T menu choose [A/Z], open program gcfit, select the option to fit growth curves then
browse the default test file gcfit.tf2 containing the following data.
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Column 1 contains the time values r which must be nonnegative and in nondecreasing order.
Column 2 contains the size estimates S(#) which must be nonnegative.
Column 3 contains the sample standard deviations for the triplicates to use for weighting, but this column

can be set to one or omitted if weighting is not required.



Program gcfit can fit sequences of nonlinear growth, decay, or survival models giving statistics for goodness
of fit and model discrimination but, before proceeding further, the definition of S(#) must be explained.

If the data are for longitudinal measurements on the same individual or subjects they will be correlated so that
fitting nonlinear models by weighted least squares will generate biased fits instead of maximum likelihood
fits. One way to circumvent this is to fit flexible models such as polynomials or splines by techniques that
attempt to estimate the autocorrelation. However it is only possible to estimate approximate correlations and
polynomials cannot capture the shape of actual growth data or be used to estimate meaningful parameters to
characterize growth profiles.

Ideally, gcfit should be used where observed S(¢) values are obtained in such a way as to make successive
observations independent, e.g. sampling without replacement to estimate growth of bacterial colonies. Users
will have to balance the usefulness of growth curve models with possible bias induced by fitting a determin-
istic model against the model-free data smoothing approach.

First of all note that most simple growth curve models are special cases of differential equations such as the
Von Bertalannfy allometric equation
ds/dt = AS” — BSP

which can be simulated and fitted using program deqsol, and it usual to explore the type of model required
by fitting the first three models provided by program gcfit in a preliminary investigation. When a model has
been selected there will be no further need to fit sequences of models.

Three typical growth curve shapes are shown in the next figure.

Model 1: Unlimited Exponential Growth Model 2: Limited Exponential Growth Model 3: Sigmoidal Growth
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e Model 1
This is exponential growth S () which is only encountered in the early phase of development.

S1(t) = Ayrexp(kit)

e Model 2
This is limited exponential growth S,(#), concave down to an asymptote fitted by the monomolecular
model
$>(1) = Ao[1 — exp(—kan)]
e Model 3

This is the logistic equation S3(¢) which can fit sigmoidal profiles.
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50 = T Bexphan)

Proceeding to fit these three models sequentially leads to the following conclusions and results table for
model three, then a plot of data and all three best fit curves.



Model WSSQ/NDOF P(x*>W) P(R<r) N>10% N >40% Av.r% Verdict

1 152 0.000 0.000 29 17 40.08 Very bad
2 18.1 0.000 0.075 20 0 12.05  Very poor
3 1.32 0.113 0.500 0 0 3.83 Incredible

In this table WSSQ/NDOF is the weighted sum of squares divided by degrees of freedom and P(y? > W)
is the significance level for this parameter in a chi-square test. P(R < r) is the probability of runs less than
or equal to the number observed given the number of positive and negative residuals, while N > 10% and
N > 40% are the number of absolute residuals exceeding the stated percentage, and Av.r% is the average
absolute residual. The conclusions in the last column are based on these results along with several other
goodness of fit measures, and clearly model 3 is the preferred model with the estimated parameters shown
next.

Results for model 3

Parameter Value Std.error  Lower95%cl  Upper95%cl )4
A 0.99891 0.0078551 0.9828 7 1.0150 0.0000
B 9.8901 0.33300 9.2100 10.570 0.0000
k 0.98814  0.026785 0.93344 1.0428 0.0000
t12 2.3190 0.045070 2.2270 2.4111 0.0000

Parameter correlation matrix
1
-0.0167 1
-0.4388 0.7192 1

Fitting Alternative Growth Models
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Example 2: Decay data

It is often useful to fit growth models to data that are decreasing as a function of time instead of increasing.
For instance, the Gompertz model growth data in the next table are contained in test file gcfit.tf5 while
the same data are arranged into decay form in test file gcfit. t£6.

