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Bound-constrained quasi-Newton optimization by LBFGSB can be used to minimize a user-defined model,

but for this procedure it requires starting estimates and the partial derivatives to be provided as well as the

function to be minimized.

So the user supplied model must define n + 1 functions of n variables as follows

f (1) = F (x1, x2, . . . , xn)

f (2) = ∂F/∂x1

f (3) = ∂F/∂x2

. . .

f (n + 1) = ∂F/∂xn.

The limited memory quasi-Newton optimization procedure also requires several other parameters, as now

listed.

• MHESS is the number of limited memory corrections to the Hessian that are stored. The value of 5 is

recommended but, for difficult problems, this can be varied in the range 4 to 17.

• F ACT R should be about 1.0e+12 for low precision, 1.0e+07 for medium precision, and 1.0e+01 for

high precision. Convergence is controlled by F ACT R and PGTOL and will be accepted if

|Fk − Fk+1 |/max(|Fk |, |Fk+1 |, 1) ≤ F ACT R ∗ EPSMCH

at iteration k + 1, where EPSMCH is machine precision, or if

max
i

(Projected Gradient(i)) ≤ PGTOL.

• Starting estimates and bounds on the variables can be set by editing the defaults or by installing from a

data file.

• The parameter IPRI NT allows intermediate output every IPRI NT iterations, and the final gradient

vector can also be printed if required.

• The program opens two files at the start of each optimization session, w_usermod.err stores

intermediate output every IPRI NT iterations plus any error messages, while iterate.dat stores

all iteration details, as for SimFIT programs qnfit and deqsol when they use the LBFGSB suite for

optimization.

• Note that, when IPRI NT > 100 full output, including intermediate coordinates, is written tow_usermod.err
at each iteration.

As an example, input the model file optimum_e.mod defining Rosenbruck’s two dimensional test function

F (x, y) = 100(y − x2)2
+ (1 − x)2

which has a unique minimum at x = 1, y = 1 and is represented as follows.
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%
f(1) = 100(y - x^2)^2 + (1 - x)^2
f(2) = -400x(y - x^2) - 2(1 - x)
f(3) = 200(y - x^2)
%
3 equations
2 variables
0 parameters
%
begin{expression}
A = y - x^2
B = 1 - x
f(1) = 100*A^2 + B^2
f(2) = -400A*x - 2B
f(3) = 200A
end{expression}
%

In order to locate a minimum of this function it is necessary to specify the starting estimates along with

parameters controlling the optimization and the output.

For example, the iteration using the default optimization parameters and good starting estimates, in particular

−10 ≤ x ≤ 10, xstart = 0

−10 ≤ y ≤ 10, ystart = 0

with IPRINT = 5 for output at every fifth iteration proceeds as in the next table.

Iterate F (x, y) |pr j .grd.| Task
1 6.9219E-01 5.0534E+00 N EW_X
6 2.1146E-01 3.1782E+00 N EW_X

11 1.7938E-02 3.5920E-01 N EW_X
16 1.7768E-04 4.4729E-02 N EW_X
20 5.5951E-13 7.2120E-06 CONV ERGENCE :

NORM OF PROJECT ED
GRADIENT ≤ PGTOL

Solution Derivatives

x = 1 ∂F/∂x 7.21198E-06

y = 1 ∂F/∂y -2.87189E-06

The parameter Task informs users of the action required after each intermediate iteration, then finally it

records the reason for termination of the optimization.

As this type of minimization can only locate a local minimum and success depends critically on scaling the

problems and choosing good starting estimates, it will usually be necessary to experiment with alternative

settings until a reliable convergence has been achieved.

Actually program usermod opens two files iterate.dat and w_usermod.err in the user folder which

can be consulted retrospectively to follow the iterations.

In particular, choosing the maximum value of IPRINT = 101 causes output to w_usermod.err for every

iteration as well as error reports, and these data can be used retrospectively to create contour maps with the

optimization trajectory overlaid. This will be discussed in another tutorial.
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