Growth data Decay data

t S(t) t S(1)
0.0000  0.0048 0.0000 97.3685
1.1110  0.3044 1.1110  96.4062
22220  3.4696 | 2.2220 82.1162
3.3330 14.5225 | 3.3330 74.1991
4.4440 40.8277 | 4.4440 52.6928
5.5560 52.6928 | 5.5560 40.8277
6.6670 74.1991 | 6.6670 14.5225
7.7780 82.1162 | 7.7780  3.4696
8.8890 96.4062 | 8.8890  0.3044
10.0000 97.3685 | 10.0000 0.0048

What happens in program gcfit when data in gcfit.tf6 are analyzed is that the data are rearranged into the
order of gcfit.t£f5 and then fitted by growth models as normal, except that some of the results and graphs
are displayed in the original decay order with the original time scale.

First consider the parameters estimated for data in test file gcfit.tf5.

Parameter Value Std.error  Lower95%cl  Upper95%cl D
A 105.87 4.6415 94.898 116.85 0.0000
B 9.1665 1.9138 4.6412 13.692 0.0020
k 0.48054 0.052253 0.35698 0.60410 0.0000
W) 5.3733 0.20578 4.8867 5.8599 0.0000
Now consider the parameters estimated for data in test file gcfit.t£6 and the best fit curves.
Parameter Value Std.error  Lower95%cl  Upper95%cl D
A 105.87 4.6415 94.898 116.85 0.0000
B 9.1665 1.9138 4.6412 13.692 0.0020
k 0.48054 0.052253 0.35698 0.60410 0.0000
12 4.6267 0.20578 4.1401 5.1133 0.0000
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What has happened is that the following model was fitted to both of these data sets
S(t) = Aexp[—Bexp(—kt)]

but the only difference in the parameter estimates and graphs is that the data are presented in the original time
scale for t1/, for the decay data and not using the transformed time 7' = t,,4x + tmin — .



A similar situation is encountered when comparing the maximum and minimum slopes evaluated at the data
points with the maximum and minimum values evaluated along the coordinates of the best fit curves. This is
illustrated by the results displayed for extreme gradients in the extracts from the results log files and further
clarified by the gradient plots.

Results for growth data

Maximum observed growth rate  18.655 Best fit curve maximum  18.716
Time when max. rate observed  4.4440 Best fit curve time 4.6107
Minimum observed growth rate  0.048725  Best fit curve minimum  0.048725
Time when min. rate observed  0.0000 Best fit curve time 0.0000
Results for decay data
Minimum observed growth rate  -18.655 Best fit curve minimum  -18.716
Time when min. rate observed  5.5560 Best fit curve time 5.3893
Maximum observed growth rate  -0.048725 Best fit curve maximum  -0.048725
Time when max. rate observed  10.000 Best fit curve time 10.000
Maximum Gompertz Growth Slope at 4.623, 18.72 Minimum Slope at 5.377,-18.72
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The conclusion is simply that, if SIMF[T program gcfit is supplied with decay data, the data will be reversed
and fitted by the growth models, but the output tables and graphs will use the original decay coordinates.

Example 3: Nonlinear survival curves

In mode 2, gcfit fits a sequence of survival curves for data smoothing where it is assumed that the data are
uncorrelated estimates of fractions surviving 0 < S(¢#) < 1 as a function of time > 0, e.g. such as would
result from using independent samples for each time point. However, as normalizing data to S(0) = 1 can
introduce bias, mode 2 allows an amplitude factor to be estimated.

It is important to realize that, if any censoring has taken place, the estimated fraction should be corrected for
this. In other words, you start with a population of known size and, as time elapses, you estimate the fraction
surviving by any sampling technique that gives estimates corrected to the original population at time zero.

The test files weibull. tf1 and gompertz.tfl contain some exact data, which you can fit to see how mode
2 works. Then you can add error to simulate reality using program adderr. Note that you prepare your own
data files for mode 2 using the same format as for program makfil, making sure that the fractions are between
zero and one, and that only nonnegative times are allowed. It is probably best to do unweighted regression
with this sort of data unless the variance of the sampling technique has been investigated independently.

In survival mode the time to half maximum response is estimated with 95% confidence limits and this can
used to estimate LD50. The survivor function is S(¢) = 1 — F(¢), the pdf is f(t), i.e. f(t) = —dS/dt, the
hazard function is h(t) = f(¢)/S(¢), and the cumulative hazard is H(¢) = —log(S(¢)). Plots are provided for
S(t), f(¢), h(¢),log[h(r)] and, as in mode 1, a summary is given to help choose the best fit model from the
models provided, all of which decrease monotonically from S(0) = 1 to S(co) = 0 with increasing time.



The test file weibull. t£1 has the following data

Time  Fraction s.e.

0.000 1.000 1
1.000 0.9048 1
2.000 0.6703 1
3.000 0.4066 1
4.000 0.2019 1
5.000 0.08208 1

simulated by program makdat using the Weibull model

S(t) = p1 exp[—pat??]
= Sp exp[—(An)?Z]

for p; = 1, po = 0.1, p3 = 2.0 which, in the nomenclature used by gcfitis So = 1.0, A = 0.362, B = 2.0. Then
7.5% relative error was added for five replicates using program adderr to generate test file weibull. t£2
which was analyzed using the option to estimate Sy giving the following table of parameter estimates and
the best fit curve plot. Of course, if the starting fraction were known exactly, as in actual survival data, there
would be no values for ¢ = 0 since it would be assumed that Sop = 1. However, allowing the ¢ = 0 value to be
estimated should perhaps always be used for data smoothing to avoid bias.

Parameter  Value Std.error  Lower95%cl  Upper95%cl P
A 0.30648 0.0056521 0.29489 0.31808 0.0000
B 2.0879 0.11926 1.8432 2.3326 0.0000
So 0.95465 0.015961 0.92190 0.98740 0.0000
ti)2 2.7375  0.063837 2.6065 2.8685 0.0000

Fitting a Weibull Survival Model
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Growth and Survival Models available in program gcfit

1. Exponential model dS/dt = kS
S(t) = Aexp(kt), where A = Sy
2. Monomolecular model dS/dt = k(A — S)
S(t) = A[l — Bexp(—kt)], where B =1-5y/A
3. Logistic model dS/dt = kS(A - S)/A
S(t) = A/[1 + Bexp(—kt)], where B = A/Sy — 1
4. Gompertz model dS/dt = kS[log(A) — log(S)]
S(t) = Aexp[—Bexp(—kt)], where B = log(A/Sp)
5. Von Bertalanffy 2/3 model dS/dt = nS*3 — kS
S(t) = [A'? - Bexp(—kn)]?
where A3 = n/«,B=n/k- S(;B,k =«/3
6. Model 3 with constant f(¢) = S(¢) — C
df/dt =dS/dt = kf(t)(A- f(1))/A
S() = A/[1 + Bexp(—kt)] +C
7. Model 4 with constant f(t) = S(¢) - C
df/dt = dS/dt = k f(1)[log(A) —log(f(1))]
S(t) = Aexp[-Bexp(—kt)] + C
8. Model 5 with constant f(¢) = S(¢) - C
dffdt = dSjdt = nf(1)* — kf ()
S(t) = [A'3 = Bexp(=kn)]? + C
9. Richards model dS/dt = nS™ — kS
S(t) = [A'™™ — Bexp(—kr)|!1/(1=m]
where A'™ = n/k, B =1n/k - Sé_m,k = k(1 —m)
if m < 1thenn, x, Aand B are > 0
if m > 1then A > Obutn,xand Bare <0
10. Preece and Baines model f(¢) = exp[ko(t — 6)] + exp[k;(t — 0)]
S(t) = hy = 2(h1 — he)/ f (1)
1. Exponential survival model S(¢) = exp(—Atr)
f@) =AS@)
h(t)=A
2. Weibull survival model S(¢) = exp[—(At)B]
f(6) = AB[(An®"18(1)
h(t) = AB(Ar)B!
3. Gompertz survival model S(¢) = exp[—(B/A){exp(Ar) — 1}]
f (@) = Bexp(Ar)S(1)
h(t) = Bexp(Atr)
4. Log-logistic survival model S(r) = 1/[1 + (AD)B]
f@) = AB(ANP 11+ (AnPP
h(t) = AB(AH)B1[1 + (AnB]



